用户名: 密码: 验证码:
高寒地区嫁接桑光合特性及其对低温的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以实生桑“泰来”和嫁接桑树(砧木:泰来桑;接穗:龙桑)为材料,在自然条件下、低温锻炼、低温胁迫等环境下,测定了光合参数、荧光参数、抗氧化酶活性等指标,研究了实生桑和嫁接桑光系统低温环境下的响应特性,以及适应能力,主要结果如下:
     (1)自然生长条件下,通过嫁接桑和实生桑光响应曲线以及二氧化碳响应曲线显示,嫁接桑与实生桑的净光合速率均呈上升的趋势,嫁接桑各个叶位的Pn值都高于实生桑,差异显著。嫁接桑利用光能的效率高于实生桑,光合机构的能力及有机物的合成效率也要高于实生桑。嫁接桑气孔导度(Gs)各个叶位光合活性要高于实生桑,在光合及蒸腾等生理活动中的能力很强,体内的代谢情况也优于实生桑。
     (2)自然生长条件下,在同一枝条不同叶位以及不同叶位上嫁接桑的实际化学效率(ΦPSⅡ)电子传递速率(ETR)、光化学猝灭(qP)均高于实生桑树,非光化学淬灭(NPQ)低于实生桑。从而说明嫁接桑PSⅡ反应中心开放比例和光化学效率以及电子传递速率、吸收光能用于光合作用合成有机物能力高于实生桑,易于有机物的大量合成。
     (3)以桑树品种秋雨为试验材料,研究了桑树幼苗在低温锻炼、冷胁迫和常温恢复期间的光合作用和抗氧化酶活性的适应性变化。结果表明,12℃3d低温锻炼明显地诱导了桑树幼苗的抗冷性。3℃3d冷胁迫下,12℃3d低温锻炼后的桑树幼苗叶片净光合速率(Pn)、气孔导度(Gs)和(PSⅡ)最大光化学效率(Fv/Fm)明显高于未经低温锻炼的桑树幼苗,而且在常温下的恢复快于未经低温锻炼的桑树幼苗。在12℃3d低温锻炼和3℃3d冷胁迫期间,桑树幼苗叶片脯氨酸和可溶性糖含量明显增加,而经低温锻炼的叶片丙二醛(MDA)含量明显低于未经低温锻炼的桑树幼苗。经低温锻炼的桑树幼苗叶片抗坏血酸氧化酶(APX)活性明显高于未经低温锻炼的桑树幼苗。渗透调节物质含量增加和APX活性提高在低温锻炼诱导桑树幼苗的抗冷性上发挥重要的作用。
     (4)以实生桑和嫁接桑为材料,利用叶绿素荧光技术,研究了低温胁迫对两种桑树样本的叶片叶绿素荧光参数的影响以及抗氧化酶的响应。结果表明:在低温胁迫下,2个桑树品种叶绿素荧光参数发生了明显变化,嫁接桑和实生桑的实际光化学效率(ΦPSⅡ)、表观电子传递速率(ETR)、PSⅡ最大光化学效率(Fv/Fm)、光化学猝灭系数(qP)均下降,初始荧光(F0)与非光化学猝灭系数(NPQ)上升,但嫁接桑的F0上升幅度比实生桑树小,实生桑树NPQ上升幅度比嫁接桑树大,干旱胁迫不仅直接引发植物光合结构的变化,而且也影响光合电子的传递。嫁接桑的SOD、POD保护酶的活性下降幅度略小于实生桑,MDA和可溶性糖上升的幅度略高,从而嫁接桑体现出了较强的抗低温能力。
This study use own-root mulberry and grafted mulberry (stock:Tailai mulberry; Scion:Long mulberry) as materials, under the natural conditions, cold hardening, low temperature stress and so on, measured photosynthetic parameters, fluorescence,antioxidant activity and other indicators, research own-root mulberry and grafted mulberry photosynthetic system response and adaptability under low temperature environment, all the main results as follows:
     (1) Under natural conditions, grafting mulberry and own-root mulberry light response curve and the carbon dioxide response curves showed that grafted mulberry and own-root mulberry net photosynthetic rate showed an upward trend, all grafted mulberry leaf were higher than the own-root mulberry obvious. grafted mulberry the efficient of using light energy than own-root mulberry, the ability of photosynthetic institutions and the efficiency of organic synthesis have higher than own-root mulberry. Stomatal conductance (Gs) of grafted mulberry is higher than own-root mulberry in each leaves, photosynthesis and transpiration in the physiological activities are strong, the metabolism is better than own-root mulberry.
     (2) Under natural conditions, in different leaf positions of the same branch and different position of leaves,grafted mulberry is higher than own-root mulberry on the actual photochemical efficiency of PSⅡ, electron transport rate (ETR), the photochemical quenching coefficient (qP) and non photochemical quenching (NPQ) is lower than grafted mulberry. It is show that the open ratio of PSⅡreaction centers of grafted mulberry and photochemical efficiency and electron transport rate, synthesis of organic compounds absorb light energy for photosynthesis capacity than own-root mulberry, and composing a large number of organic synthesis easily.
     (3) Cold temperature damage is a common problem for mulberry production in Northeast China. Many attempts have been made to improve cold tolerance in mulberry plants, and one of the methods tested is cold hardening. The objectives of this research in this paper are to investigate cold tolerance in mulberry seedlings induced by cold hardening to identify mechanisms of chilling tolerance. The seedlings of mulberry variety 'Qiuyu' were exposed to 12℃(cold hardened) or 25℃(unhardened) for 3 d under 220~250μmol·m-2·s-1 PDF. All seedlings were then transported to cold stress at 3℃for 3 d and allowed to recover at 25℃for 2 d. The results showed that resistance to cold stress in leaves of mulberry seedlings was induced by cold hardening at 12℃for 3 d. Net photosynthetic rate (Pn), stomatal conductance (Gs) and the maximum photochemical efficiency of photosystemⅡ(Fv/Fm) in cold hardened leaves of mulberry seedlings under cold stress at 3℃for 3 d were higher than that of unhardened leaves, and cold hardened leaves of mulberry seedlings also recovered faster from cold stress than unhardened leaves. Proline contents and soluble sugar contents in leaves of mulberry seedlings during cold hardening, and proline contents and soluble sugar contents as cell osmolytes in cold hardened leaves of mulberry seedlings during cold stress and recovery were higher significantly than that of unhardened leaves. Malondialdehyde (MDA) contents in cold hardened leaves of mulberry seedlings during cold stress and recovery were lower significantly than that of unhardened leaves. Ascorbate peroxidase (APX, EC1.11.1.11) activities in cold hardened leaves of mulberry seedlings during cold hardening, cold stress and recovery were higher significantly than that of unhardened leaves. It concluded that osmolytes and APX activities in leaves of cold hardened leaves of mulberry seedlings played important role in cold tolerance induced by cold hardening.
     (4) Using the own-root mulberry and grafts mulberry as the test material,the propose was to study on the effects of low temperature stress on chlorophyll fluorescence parameters of mulberry.The results showed that under the low temperature stress,the chlorophyll fluorescence in own-root mulberry and grafts mulberry showed obviously change. Both of them actual photochemical efficiency of PSⅡ(ΦPSⅡ),the electron transport rate (ETR),the diurnal changes of the maximum PSⅡphotochemical efficiency(Fv/Fm) and the photochemical quenching coefficient (qP) were decrease intensity, Minimal fluores-cence (Fo) and non photochemical quenching (NPQ) was risen, while the rising extent of NPQ in own-root mulberry was higher than that in grafts mulberry,It is shown that the ability of PSⅡresisting low temperature stress in grafts mulberry than that in own-root mulberry. Low temperature stress not only caused the change of photosynthetic structure in mulberry directly, but also affect the transformation of photosynthetic electron.The descend content of SOD and POD in grafts mulberry smaller than own-root mulberry,and the ascend content of MDA and oluble sugar contents in grafts mulberry higher than own-root mulberry, it is shown that grafts mulberry have better ability of cold tolerance.
引文
[1]王建科,杨大明,杨玉莲.抗寒桑树品种龙桑一号育成[J].蚕业科学,1993,19(1):1-5.
    [2]王建科,任淑文,王东风,等.黑龙江省桑树种质资源考察[J].蚕业科学,2004,30(1):73-75.
    [3]潘瑞枳,董愚德·植物生理学·北京:高等教育出版社,1995:322-328.
    [4]Roberts RH.Theoretical aspects of graftage.The Botanical Review,1949,15(7):423-445.
    [5]Rogers WS,Beakbane AB. Stock and scion relations.Annual Review of Plant Physiology, 1957,8:217-236.
    [6]Pandey KK. Genetic transformation and graft hybridization in higher plants.Theor Appl Genet,1976,47:299-302.
    [7]朱培坤,王鸣歧,陆妙康,孙崇荣,倪德祥,王汉津,陈刚,蔡以欣,沈大棱,谢雍.通过特殊嫁接技术自发传导外源遗传物质获得远缘无性杂种的研究-甘兰目间无性杂种当代的鉴定.上海农业学报,1985,1(1):43-51.
    [8]龚明,刘友良,朱培仁.低温下稻苗叶片中蛋白质及游离氨基酸的变化[J].植物生理学通讯,1989,25(4):18-22.
    [9]陈杰忠,徐春香,梁立峰.低温对香蕉叶片中蛋白质及脯氨酸的影响[J].华南农业大学学报,1999,20(3):54-58.
    [10]金兰,罗桂花.盐胁迫对紫花首蓓SOD丙二醛及SOD同工酶的影响.实验研究,2004(5):15-16.
    [11]LiangY C,ChenY C,ChenQ,eta.l Exogenous silicon(Si) increases antioxidant enzyme avtivity and reduce lipid peroxidation in roots of salt-stressed barley(Hordeum vulgareL.JournalofPlantPhysiology, 2003,160(10):1157-1164.
    [12]哈特曼,凯斯特.植物繁殖原理和技术.北京:中国林业出版社,1985.
    [13]Moore R.Model for graft compatibility/incompatibility in higher plants.Amer J Bot,1984.71(5): 752-758.
    [14]Rachow-Brandt G,Kollmann R.Studies on graft unions.V. Unloading of assimilates in homo-and heterografts.1992, Journal of Plant Physiology 139,584-589。
    [15]蒋有条.西瓜无公害高效栽培[M].北京:金盾出版社,2003.
    [16]刘慧英,朱祝军,吕国华.低温胁迫对嫁接西瓜耐冷性和活性氧清除系统的影响.应用生态学报,2004,15(4):659-661.
    [17]于凤鸣,闫立英.砧木对嫁接西瓜的生理影响.河北职业技术师范学院学报,2002,16(4):34-36.
    [18]庞士铨.植物逆境生理学基础[M].哈尔滨:东北林业大学出版社.1990,54-71.
    [19]李志英,卢育华,徐立.土壤低温对嫁接黄瓜生理生化特性的影响,园艺学报,1998,25(3):258-263.
    [20]于贤昌,邢禹贤,马红,等.不同砧木与接穗对黄瓜嫁接苗抗冷性的影响.中国农业科学,1998,31(2):41-47.
    [21]于贤昌,邢禹贤,马红,等.黄瓜嫁接苗抗冷特性研究.园艺学报,1997,24(4):348-352.
    [22]McCord J M,Fridovich I.Superoxide dismutase:an enzymi function for erythrocuprein(Hemocuprein)[J]. Journal of Biological Chemistry,1969 (244):6049-6055.
    [23]Foyer CH,DescourvieresP,KunertKJ.Protection against oxegen RVdicals:important defensemechanismstudied in tRVnsgenic plants[J].Plant Celland Envinmmont,1994(17):507-523。
    [24]冯彩平.水分胁迫对冬小麦过氧化物酶与超氧化物歧化酶的影响[A].植物抗性生理研究[C].济南:山东科技出版社,1992.
    [25]Cao X Q.The effect of membrane-lipid proxidation on cell and body.Prog Biochem Biophys,1986-(2):17-23.
    [26]Prasad T K.Mechanism of chilling induce doxidative stress injury and to lerances:changesinanti oxidant system,oxidation of proteins and lipids and protease activities [J]·Plant J,1996,(10):1017-1026.
    [27]Zhanyuan D,Bramlage W J. Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts.J Agric Food Chem,1992,40:1566-1570.
    [28]Spichalla J P,Desborogh S L.Superoxide dismutase,catalase,and a-tocopherol content of stored potato tubers.Plant Physiol,1990,94:1214-1218.
    [29]Mishra N P,Mishra R K,Singhal G S.Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presenceof protein synthesis inhibitors.Plant Physiol,1993,102:903-910.
    [30]Chen G X,Asada K.Ascorbate peroxidase in tea leaves:Occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol,1989,30:987-998.
    [31]Zou Q (邹琦)(ed). Experimental Instructions of Plant Physiology.Beijing,Agricultural Press,2000,110-111.
    [32]王建华,刘鸿先,徐同.超氧物歧化酶(SOD)在植物逆境和衰老生理中的作用[J].植物生理学通讯,1989,(1):1-7.
    [33]Troll W,Lindsey J.A photometric method for the determination of proline.J Bio Chem,1955,215:655-60.
    [34]TANG ZC(汤章城).Accumulation of proline in plant under stress and its possible ecological significance.Plant Physiology Communications(植物生理学通讯),1984,(1):15-21.
    [35]Yong IK,Shin JS, Burgos NR,Hwang TE,Han O,Cho BH,Jung S,Guh JO.Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Sci,2003,43:2109-2117.
    [36]Wang J(王娟),Li DQ(李德全),Gu LK(谷令坤).The reponse to water stress of the antioxidant system in maize seedling roots with different drought resistance.Acta Bot Boreal-Occident Sin(西北植物学报),2002,22(6):285-290.
    [37]Han G(韩刚),Dang Q(党青),Zhao Z(赵忠).Response of antioxidation protection system of Hedysarum scoparium to drought stress.Acta Bot Boreal-Occident Sin(西北植物学报),2008,28(5):1007-1013.
    [38]Yordanov I,Velikova V.Photoinhibition of photosystem I.Bul J P Physiol,2000,26:70-92.
    [39]Sun S(孙山),Zhang LT(张立涛),Wang JX(王家喜),Wang SM(王少敏),Gao HJ(高华君),Gao HY(高辉远).Effects of low temperature and weak light on the functions of photosystem in Prunus armeniaca L.leaves in solar greenhouse.Chin J Appl Ecol(应用生态学报),2008,19(3):512-516.
    [40]Wise RR,Naylor AW.The peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure.Plant Physiol,1987,83:272-277.
    [41]Zhou YH(周艳虹),Yu JQ(喻景权),Qian QQ(钱琼秋),Huang LF(黄黎锋).Effects of chilling and low light on cucumber seedlings growth and their antioxidative enzyme activities.Chin J Appl Ecol(应用生态学报),2003,14(6):921-924.
    [42]Guy CL.Cold acclimation and freezing stress tolerance:Role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol,990,41:187-223.
    [43]Feng ZZ(冯兆忠),Wang J(王静),Feng ZW(冯宗炜).Effect of triadimefon on cucumber seedlings growth and their resistance to chilling injury.Chin J Appl Ecol(应用生态学报),2003,14(10):1637-1640.
    [44]Yoshida Y,Kiyosue T,Nakashima K,Yamaguchi-Shinozaki K, Shinozaki K. Regulation of levels of proline as an osmolyte in plants under water stress.Plant Cell Physiol,1997,38:1095-1102.
    [45]Xin ZG,Li PH.Relationship between proline and ABA in the induction of chilling tolerance in maize suspension2cultured cells.Plant Physiol.1993,103:607-613.
    [46]Prasad TK.Mechanisms of chilling-induced oxidative stress injury and tolerance:Changes in antioxidant system, oxidation of proteins and lipids and protease activities.Plant J,1996,10:1017-1026.
    [47]Wang YL,Liao K,Liu J,Wang L.Changes of contents of osmosis substances and antioxidant enzyme activity in grape vines during cold exercise period before over-wintering. Journal of Fruit Science(果树学报),2006,23(3):375-378.
    [48]Scandalios GJ.Oxygen stress and superoxide dismutase.Plant Physiol,1993,101:7-12.
    [49]Gao QH(高青海),Wu Y(吴燕),Xu K(徐坤),Gao HY(高辉远).Responses of grafted eggplant seedling roots to low temperature stress.Chin J Appl Ecol(应用生态学报),2006,17(3):390-394.
    [50]Prasad TK,Anderson MD,Martin BA,Stewart CR.Evidence for chilling induced oxidative stress in maize seedlings and a regulating role for hydrogen peroxidase.lant Cell,1994,6:65-74.
    [51]张宪政,陈凤玉.植物生理学实验技术[M].沈阳:辽宁科学技术出版社,1994.
    [52]Jian LC(简令成),Lu FC(卢存福),Li JH(李积宏),LI Paul H. Increment of chilling tolerance and its physiological basis in chilling sensitive corn sprouts and tomato seedlings after cold-hardening at optimum temperatures.Acta Agronomica Sinicai(作物学报),2005,31(8):971-976.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700