用户名: 密码: 验证码:
改良剂对玉米Ⅱ大豆、玉米Ⅱ豇豆植株锌铬积累及养分吸收的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以四川农业大学农场紫色土为供试土壤,按国家土壤环境质量(GB15618-1995)二级标准(旱地)加入重金属锌和铬平衡后,再加入石灰和过磷酸钙两种改良剂,通过盆栽试验,系统研究了这两种改良剂及作物(玉米(Zea maysL.)、大豆(Glyline Max)和豇豆(Vigna unguiculate Linn.))单作和间作(玉米‖大豆和玉米‖豇豆)共同作用下,土壤(根际土和非根际土)中的锌、铬有效性及其养分有效性、pH变化、各作物植株体的锌、铬积累量及其养分(氮、磷、钾)吸收、作物生物量等。在此基础上,比较不同改良剂、作物不同种类和不同种植方式对锌铬复合污染土壤的修复效果,以期为锌、铬复合污染土壤上作物生产的安全性提供依据。其主要研究结果如下:
     1、从土壤锌、铬有效态含量比较,呈现为根际土壤>非根际土壤。在同一种植方式(单作或间作),不同改良剂处理下的根际土壤和非根际土壤锌、铬有效态含量均显著小于对照,其含量大小均为对照>石灰(低浓度)>石灰(高浓度);对照>过磷酸钙(高浓度)>过磷酸钙(低浓度),并都在石灰(高浓度)处理和过磷酸钙(低浓度)处理上达到最小值,这表明土壤锌、铬的有效性与土壤pH密切相关,维持土壤高pH值,更有利于降低土壤锌、铬的有效性。在不同种植方式下,同一改良剂相同浓度处理间的土壤锌、铬有效态含量为单作>间作。说明作物间作比单作更有利于促进改良剂降低土壤锌、铬有效性,从而降低了作物植株体对锌、铬的积累。
     2、两种改良剂都显著抑制了作物对土壤中锌、铬的吸收。同一种植方式下不同改良剂浓度处理间,不论是单作还是间作的玉米、大豆和豇豆,其根、茎、叶中的锌、铬含量大小均为:对照>石灰(低浓度)>石灰(高浓度),对照>过磷酸钙(高浓度)>过磷酸钙(低浓度)。这与土壤锌、铬有效态含量大小排序一致,说明作物对锌、铬的吸收与土壤中的锌、铬有效态含量呈正相关关系,由于土壤锌、铬有效性的降低,从而降低了作物对锌、铬的积累。在不同种植方式下,同一改良剂浓度处理间玉米、大豆和豇豆的根、茎及叶的铬、锌含量均表现为单作>间作,说明间作对降低作物的锌、铬积累更有利。
     3、施加改良剂后,土壤养分的有效性明显提高,土壤碱解氮、速效磷、速效钾含量均表现为根际土壤>非根际土壤。同时,改良剂还明显提高了作物对土壤养分(氮、磷、钾)的吸收,植株体内的全氮、全磷、全钾含量都较对照均有所提高,过磷酸钙的提高效果较石灰好。在不同种植方式下,同一改良剂浓度处理间玉米、大豆和豇豆中的根、茎、叶全磷、全钾含量均为间作>单作,表现出明显的间作优势。全氮则为间作中的玉米高于单作玉米、间作中的大豆或豇豆低于单作大豆或豇豆。
     4、改良剂促进了作物生长,作物生物量大小排序均为过磷酸钙处理>石灰处理。在相同改良剂浓度处理下,间作玉米的生物量均大于单作玉米的生物量,间作的大豆(或豇豆)的生物量则均小于单作大豆(或豇豆)的生物量。玉米表现出间作优势,大豆(或豇豆)表现出间作弱势。
     5、改良剂有效降低了锌、铬在作物地上部分和籽实中的转移。玉米、大豆和豇豆的籽实锌、铬含量均表现为:石灰处理>过磷酸钙处理、单作>间作。根据食品卫生标准,从试验中得到的玉米、大豆和豇豆,其籽实铬含量均未达到食品卫生标准,而锌含量在单作和间作中的大豆和豇豆籽实中均达到食品卫生标准。此外单作和间作中的玉米在过磷酸钙处理下,籽实中的锌含量也均达到了食品卫生标准。
     6、土壤pH值的总体变化趋势是根际土壤<非根际土壤,石灰处理>过磷酸钙处理。在同一种植方式下,不同改良剂浓度处理间的土壤pH值大小依次为石灰(高浓度)>石灰(低浓度)>对照>过磷酸钙(低浓度)>过磷酸钙(高浓度),从不同种植方式来看,石灰处理的玉米‖大豆、玉米‖豇豆中的根际土壤和非根际土壤pH值介于单作玉米和单作大豆(豇豆)之间;而过磷酸钙处理的土壤pH值均呈现为:间作>单作。
     以上结果表明,在锌铬复合污染土壤上,通过施加石灰和过磷酸钙来调节土壤pH值,从而降低了土壤的锌、铬有效性,进而又降低了玉米、大豆和豇豆对锌、铬的积累,放缓了锌、铬在土壤-根系-作物系统的迁移和转运能力。就改良效果而言,石灰(高)的改良效果最好,过磷酸钙(高)的效果最差;就种植方式而言,间作优于单作。同时,改良剂还明显提高了土壤养分(氮、磷、钾)的有效性,从而明显提高作物对土壤养分的吸收,促进了作物的生长,利于作物稳产增产。就两种改良剂比较,养分的提高效果为过磷酸钙优于石灰。就种植方式而言,间作表现出明显的间作优势,较单作效果好。因此在锌铬复合污染土壤的修复上,可推荐所选改良剂和作物间作这一修复方式,这对其它重金属污染土壤的修复具有借鉴和指导作用。
According to the Environmental quality standard for soils (GB15618-1995)of secondary standard(dryland), zinc and chromium(ZnCl2,CrCl6.6H2O) were put in the test purple soil from Sichuan Agricultural University farm, and then two amendments of lime and superphosphate were added. Through the pot experiment by means of monoculture (corn, soybean and cowpea) and intercropping(corn‖soybean and corn‖cowpea), it comprehensively studied the zinc and chromium effectiveness, nutrient availability and the change of soil pH in rhizosphere and non-rhizosphere soil, the zinc and chromium accumulation, nutrient (nitrogen, phosphorus and potassium) absorption and biomass et al in crops under the interactions of the two amendments and planting patterns. Based on these, compared with the restoration effects of different amendments, crop species and planting patterns on zinc and chromium contaminated soil, it provided a theoretical basis of crop safety production in zinc and chromium contaminated soil. The major findings were as follows:
     1.For the soil available zinc and chromium, the contents showed rhizosphere soil> non-rhizosphere soil. Under the same planting pattern (monoculture or intercropping), the contents of available zinc and chromium in soil treated by different amendments, which reached the minimum both at lime(high concentration) and superphosphate(low concentration respectively), were fewer than the CK, and the contents order:CK> lime (low concentration)> lime (high concentration), CK>superphosphate (high concentration)> superphosphate (low concentration); it indicated that maintaining high soil pH was more effective on the reduction of soil zinc and chromium availability. Under the different planting patterns, the contents of available zinc and chromium in soil treated by the same concentrations of amendment distributed:monoculture> intercropping. It indicated that intercropping was more beneficial than monoculture in the reduction of availabilty of zinc and chromium in the soil by the amnedments,and further the accumulation in the crop.
     2.The two amendments significantly inhibited the absorption of zinc and chromium in soil, and with better effects of the lime than the superphosphate. Under the same planting pattern and different concentrations of amendments, in spite of monoculture or intercropping, the contents of zinc and chromium in roots, stems and leaves distributed: CK> lime (low concentration)> lime (high concentration), CK> superphosphate (high concentration)> superphosphate (low concentration). This performance was similar to soil zinc and chromium availability, indicating the absorption of zinc and chromium in crop have a positive correlation with the zinc and chromium availability in soil. Those in roots, stems and leaves of corn, soybean and cowpea treated by the different planting patterns and same concentrations of amendments showed:monoculture> intercropping, which indicated that intercropping played a more important role in reducing the accumulation of zinc and chromium in plant bodies.
     3.The contents of hydrolyzable nitroge, available phosphorus and available potassium showed:rhizosphere soil> non-rhizosphere soil after addtion of amendments, and the availability of soil nutrients was significantly improved. At the same time, the amendments had significantly increased the absorption of soil nutrients (nitrogen, phosphorus and potassium)of crops, and those of nitrogen, total phosphorus and total potassium in plant bodies improved compared with the CK, and the improvement by superphosphate was better than lime. Under the different planting patterns and same concentrations of amendments, the contents of total phosphorus and total potassium in roots, stems and leaves of corn, soybean and cowpea showed:intercropping> monoculture, with obvious intercropping advantages. And the total nitrogen in corn showed:intercropping> monoculture, but the total nitrogen in soybean and cowpea showed monoculture> intercropping.
     4. The amendments promoted crops growth, and the biomasses order:superphosphate > lime. Under the same concentrations of amendments, the biomasses of corn intercropping were more than corn monoculture, but the biomasses of soybean (cowpea) intercropping were fewer than those of monoculture. It indicated cron intercropping was more significant in general, soybean and cowpea were not.
     5. The amendments effectively reduced the transformation of zinc and chromium in aerial parts and seeds. The contents of zinc and chromium in corn, soybean and cowpea seeds showed:lime> superphosphate, monoculture> intercropping. According to the Food Hygiene Standard, the contents of chromium in soybean and cowpea seeds in this experiment were lower than those in the standard; while, the contents of zinc in soybean and cowpea seeds met the standards. In addition, by the treatments of superphosphate, the contents of zinc in monoculture and intercropping corn seeds reached the standard, and some of lime treatments reached the standard as well.
     6. The general changing trend of soil pH showed:rhizosphere soil superphosphate. Under the same planting patterns, the order of soil pH treated by different concentrations of amendments was:lime (high concentration)>lime (low)> concentration, CK> superphosphate (low concentration)>superphosphate (high concentration). For the different planting patterns, the pH values of rhizosphere and non-rhizosphere soil of corn/soybean and corn/cowpea treated by lime were between those of the corn monoculture and soybean (cowpea) monoculture, and those treated by superphosphate showed:intercropping> monoculture.
     The results above indicated that, the effectiveness of zinc and chromium significantly declined through lime and superphosphate application on the pH in zinc and chromium contaminated soil.So the accumulation of zinc and chromium was reduced in corn, soybean and cowpea, and the migration and transportation capacity of zinc and chromium slowed down. For the restoration effects of amendments, the lime(high concentration) had the best effects while the superphosphate(high concentration) had the fewer effects; and for planting patterns, the intercropping was better than monoculture. Meanwhile, the amendments had significantly increased the absorption of soil nutrients (nitrogen, phosphorus and potassium), and then increased the soil nutrients absorption of plants, which promoted crops growth and production. For the comparsion of the two amendments, the improvement showed:superphosphate> lime. For the comparsion of the different planting patterns, the effect of intercropping was better than monoculture effect. Therefore, amendments and crop intercropping could be recommended for the restoration of zinc and chromium contanminated soil.
引文
[1]刘井军.土壤重金属污染现状与防治措施[J].中国环境管理,2008,3(1):37-38.
    [2]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社.1996.
    [3]夏星辉.土壤重金属污染治理方法研究进展[J].环境科学,1997,(3):72-76.
    [4]宋静,朱荫媚.土壤重金属污染修复技术[J].农业环境保护,1998,17(6):271-273.
    [5]McGrath S P, Shen Z G, Zhao F J. Heavy metal uptake and chemical changes in the Rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soil[J]. Plant and Soil,1997,188:153-159.
    [6]曹仁林,霍文瑞,何宗兰,等.不同改良剂抑制水稻吸收镉的研究-在酸性土壤上[J].农业环境保护,1992,11(5):195-198.
    [7]天津市土壤肥料学会.迈向21世纪的土壤科学-中国土壤学会第九次全国会员代表大会天津市卷[C].1999.231-234.
    [8]钱海燕,王兴祥,黄国勤,等.钙镁磷肥和石灰对受Cu、Zn污染的菜园土壤的改良作用[J].农业环境科学学报,2007,26(1):235-239.
    [9]徐明岗,张青,曾希柏.改良剂对黄泥土镉锌复合污染修复效应与机理研究[J].环境科学,2007,28(6):1361-1366.
    [10]Albasel N, Cottenie A. Heavy metals up take from contaminated soils as affected by peat, lime, and chelates[J]. Soil Sci SocAm J,1985,49:386-390.
    [11]Eriksson J E. The influence of pH, soil type and time on adsorption and by plants of Cd added to the soil [J]. Water, Air and Pollut,1989,48:317-335.
    [12]Andersson A, Siman G. Levels of Cd and some other trace elements in soils and crops as inflenced by lime and fertilizer levels[J]. Acta Agric Scand,1991,41:3-11.
    [13]陈宏,陈玉成,杨学春.石灰对土壤中Hg、Pb的植物可利用性的调控研究[J].农业环境科学学报,2003,22(5):549-552.
    [14]梁永清,赵美玲,童学琴,等.过磷酸钙的科学施用[J].农村科技,2008,11:15-15.
    [15]田毅,张玉龙.过磷酸钙对土壤中铅的形态及其生物有效性的影响[J].沈阳农业大学学报,2007,38(3):327-330.
    [16]宋日,郭继勋,王玉兰,等.玉米、大豆间作对两种作物根系形态特征的影响[J].东北师大学报自然科学版,2002,34(3):47-49.
    [17]Morris R A, Garrity D P. Resource capture and utilization in intercropping:water [J]. Field Crop Research,1993,34:303-317.
    [18]Willey R W. Resource use in intercropping systems[J]. Agricultural Water Management,1990,17:215-231.
    [19]史海娃,宋卫国,赵志辉.我国农业土壤污染现状及其成因[J].上海农业学报,2008,24(2):122-126.
    [20]周泽义.中国蔬菜重金属污染及控制[J].资源生态环境网络研究动态,1999,10(3):21-27.
    [21]郑喜坤,鲁安怀,高翔,等.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
    [22]Chen C L, Liao M, Huang C Y. Effect of combined pollution by heavy metals on soil enzymatic activities in areas polluted by tailings from Pb-Zn-Ag mine [J]. Journal of Environmental Sciences(环境科学学报:英文版),2005,17(4):637-640.
    [23]黄铭洪.环境污染与生态恢复[M].北京:科学教育出版社,2003.
    [24]仲维科,樊耀波,王敏健.我国农作物的重金属污染及其防治对策[J].农业环境保护,2001,20(4):270-272.
    [25]王三根,王西瑶.植物生理学[M].成都:成都科技大学出版社,1997.344.
    [26]顾公望,张宏伟.微量元素与恶性肿瘤[M].上海:上海科学技术出版社,1993.199-205.
    [27]常文越,陈晓东,冯晓斌,等.含铬(Ⅵ)废物堆放场所土壤/地下水的污染特点及土著微生物的初步生物解毒实验研究[J].环境保护科学,2002,28(6):31-33.
    [28]王济,王世杰.土壤中重金属环境污染元素的来源及作物效应[J].贵州师范大学学报(自然科学版),2005,23(2):113-120.
    [29]Bingham F T. The effect of sulfate on the availability of Cd[J]. Soil Science.1980,130:32-38.
    [30]段昌群,王焕校.重金属对蚕豆(Vicia faba)根尖的核酸含量及核酸酶活性影响的研究[J].环境科学,1992,13(5):31-35.
    [31]周希琴,吉前华.铬胁迫对不同玉米品种种子萌发生理生态的影响[J].湖北农业科学,2005(4):41-45.
    [32]徐成斌,裴晓强,马溪平.六价铬对玉米种子萌发及生理特性的影响[J].环境保护科学,2008,34(4):11379-11379.
    [33]李建新,涂艳丽,王飞.铬胁迫对大豆种子萌发和幼苗生长的影响[J].安徽农业科学,2007,35(35):44-47.
    [34]王启明,陈庆华.铬胁迫对大豆幼苗生理生化特性影响[J].河南农业科学,2008,(5):24-24.
    [35]Khoshgoftarmanesh A H, Kalbasi M. Effect of municipal waste leachate on soil properties and growth and yield of rice[J]. Communications in Soil Science and Plant Analysis,2002,33(13): 2011-2015.
    [36]Mamata M, Sahu R K, Sahu S K. Effect of vermicomposted municipal solid wastes on growth, yield and heavy metal contents of rice (Oryza sativa L.) [J]. Fresenius Environmental Bulletin (Germany),2005,14(7):584-590.
    [37]陆晓怡,何池全.蓖麻对重金属锌的耐性与吸收积累研究[J].环境污染与防治,2005,27(6):414,914.
    [38]徐卫红,熊治庭,王宏信,等.锌胁迫对重金属富集植物黑麦草养分吸收和锌积累的影响[J].水土保持学报,2005,19(4):32-35.
    [39]郑春荣,陈怀满.土壤-水稻体系中污染重金属的迁移及其对水稻的影响[J].环境科学学报,1990,10(2):145-155.
    [40]戴亨林,徐卫红,熊治庭.锌胁迫对大白菜养分含量及锌积累的影响[J].西南农业大学学报(自然科学版),2006,28(3):410-416.
    [41]张义贤.重金属对大麦毒性的研究[J].环境科学学报,1997,17(2):199-200.
    [42]秦天才,吴玉树,王焕校,等.土壤中重金属镉、锌、铅复合污染小白菜根系生理生态效应的研究[J].生态学报,1998,18(30):320-325.
    [43]黄雪夏,白厚义,陈佩琼.Cd、Zn污染对玉米的毒害效应[J].广西农业生物科学,2003,22(4):280-283.
    [44]毕春娟,陈振楼,郑祥民.根际环境重金属地球化学行为及其生物有效性研究进展[J].地球科学进展,2001,16(3):387-393.
    [45]Gregory P J, Hinsinger P. New approaches to studying chemical and physical changes in the rhizosphere:an overview [J]. Plant and Soil,1999, (211):129.
    [46]Mcgrath S P, Shen Z G, Zhao F J. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soil[J]. Plant and Soil,1997, 188:153-159.
    [47]Isabel Cacador, Carlos Vale, Fernando Catarino. A ccumulation of Zn, Pb, Cu, Cr and Ni in sediments between roots of the Tagus Estuary salt marshes, Portugal [J]. Estuarine Coastal and Shelf Science,1996, (42):393-403.
    [48]林琦,陈怀满,郑春荣,等.根际和非根际土中铅、镉行为及交互作用的研究[J].浙江大学学报(农业与生命科学版),2000,26(5):527-532.
    [49]李玉双,孙丽娜,孙铁珩,等.北方常见农作物根际土壤中铅、锌的形态转化及其植物有效性[J].生态环境,2006,15(4):743-746.
    [50]王新,吴燕玉.重金属在土壤-水稻系统中的行为特性[J].生态学杂志,1997,16(4):10-14.
    [51]曹裕松,李志安,邹碧.根际环境的调节与重金属污染土壤的修复[J].生态环境,2003,12(4):493-497.
    [52]张书圣,匡少平,徐仲,等.玉米对土壤中重金属铅的吸收特性及污染防治[J].安全与环境学报,2002,2(1):28-31.
    [53]张书圣,匡少平,徐仲,等.水稻对土壤中环境重金属激素铅的吸收效应及污染防治[J].环境科学与技术,2002,25(2):32-34.
    [54]陈燕,郑小林,袁洪,等.玉米植株对境重金属的富集与分布[J].玉米科学,2006,14(6):93-95.
    [55]李静,李亮亮,张大庚,等.几种重金属(Cd、Pb、Cu、Zn)在玉米植株不同器官中的分布特征[J].植物生理科学,2006,22(4):244-247.
    [56]何勇强,陶勤南,广濑和久,等.镉胁迫下大豆中镉的分布状况及其籽粒品质[J].环境科学学报,2000,20(7):510-512.
    [57]Obata H, Umebayashi M. Effects of cadmium on mineral nutrient concentrations in plants differing in tolerance for cadmium[J]. Journal of Plant Nutrition,1997,20 (1):97-105.
    [58]王凯荣,龚惠群.栽培植物的耐镉性与镉污染土壤的农业利用[J].农业环境保护,2000,19(4):196-199.
    [59]王崇臣,王鹏,黄忠臣.盆栽玉米和大豆对铅、镉的富集作用研究[J].安徽农业科学,2008,36(24):10383,10386.
    [60]白瑛,张祖锡.灌溉水污染及其效应[M].北京:北京农业大学出版社,1998.
    [61]陈义群,董元华.土壤改良剂的研究与应用进展[J].生态环境,2008,17(3):1282-1289.
    [62]Lee T M, Lai H Y, Chen Z S. Effect of chemical amendments on the concentration of cadmium and lead in long term contaminated soils[J]. Chemosphere,2004,57:1459-1471.
    [63]周启星,宋玉芳.污染土壤修复原理与方法[M].北京科学出版社,2004.
    [64]龙新宪,杨肖娥,倪吾钟.重金属污染土壤修复技术研究的现状与展望[J].应用生态学报,2002,3(6):757-762.
    [65]屠乃美,郑华,绉永霞.不同改良剂对铅镉污染稻田的改良效应研究[J].农业环境保护,2000,19(6):324-326.
    [66]王新,周启星.外源镉铅铜锌在土壤中形态分布特性及改性剂的影响[J].农业环境科学学报,2003,22(5):543-544.
    [67]宗良纲,张丽娜,孙静克,等.3种改良剂对不同土壤-水稻系统中Cd行为的影响[J].农业环境科学学报,2006,25(4):834-840.
    [68]刘恩玲,孙继,王亮.不同土壤改良剂对菜地系统铅镉累积的调控作用[J].安徽农业科学,2008,36(27):11992-11994.
    [69]Okamoto T. Form and behavior of some heavy metals in a soil with long-term applications of limed sewage sludge[J]. Japanese Journal of Soil Science and Plant Nutrition,2000,71(2):231-242.
    [70]Paola C, Laura S, Pietro M. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth[J]. Chemosphere,2005,60(3):365-371.
    [71]王宝奇,李淑芹,徐明岗.改良剂对中国两种典型土壤铜锌有效性的影响及机理[J].生态环境,2007,16(4):1139-1143.
    [72]郝秀珍,周东美,王玉军,等.不同改良剂对铜矿尾矿砂的改良效果研究[J].农村生态环境,2002,18(1):11-15.
    [73]李晓娜,张强,陈明昌,等.不同改良剂对苏打碱土磷有效性影响的研究[J].水土保持学报,2005,19(1):71-74.
    [74]李长洪,李华兴,张新明.天然沸石对土壤及养分有效性的影响[J].土壤与环境,2000,9(2):163-165.
    [75]邢世和,刘春英,熊德中,等.不同改土物料对烤烟养分吸收及碳、氮代谢的影响[J].植物营养与 肥料学报,2006,12(5):694-700.
    [76]郭和蓉,陈琼贤,郑少玲,等.营养型酸性土壤改良剂对氮素吸收利用的影响[J].华中农业大学学报,2007,26(2):191-194.
    [77]郭和蓉,陈琼贤,郑少玲,等.营养型土壤改良剂对酸性土壤中磷的活化及玉米吸磷的影响[J].华南农业大学学报(自然科学版),2004,25(1):29-32.
    [78]郭和蓉,陈琼贤,郑少玲,等.营养型土壤改良剂对酸性土壤中钾的调节及玉米吸钾量的影响[J].土壤肥料,2004,(4):20-22.
    [79]Marschner, Romheld, Zhang F S, et al. Mobilization ofmineral nutrients in the rhizosphere[J]. Soil Science,1990, (2):158-163.
    [80]Shi W, Wang X, Yan W. Distribution patterns of available P and K in rape rhizosphere in relation to genotypic difference[J]. Plant and Soil,2004,261:11-16.
    [81]Turpault M P, Boudot J P, Ranger J. Influence of mature Douglas fir roots on the solid soil phase of the rhizosphere and its solution chemistry[J]. Plant and Soil,2005,275:327-336.
    [82]詹媛媛,薛梓瑜,任伟,等.干旱荒漠区不同灌木根际与非根际土壤氮素的含量特征[J].生态学报,2009,29(1):59-66.
    [83]王朴,王雅洁,胡红青,等.红壤和黄褐土根际土壤养分变化的研究[J].华中农业大学学报,2006,25(5):520-523.
    [84]李瑞美,王果,方玲.钙镁磷肥与有机物料配施对作物镉铅吸收的控制效果[J].土壤与环境,2002,11(4):348-351.
    [85]姜丽娜,符建荣,尹一萌.农化措施降低污染土壤中锌对作物毒害性的研究[J].水土保持学报,2005,19(3):110-113.
    [86]李建东,高永刚,顾红,等.石灰对重金属铅影响玉米生长的抑制效用研究[J].生态环境,2006,15(2):312-314.
    [87]高永刚,顾红,董杰,等.石灰对重金属铅影响玉米生理生化作用的抑制效用研究[J].玉米科学,2007,15(S1):94-96.
    [88]杜彩艳,祖艳群,李元,等.施用石灰对大白菜中Cd、Pb和Zn含量的影响[J].云南大学学报,2005,20(6):810-817.
    [89]周华,吴礼树,洪军,等.几种改良剂对Cd和Pb污染土壤小白菜生长的影响[J].河南农业大学学报,2006,(5):90-93.
    [90]华珞,刘秀珍,夏立江,等.土壤对铜、镉、铅、氟的吸附及改良剂对土壤-植物系统中养分元素有效性的影响[J].华北农业学报,1994,9(1):57-62.
    [91]任春玲,曾广勤,张志红.生物磷肥在豇豆上的应用效果[J].豇豆科技,2000,4:23-25.
    [92]郑虚,黄添环.紫色土壤豇豆配施试验[J].广西科学院学报,2000,16(3):127-130.
    [93]魏安源,李文翌,邵前进.大豆田施用石灰的试验效果[J].现代化农业,2002,7(7):47-47.
    [94]许晓平,冯浩,赵西宁,等.土壤改良剂与氮肥配施对玉米生长及其养分含量的影响[J].西北农业学报,2008,17(3):139-142.
    [95]魏孝荣,郝明德,张春霞,等.长期施锌条件下土壤-植物系统植物营养元素的分布特征[J].西北植物学报,2003,23(8):1438-1441.
    [96]赵秉强.间套带状种植小麦的高产机理与技术研究[D].山东农业大学博士学位论文,1996.
    [97]李隆.间作作物种间促进与竞争作用研究[D].中国农业大学博士学位论文,1999.
    [98]郝艳如,劳秀荣,孟庆强,等.玉米/小麦间作对根际土壤和养分吸收的影响[J].中国农学通报,2002,18(4):20-23.
    [99]赵平,李少明,范茂攀,等.玉米辣椒间作条件下钾素养分吸收利用研究[J].湖北农业科学,2004,(3):32-34.
    [100]章家恩,高爱霞,徐华勤,等.玉米/花生间作对土壤微生物和土壤养分状况的影响[J].应用生态学报,2009,20(7):1597-1602.
    [101]李凝玉,李志安,丁永祯.不同作物与玉米间作对玉米吸收积累镉的影响[J].应用生态学报,2008,19(6):1369-1373.
    [102]王朝旭,侯培强,乔国栋.在不同锌盐胁迫下玉米和大豆对锌的富集作用研究[J].兰州交通大学学报,2008,27(3):48-50.
    [103]宋日,牟瑛,王玉兰,等.玉米、大豆间作对两种作物根系形态特征的影响[J].东北师大学报,2002,34(3):83-86.
    [104]李少明,赵平,范茂攀,等.玉米大豆间作条件下氮素养分吸收利用研究[J].云南农业大学学报,2004,19(4):1572-1574.
    [105]唐劲驰,佘丽娜,廖红,等.大豆根构型在玉米‖大豆间作系统中的营养作用[J].中国农业科学,2005,38(6):1196-1203.
    [106]刘均霞,陆引罡,远红伟,等.玉米大豆间作条件下磷素的吸收利用[J].山地农业生物学报,2007,26(4):288-291.
    [107]刘均霞,陆引罡,远红伟,等.玉米/大豆间作条件下养分的高效利用机理[J].山地农业生物学报,2007,26(2):105-109.
    [108]刘均霞,陆引罡,远红伟,等.玉米/大豆间作条件下作物根系对氮素的吸收利用[J].华北农学报,2008,23(1):173-175.
    [109]林立金.锌铬复合污染对水稻根系生理生态、产量及品质的影响[D].四川农业大学,2007.
    [110]杨远祥.小鳞苔草(Carex gentiles Franch.)铅锌富集特性及生理机制初步研究[D].四川农业大学,2007.
    [111]丁凌云,蓝崇钰,林建平,等.不同改良剂对重金属污染农田水稻产量和重金属吸收的影响[J].生态环境,2006,15(6):1204-1208.
    [112]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社.1999.
    [113]食品中铬限量卫生标准(GB14961-1994).
    [114]食品中锌限量卫生标准(GB13106-1994)
    [115]王学峰,朱桂芬,张会勇.粉煤灰和石灰对土壤重金属污染的影响[J].河南师范大学学报,2004,32(3):133-136.
    [116]Shuman L M, Wang J.Effect of rice variety on zinc, cadmium, iron and manganese content in rhizosphere and non-rhizosphere soil fractions[J].Commuications in Soil Science and Plant Analysis,1997,28(1-2):23-26.
    [117]Chen N.C. Chen H.M.Chemical behavior of cadmium in wheat rhizosphere.Pedosphere,1992,2(4).
    [118]徐明岗,张青,曾希柏.改良剂对黄泥土镉锌复合污染修复效应与机理研究[J].环境科学,2007,28(6):1361-1366.
    [119]Cotter-Howells J, Caporn S. Remediation of contaminated land by formation of heavy metal phosphates[J]. Applied Geochemistry,1996,11:335-342.
    [120]Naidu R, Bolan N S, Kookana R S, et al. Ionic strength and pH effects on the adsorption of cadmium and lead on the surface charge of soils [J]. Euro J Soil Sci,1994,45:419-429.
    [121]Youssef R A. Root induce changes in the rhizosphere of plants:I.pH changes in relation to the bulk soil [J]. Soil Sci Plant Nutr,1989,35:461-468.
    [122]林琦,郑春荣,陈怀满.根际环境中镉的形态转化[J].土壤学报,1998,35(4):461-467.
    [123]莫淑勋,钱菊芳,钱承梁.猪粪等有机肥料中磷素养分循环再利用研究[J].土壤学报,1991,28(3):309-316.
    [124]姚喜源,杨延藩.有机肥和无机氮肥配合施用对调节土壤磷素平衡的影响[J].土壤肥料,1989,(1):5-9.
    [125]师刚强,赵艺,施泽明,等.土壤pH值与土壤有效养分关系探讨[J].现代农业科学,2009,16(5):93-94.
    [126]尚爱安,刘玉荣,梁重山.土壤重金属的生物有效性研究进展[J].土壤,2000,(6):294-300.
    [127]Panwar B S, Singh J P, Laura R D.Cadmium uptake by cowpea and mungbean as affected by Cd and P application [J]. Water Air Soil Pollu,1999,112 (12):163-169.
    [128]黄益宗.镉与磷、锌、铁、钙等元素的交互作用及其生态学效应[J].生态学杂志,2004,23(2):92-97.
    [129]胡志平.长江口潮滩植被营养元素和重金属元素累积特征研究[D].华东师范大学,2007:56-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700