用户名: 密码: 验证码:
纳米二氧化硅表面改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分别采用化学法和无皂乳液聚合法对纳米二氧化硅进行表面改性。改性后的纳米二氧化硅在不同含量的情况下与聚丙烯酸酯乳液复合配成纳米外墙涂料,研究其最终涂膜性能,并重点分析纳米外墙涂料耐洗刷和耐沾污性能改善的情况。
     文中采用单质硅法制得固含量为25~30%、粒径10nm左右的稳态下(PH=9)的纳米二氧化硅水溶液。分别采用化学法和无皂乳液聚合法对其表面进行改性。化学法所用改性剂为硅烷WD-30接枝不同分子量聚乙二醇制得,改性后使得纳米二氧化硅表面具有双亲性能,有效改善其界面状况。无皂乳液聚合法是在无乳化剂存在的环境中,利用纳米二氧化硅表面的吸附力,单体(MMA)在其表面进行聚合,包裹纳米二氧化硅表面,改善界面状况。通过电镜和电位测试,都表明两种改性方法都很好地改善了纳米二氧化硅的分散性:二氧化硅团聚体粒径由未改性前的120~200nm缩小为80nm左右。
     纳米二氧化硅改性方法和纳米二氧化硅的含量对实验结果的影响:总的说来,一般化学改性方法由于强化学键作用,效果要好于无皂乳液法。单从化学法本身看,接枝PEG的分子量越大,结果越好,耐沾污性能表现尤为明显;无皂乳液聚合也许由于本身方法的因素使得MMA包裹量对结果影响不显著。纳米含量在颜填料比例范围内,一般对实验结果有利,例如硬度数据随纳米含量提高线性升高。
     配置了以纳米二氧化硅为添加物的纳米涂料,检测各项性能提高或改善的情况。实验结果表明,涂膜的力学性能得到提高,如拉伸强度、断裂延伸率和表面硬度;涂料的耐洗刷性能和耐沾污性能有改善,但防水性能和抗紫外性能无明显改善,接触角和吸水率数据无规律可循。
     温度对涂膜耐沾污性能的影响:一般是外界温度越高,涂料耐沾污性能就越低,而且受纳米含量影响更大。
In this paper ,two kinds of surface modification method(chemical measure and soap-free polymerization ) are used. After the surface of nano-silica was modified, nano-coating is prepared by mixing nano-silica into polyacrylate emulsion. The properties of membrane formed have been proved to be improved. More emphasis will be put on analyzing stain resistance and scrubbing resistance.
    Nano-silica in aqueous solution(solid content w =25%-30%, particle size s=8-15nm, PH=9) has been prepared by silicon. Then two modification measures are used to modify nano-silica particle. According to chemical method , modifier is got by silane coupling agent (WD-30) grafted with PEG of different molecular, which make the surface of nano-silica amphiphilic and improve the interface of nano-silica. Soap-free polymerization method means monomers(MMA) polymerize around the surface of nano-silica without soup, absorbed by the force of surface. By the means of TEM and potential test , the improvement of dispersal of nano-silica has been proved: particle size of aggregates decreased from 120-200nm to 80nm.
    Effects of modification measure and the content of nano-silica to experiment generally chemical measure, with higher chemical band force , will lead to better results than soap-free polymerization measure. To chemical measure , the higher molecular of PEG is, the better result will be got; to soap-free polymerization ,on the contrary , the content of PMMA enwrapping nano-silica effect few on results, which is obviously shown in data of stain resistance. With the horizon in rate of pigment and filler, high content of nano-silica will be benefit to result of experiment, for example , rigidity will increase with the content of nano-silica raising.
    Making up nanopaint mixed with nano-silica ,the improvement of its properties has been tested. The mechanic property of membrane formed increased , such as tensile strength, elongation at break, surface rigidity;The scrubbing resistance and stain resistance of the paints has been improved . But it's the limitation that ideal results of properties of waterproofing and UV-screen haven't been
    
    
    gotten. Few disciplinarian can be found from the data of contact angle function and water absorbency.
    Effects of temperature to stain resistance : with higher circumstance temperature ,stain resistance will be lower, and more easily effected by content of nano-silica.
引文
[1] 张立德.纳米材料和纳米结构[M].北京:科学出版社,2000
    [2] Zilg C,Reichert P, Dietsche. Plastics and Rubber Nano Composites Based upon Layered Silicates[J]. Kunstsoffe Plast Europe, 1998, 88(10): 1812.
    [3] Fischer H R. Nanocomposites from Polymers and Layered Minerals[J]. Acta Polym, 1999,50 (4): 122.
    [4] Fischer H R. Nanocomposites from Polymers and Layered Minerrals[J]. Mater Res Soc Symp Pro. 1998, 519:117.
    [5] Giannelis E P.聚合物/层状硅酸盐纳米复合材料的合成及性能[J].塑料(日文),1995,46(9):25.
    [6] Giannelis E P. Polymer Layered Silicate Nanocomposites: Synthesis Properties and Applications[J]. Appl Organomet, 1998,12 (10/11):675.
    [7] Giannelis E P. Polymer Silicate Nanocomposites: Model Systems for Confined Polymers and Polymer Brushers[J]. Adv Polym Sci, 1999,138:107.
    [8] Usuki A. Composite Material Containing Alayered Silicate [P].US,US4889885. 1989.
    [9] Elspase C W, Kresge E N, Peiffer D G,etal. Polymer Nanocomposite formation by Emulation Synthesis[P]. PCT Int Appl,WO 97/00910 Al. 1997.
    [10] Okada A, Usuki A. The Chemistry of Polymer Clay Hybrid[J] .Mater Sci & Engin: C3, 1995, 109~115.
    [11] Kresge E N. Tire inner Liners Comprising a Solid Rubber and a Complex of a Reactive Rubber and Layered Silicatecaly[P].US,US5665183.
    [12] Andrea B R Mayer. Palladium and platinum nanocatalysts protected by amphiphilic block copolymers[J]. Poly J, 1998, 30(3):197-205.
    [13] 李金望,田杰谟.Si3 N4/Si C纳米复合陶瓷的制备、结构和性能[J].功能材料,1998,29(5):452-457.
    [15] 陈大明.纳米陶瓷复合材料的制备与性能[J].材料导报,1997,11(5):67-71.
    [16] 陈艳,王新宇,高宗明,等.聚酰胺/SiO_2纳米复合材料的研究[J].高分子学报,1997,1(1):73-78.
    [17] 王丽萍,洪广言.无机-有机纳米复合材料[J].功能材料,1998,2 9(4):343-347.
    
    
    [18] 乔放,李强,漆宗能,等.聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究[J].高分子通报,1997,1(3):135-143.
    [19] Yang Feng. Polyamide6/silica nanocompositeprepared by in situpolymerization[J]. J Appl Poly Sic, 1998, 69(7):355-361.
    [20] 孙继红,张晔,范文浩,等.Sol-gel技术与纳米材料的化学剪裁[J].化学进展,1999,11(1):80~85
    [21] 田明原,施尔畏,仲维卓等.纳米陶瓷与纳米陶瓷粉末.无机材料学,1998,13(2):131
    [22] 章永化,龚克成.聚合物/层状无机物纳米复合材料的研究进展.材料导报,1998,12(2):61
    [23] 曾清华,五栋知,王淀佐.聚合物/粘土矿物纳米复合材料.化工进展,1998,17(2):13
    [24] 余鼎声,王一中.粘土/尼龙6嵌入化合物的合成与表征.高分子材料科学与工程,1997,13(4):14
    [25] 张立群,王一中,王益庆等.粘土/丁苯橡胶纳米复合材料的制备和性能.特种橡胶制品,1998,19(2):6
    [26] Vaia R A, Ishii H G, Giannelis E P .Chem .Mater. 1993,5:1694
    [27] 章永化,龚克成 Sol-Gel法制备有机/无机纳米复合材料的进展.高分子材料科学与工程,1997,13(4):14
    [28] 王子枕,王莉玮,赵敬哲,等.沉淀法合成高比表面积超细SiO_2.无机材料学报,1997,12(3):391~396
    [29] Zhou Q F, Zhang Q Q,Zhang JX,et al. Preparation and optical properties of TiO_2 nanocrys-talline particles dispersed in Si O2 nano-composites. Matterials Letters, 1997,31:39~42
    [30] 鲍希茂,宋海智.硅基发光材料研究进展.材料研究学报,1997,11(6):601~611
    [31] Wu X L ,Tong S,L iu X N,etal. X-ray diffraction study of alternating nanocrystalline silicon/amorphous silicon multilayers. Appl Phys Lett, 1997,70(7):838~840
    [32] Awaji N,Ohkubo S,Nakanishi T, etal. Thermal oxide growth atchemical vapordeposited SiO_2/Si interface during annealing evaluated by difference X-ray reflecttivity. Appl Phys Lett, 1997,71 (14):1954~1956
    [33] 杨南如,余桂郁.溶胶凝胶法简介.硅酸盐通报,1992(2):56~63
    
    
    [34] Tatsumisago M,Tsutomu M. Preparation of proton-conducting amorphous films containing dode-camolybdophosphoric acid by the sol-gel method. JAm Ceram Soc,1989,72 (3):484~486
    [35] 曾庭英,刘剑波,邱勇,等.纳米级SiO_2玻璃材料制备技术研究.功能材料,1997,28(3):268~277
    [36] 邓建国.聚合物/聚合物纳米复合材料的研究进展[J].材料导报,2000,14(3):56~57,73
    [37] 徐国财.纳米SiO_2在紫外光固化涂料中的应用[J].涂料工业,1999,(7):3-6
    [38] 马毅,王璇.纳米碳酸钙及其应用[J].涂料工业,2000,(10):39-42.
    [39] 周铬.纳米二氧化钛研究进展[J].涂料工业,1996,(4):36-39.
    [40] 祖庸.纳米ZnO的奇妙用途[J].化工新型材料,1999.(3):14-18.
    [41] Stamataskis P. Optimun Particale Size of Titanium dioxide and Zinc Oxide for Attenuatiom of Ultraviolet Radiation[J]. Journal of Coating Technology, 1990,62 (789):95
    [42] 李晓娥.纳米TiO_2紫外线屏蔽性能的研究[J].涂料工业,2000,(9):3-5.
    [43] 吕建坤.环氧/粘土纳米复合材料形成机理与性能[J].高分子通报,2000,(6):18-22.
    [44] JP 2000-160056[日本专利公开]
    [45] 杜振霞.改性纳米碳酸钙表面性质的研究[J].现代化工,2001,(4):42-45.
    [46] 力士创科公司.纳米环保工业水性涂料[J].中国涂装.2001,(4):25-27.
    [47] Jiang. L .Binary Cooperative Complementing Nanoscale Interfacial Materials [J].Pure Appl. Chem,2000,72 (1-2):73-81
    [48] 张喜梅.纳米材料制备研究现状及其发展方向[J].现代化工,2000,(7):13-16
    [49] 胡建中.利用图象分析仪测定颜料粒径及其分布[J].涂料工业,1996,(3):39-41.
    [50] 耿耀宗编著.新型建筑涂料的生产与施工.河北:河北科学技术出版社,1996,8~18
    [51] Zeno W W,Frank N J, Peter P.Journal of Coatings Technology, 1999, 71 (889):61~68Vol.71,No.889,1999,61~68
    [52] Zeno W W ,Frank N J, Peter P.Journal of Coatings Technology, 1999, 71 (889):53~55
    [53] D Braun, H Cherdron, W Kern .Principles of Emulsion Polymerization[J].Polym Sci, 1998, (27):95-118.
    
    
    [54] Goodall, Wilkinson C,Hearn J.Techniques of Polymer Srntheses and Charaterization[J].Polym Chem ED, 1997, (15):2193~2218.
    [55] Arail M, aria K, Wilkinson C, Hearn J .Progress in Organic Coating[J] .Polym Chem ED, 1979, (17):3655~3665.
    [56] Xu Li zhen, Shi Li ping. Development of Epoxy Modified Acrytic Coatings[J]. Paintand Coatings Industry, 1998, (6):16.
    [57] 徐峰.SAC溶剂型丙烯酸外墙涂料[J].化学建材,1997,(6):249.
    [58] 曾钫,龙复.核/壳型复合乳液制备工艺定量研究初探[J].涂料工业,1995,(4):6.
    [59] 庄严,张复胜,无皂乳液聚合技术及其应用[J].涂料工业,1998,(4):35.
    [60] 王忠义,等.有机硅改性丙烯酸乳液的合成及涂料性能[J].化学建材,1998,(2):17~19.
    [61] Tang Li ming, Dong Han peng. Synthesis and Properties of A New Soap Free Polyacrylate Emulsion[J]. Polymer Materials Science And Engineering, 1998,14(1):17~19
    [62] 日大森英三[日].丙烯酸酯及其共聚物[M].朱传启译.北京:化学工业出版社,1985.412~413.
    [63] 陆享荣.建筑涂料生产与施工[M].北京:中国建筑工业出版社,1988.264~268.
    [64] Herman S K,Joseph J F.Introduction to Polymer Science and Technology[M].NewYork: John Wiley and Sons, 1977.295~297.
    [65] 李克友,张菊华,向福如.高分子合成原理及工艺学[M].北京:科学出版社,1999.
    [66] 符芳主编.建筑装饰材料.东南大学出版社,1995。
    [67] 苏洁编著.建筑涂料.同济大学出版社,1996。
    [68] 吴宝琨等编.建筑材料化学.北京:中国建筑工业出版社,1988
    [69] 张茂根,翁志学,黄志明,等.表面活性单体存在下的MMA/BA乳液共聚合[J].高等学校化学学报,2000,21(1):148-151.
    [70] 耿耀宗.涂料树脂化学及应用[M].北京:中国工业出版社,1992.91~92.
    [71] 张茂根,翁志学,黄志明,等.无皂乳液聚合中单分散性粒子的形成过程[J].高等学校化学学报,1998,19(9):1519~1520
    [72] 武利民.“关于纳米涂料的研究开发与产业化”《新材料产业》2002,(2):60
    [73] Wu L i min, Chen Xi chong , Charaterization of polyester Based
    
    Polyurethane n/Nano-Silica Composites Prepared by In-site Polymerization, International Forumon Coating Science and Technology, Athens,Greece,July,2002
    [74] Zhou Shu xue, Wu Li min, The Change of the Properties of Acrylicbased Polyurethanevia Addition of Nano-silica, Progress in Organic coatings, inpress.
    [75] Wu Li min, Chen Xi chong ,Study on Surface of High-solids Polyurethane and Polyurethane/Tinned Iron Interface, Surface and Interface Analysis, 2001,31,1094~1099.
    [76] Walter K A.Critical Look at CPVC Performance and applications Properties[J], Journal of Coatings Technology, 1992,64,47~58
    [77] G. E Bierwagen,D.CC .Rich ,The Critical Pigment Volume Concentration in Latex Coatings, 1983,11 ,339~352
    [78] Ronald H. Rowl and Fred B. Stieg, Graphical Solution to CPVC Problems in Latex Paints[J], Journal of Coating Technology, 1982,54,51~56
    [79] F. Lfloyd, R.M.Holsworth, CPVC as Point of Phase Inversion in Latex Paints[J].Journal of Coating Technology, 1992,64(806),65~69
    [80] Mitchell A.Winnik, Yongcai Wang, F. Haley, Latex Film Formation at the Molecular Level: The Effect of Caolesing Aidson Polymer Diffusion[J],Journal of coating Technology, 1992,64(81),51~61
    [81] Kenneth L. Coalescence and Film formation from Latexes[J], Journal of Technology, 1996,68(853),33~39
    [82] 赵艺强 明伟华 纳米级高固含量聚合物微胶乳在水性涂料中的应用 复旦学报 1999.vol 38(6):641~643
    [83] 吕平 刘淑梅 水 性建筑防水涂料的性能、应用及发展 低温建筑技术 1999.vol 6:3~4
    [84] 赵孝友 提高乳胶漆质量的几个新举措 中国涂料 1996.vol 3:24~29
    [85] 徐峰 耐沾污型有机-无机复合涂料的研制 现代涂料与涂装 2001 vol6:9~13
    [86] 王国建 有机硅氧烷丙烯酸酯共聚弹性乳液的研制 建筑材料学报 2001 vol4(4):377~384
    [87] 林宣益 憎水保洁的微结构外墙乳胶漆——仿生学在建筑涂料中的应用 新型建筑材料 2000 vol 5:7~9
    
    
    [88] 张玉林 纳米多功能外墙涂料的研制 新型建筑材料 2002 Vol 3:18~21
    [89] 曹同玉 刘庆普《聚合物乳液合成原理性能及应用》化学工业出版社
    [90] 洪啸吟 冯汗保《涂料化学》科学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700