用户名: 密码: 验证码:
涡阳花沟西10煤中微量元素的赋存状态及环境效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探明涡阳花沟西10煤中微量元素的赋存状态和环境效应,给10煤煤炭资源的开采和合理利用提供科学依据,共收集10个钻孔煤样品,分别对该研究区10煤中微量元素的富集情况、赋存状态和挥发性进行了研究,并以研究区10煤层为例,探讨了基于模糊综合评判的三级(洁净煤、一般煤和不洁净煤)煤洁净程度评价方法。
     采用电感耦合等离子质谱仪(ICP-MS)分析了煤中13种微量元素的含量,与华北煤、中国煤和世界煤相应元素的丰度值相比,大多数元素的含量属于“正常”或“低”质量分数水平;从相对于地壳、中国大陆岩石和土壤的富集系数可以看出:大多数样品中元素轻微富集或不富集。
     应用LECO碳硫分析仪测定了煤的总有机碳(TOC),其与微量元素含量的相关关系分析表明:Be、Ba、Zn和Mo兼有有机亲和性和无机亲和性,但Be和Ba以无机亲和性为主,Zn和Mo两者相当;V、Cr、Co、Ni、Cu、Sb、Pb和T1主要具有无机亲和性;Cd主要具有有机亲和性。
     X射线衍射(XRD)分析结果表明:10煤中的无机组分主要含有粘土矿物高岭石,碳酸盐矿物铁白云石、菱铁矿和方解石等,部分含有石英、黄铁矿、白云母和方铁锰矿
     聚类分析表明:10煤中13种微量元素可分为两大类,其中V、Sb、Cu、Cr、Pb、Co、Ni、Tl、Mo、Be和Ba等11种元素,为铝硅酸盐吸附类,部分可能与碳酸盐矿物结合;Zn和Cd两种元素,为有机结合类,Cd以有机结合态为主。
     因子分析表明:前三个因子的累积贡献率为86.39%,因子F1中V、Cr、Co、Ni、Cu、Sb、Pb和Ba有较高因子载荷,因子F2中Be、T1和Mo有较高因子载荷,因子F3中Zn和Cd有较高的因子载荷,因子F1为无机结合态因子(铝硅酸盐因子),因子F2为赋存状态不确定因子,F3为有机结合态因子。
     1100℃静态燃烧实验表明:Be、Cr、Co、Ni、Cu、Zn、Sb和Ba为中等挥发,Mo和V的挥发性不确定,Pb、Tl和Cd易挥发,10煤中Pb和T1含量相对较高,在煤炭资源的利用过程中需注意其危害。
     以部分原煤煤质参数,有害微量元素的含量、挥发性和赋存状态,煤的工艺特征为评价指标,根据微量元素的毒性确定元素权重,并采用模糊综合评判的方法,对研究区10煤层煤的洁净程度进行了分析评价。评价结果表明:涡阳花沟西10煤属洁净煤。
In order to investigate the modes of occurrence and environmental effects of trace elements in coal from No.10 coal-bed at western Huagou, and to provide scientific basis for rational exploitation and utilization of the coal resources in this area,10 coal samples were collected from the cores of different boreholes, the enrichment, modes of occurrence, and volatility of trace elements were measured by various methods. Finally, a three-graded clean degree assessment method of coal based on fussy comprehensive evaluation were discussed and applied in assessing the cleanliness of coal resources from No.10 coal-bed.
     The concentrations of 13 kind trace elements were determined using inductively coupled plasma mass spectrometry (ICP-MS). Most trace elements are of normal or low levels compared with its Clarkes in Northern China, Chinese and world coals. Trace elements are slightly enriched or non-enriched in major coal sample, which could be concluded from the enrichment factor related to their contents in the crust, and rock and soil of Chinese continent.
     Total organic carbon (TOC) of the coal was measured by LECO carbon and sulfur analyzer. The correlations between TOCs and concentrations of trace elements indicate that Beryllium, Ba, Zn, and Mo are associated with organic matter and minerals in coal, but Beryllium and Ba are mainly in minerals, however, Zinc and Mo are evenly distributed in organic and inorganic matter. Vanadium, Cr, Co, Ni, Cu, Sb, Pb and Tl have strongly inorganic affinity, while cadmium is on the contrary.
     Inorganic matters of No.10 coal are mainly consist of clay minerals such as kaolinite, and carbonate mineral siderite and calcite. Quartz, pyrite, muscovite and bixbyite are detected in individual coal samples by X-ray diffraction (XRD).
     Cluster analysis result demonstrates that eleven trace elements belong to adsorption species by alumino-silicate, or partially locate in carbonate minerals, Vanadium, Sb, Cu, Cr, Pb, Co, Ni, Tl, Mo, Be and Ba included. Zinc and Cd pertain to organic combination, and the latter mainly associated with organics.
     Factor analysis illustrates that all thirteen trace elements can be expressed by three factors, F1, F2 and F3, respectively. Vanadium, Cr, Co, Ni, Cu, Sb, Pb and Ba have large factor loading in F1. Beryllium, Tl and Mo are significant in F2. Zinc and Cd are important in F3. too. According to the modes of occurrence of trace elements, F1 can be designated as inorganic association factor or aluminosilicate factor, F3 may be named organic combination factor, nevertheless F2 is uncertain factor because the occurrence of the three trace elements aren't definitive as others.
     Trace elements in coal could be classified into three groups based on their volatilities in combustion process. Beryllium, Cr, Co, Ni, Cu, Zn, Sb and Ba moderately volatilize in combustion and uniformly distribute in bottom and fly ash. While Lead, Tl and Cd easily form vapor and escape the stack or pollution control devices as gaseous phase or aerosol. Thus, precaution and protective measures should be taken when utilize the coal from No.10 coal-bed at western Huagou owing to easy volatility and relatively high contents of Lead, Tl and Cd. The volatilities of Molybdenum and V are uncertain because experimental error.
     Choosing some parameters of raw coal including ash yields, sulfur contents, the contents, volatility and modes of occurrence of trace elements, and technical characteristics as evaluating index, and assigning the weight of the third evaluating indice according to the toxicity of trace elements, and then build a completed clean degree evaluation system for coal using fuzzy comprehensive evaluation method. At last, the evaluation system is applied in the assessment of cleanliness of coal from No.10 coal-bed at western Huagou, and the results show that the coal resources of No.10 coal-bed is clean and have little environmental effects and healthy implications.
引文
[1]Fyfe WS. Clean energy for 10 billion humans in the 21st century:is it possible?[J].International Journal of Coal Geology.1999,40:85-90
    [2]国家发展和改革委员会.煤炭工业发展“十一五”规划[OL].http://www.sdpc.gov.cn/fzgh/ghwb/115zxgh/default.htm
    [3]韩文科,胡秀莲,高世宪,等.中国能源消费结构变化趁势及调整对策[M].北京:中国计划出版社.2007.2
    [4]魏一鸣,范英,韩智勇,等.中国能源报告(2006)战略与政策研究[M].北京:科学出版社.2006.15
    [5]Shealy M, Dorian JP. Growing Chinese coal use:Dramatic resource and environmental implications[J].Energy Policy.2009,doi:10.1016/j.enpol.2009.06.051
    [6]Saha PC. Sustainable energy development:a challenge for Asia and the Pacific region in the 21st century[J].Energy Policy.2003,31:1051-1059
    [7]He BS, Chen CH. Energy ecological efficiency of coal fired plant in China[J].Energy Conversion and Management.2002,43:2553-2567
    [8]国家发展和改革委员会,能源发展“十一五”规划[OL].http://www. sdpc.gov.cn/fzgh/ghwb/115zxgh/default.htm
    [9]Vuuren DV, Zhou FQ, Vries BD, et al. Energy and emission scenarios for China in the 21st century-exploration of baseline development and mitigation options[J].Energy Policy.2003,31:369-387
    [10]Finkelman RB, Gross PMK. The types of data needed for assessing the environmental and human health impacts of coal [J]. International Journal of Coal Geology.1999,40:91-101
    [11]Tewalt SJ, Willett JC, Finkelman RB. The world coal quality inventory:a status report[J].International Journal of Coal Geology.2005,63:190-194
    [12]Gorbaty ML. Prominent frontiers of coal science:past, present and future[J].Fuel.1994,73:1819-1828
    [13]Swaine DJ. Why trace elements are important[J].Fuel Processing Technology.2000,65-66:21-33
    [14]陈健,陈萍,刘文中.淮南矿区煤中12种微量元素的赋存状态及环境效应[J].煤田地质与勘探.2009,37(6):47-53
    [15]陈鹏.中国煤炭性质、分类和利用.[M].北京:化学工业出版社.2009.66-68
    [16]唐书恒,秦勇,姜尧发.中国洁净煤地质研究[M].北京:地质出版社.2006.3-231
    [17]刘桂建,杨萍月,张威,等.简述煤中微量元素的环境学研究进展[J].煤矿环境保护.1999,13(5):17-19
    [18]赵峰华,任德贻,张军营,等.煤中有害元素的研究现状及其对环境保护的意义[J].煤矿环境保护.1997,12(2):20-23
    [19]冯新斌,洪业汤.煤中微量元素的环境地球化学[J].矿物岩石地球化学通报.1997,16(4):235-238
    [20]陈祖兴,刘心中,翁仁贵.煤中微量元素研究进展[J].能源与环境.2008,5:4-6
    [21]姚多喜,支霞臣,郑宝山.煤中微量元素及其在燃烧过程中释放的研究现状[J].合肥工业大学学报(自然科学版).2002,25(3):373-378
    [22]刘桂建,彭子成,王桂梁,等.煤中微量元素研究进展[J].地球科学进展.2002,17(1):53-62
    [23]蔡英俊,苏彩珠.煤中有害微量元素的研究状况[J].检验检疫科学.2005,15(s):138-140
    [24]孔洪亮,曾荣树,庄新国.煤中微量元素研究现状[J].矿物岩石地球化学通报.2002,21(2):121-126
    [25]刘大锰,刘志华,李运勇.煤中有害物质及其对环境的影响研究进展[J].地球科学进展.2002,17(6):840-847
    [26]赵继尧,唐修义,黄文辉.中国煤中微量元素的丰度[J].中国煤田地质.2002,14(s):5-17
    [27]唐修义,陈萍.中国煤中的氯[J].中国煤田地质.2002,14(s):33-36
    [28]陈萍,唐修义.中国煤中的氟[J].中国煤田地质.2002,14(s):25-28
    [29]陈萍,唐修义.中国煤中的砷[J].中国煤田地质.2002,14(s):18-24
    [30]吴江平,闫峻,刘桂建,等.中国煤中铬的分布、赋存状态及富集因素研究进展[J].矿物岩石地球化学通报.2005,24(3):239-244
    [31]庄新国,杨生科,曾荣树,等.中国几个主要煤产地煤中微量元素特征[J].地质科技情报.1999,18(3):63-66
    [32]唐修义,黄文辉.中国煤中微量元素[M].北京:商务印书馆.2004.49-311
    [33]任德贻,赵峰华,代世峰,等.煤的微量元素地球化学[M].北京:科学出版社,2006.86-297
    [34]白向飞,李文华,陈亚飞,等.中国煤中微量元素分布基本特征[J].煤质技术.2007,1:1-4
    [35]窦廷焕,肖达先,董雅琴,等.神府东胜矿区煤中微量元素初步研究[J].煤田地质与勘探.1998,26(3):11-15
    [36]刘桂建,杨萍月.济宁煤田煤中微量元素的地球化学研究[J].地质地球化学.1999,27(4):77-82
    [37]宋党育,王文峰,秦勇.安太堡11#煤元素地球化学特征及环境效应[J].煤炭转化.2003,26(1):41-44
    [38]刘桂建,彭子成,杨萍玥,等.煤中微量元素富集的主要因素分析[J].煤田地质与勘探.2001,29(4):1-4
    [39]刘文中,肖建辉,陈萍.煤中稀土元素地球化学的研究进展[J].煤炭科学技术.2007,35(11):106-108
    [40]刘文中,陈萍,陈健,等.淮南煤及其燃烧产物中稀士元素丰度的比较[J].煤炭学报.2009,34(6):814-818
    [41]陈健,刘文中.中国煤中硒的研究综述[J].洁净煤技术.2008,14(5):75-78
    [42]代世峰,任德贻,周义平,等.煤中微量元素和矿物富集的同沉积火山灰与海底喷流复合成因[J].科学通报.2008,53(24):3120-3126
    [43]代世峰,任德贻,李丹,等.贵州大方煤田主采煤层的矿物学异常及其对元素地球化学的影响[J].地质学报.2006,80(4):589-597
    [44]武子玉,周永昶.吉南地区不同沉积环境原煤微量元素地球化学特征[J].岩石矿物学杂志.2004,23(4):361-364
    [45]代世峰,周义平,任德贻,等.重庆松藻矿区晚二叠世煤的地球化学和矿物学特征及其成因[J].中国科学D辑.2007,37(3):353-362
    [46]郑刘根,刘桂建,张浩原,等.淮北煤田二叠纪煤中伴生元素的亲和性研究[J].岩石矿物学杂志.2006,25(3):243-249
    [47]郑刘根,刘桂建,张浩原,等.淮北煤田二叠纪煤中稀土元素地球化学研究[J].高校地质学报.2006,12(1):41-52
    [48]郑刘根,刘桂建,Chou CL,等.中国煤中砷的含量分布,赋存状态,富集及环境意义[J].地球学报.2006,27(4):355-366
    [49]Liu GJ, Yang PY, Peng ZC, et al. Petrographic and geochemical contrasts and environmentally significant trace elements in marine-influenced coal seams, Yanzhou mining area, China[J].Journal of Asian Earth Sciences.2004,23:491-506
    [50]Liu GJ, Zhang HY, Gao LF, et al. Petrological and mineralogical characterizations and chemical composition of coal ashes from power plants in Yanzhou mining district, China[J].Fuel Processing Technology.2004,85:1635-1646
    [51]Liu GJ, Vassilev SV, Gao LF, et al. Mineral and chemical composition and some trace elements contents in coals and coal ashes from Huaibei coalfield, China[J].Energy Conversion and Management.2005,46:2001-2009
    [52]Liu GJ, Zheng LG, Zhang Y, et al. Distribution and mode of occurrence of As, Hg and Se and Sulfur in coal Seam 3 of the Shanxi Formation, Yanzhou Coalfield, China[J].International Journal of Coal Geology.2007,71:371-385
    [53]Liu GJ, Zheng LG, Gao LF, et al. The characterization of coal quality from the Jining coalfield[J].Energy.2005,30:1903-1914
    [54]Liu GJ, Yang PY, Peng ZC, et al. Comparative study of the quality of some coals from the Zibo coalfield[J].Energy.2003,28:969-978
    [55]Zheng LG, Liu GJ, Qi CC, et al. The use of sequential extraction to determine the distribution and modes of occurrence of mercury in Permian Huaibei coal, Anhui Province, China[J].International Journal of Coal Geology.2008,73:139-155
    [56]Zheng LG, Liu GJ, Chou CL. The distribution, occurrence and environmental effect of mercury in Chinese coals[J].Science of the Total Environment.2007,384:374-383
    [57]Zheng LG, Liu GJ, Chou CL. Abundance and modes of occurrence of mercury in some low-sulfur coals from China[J].International Journal of Coal Geology.2008,73:19-26
    [58]Zheng LG, Liu GJ, Wang L, et al. Composition and quality of coals in the Huaibei Coalfield, Anhui, China[J].Journal of Geochemical Exploration.2008,97:59-68
    [59]Zheng LG, Liu GJ, Chou CL, et al. Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China[J].Journal of Asian Sciences.2007,31:167-176
    [60]Qi CC, Liu GJ, Chou CL, et al. Environmental geochemistry of antimony in Chinese coals[J].Science of the Total Environment.2008,389:225-234
    [61]Zivotic D, Wehner H, Cvetkovic O, et al. Petrological, organic geochemical and geochemical characteristics of coal from the Soko mine, Serbia[J].International Journal of Coal Geology.2008,73:285-306
    [62]Gurdal G. Geochemistry of trace elements in Can coal (Miocene), Canakkale, Turkey[J].International Journal of Coal Geology.2008,74:28-40
    [63]Finkelman RB. Trace and minor elements in coal. In:Organic Geochemistry[M].New York: Plenum Press.1993:593-607
    [64]Swaine DJ. Trace elements in coal and their dispersal during combustion[J].Fuel Processing Technology.1994,39:121-137
    [65]Wagner NJ, Hlatshwayo B. The occurrence of potentially hazardous trace elements in five Highveld coals, South Africa[J].International Journal of Coal Geology.2005,63:228-246
    [66]Ren DY, Xu DW, Zhao FH. A preliminary study on the enrichment mechanism and occurrence of hazardous trace elements in the Tertiary lignite from the Shenbei coalfield, China[J]. International Journal of Coal Geology.2004,57:187-196
    [67]Ren DY, Zhao FH, Wang YQ, et al. Distributions of minor and trace elements in Chinese coals[J].International Journal of Coal Geology.1999,40:109-118
    [68]Song DY, Qin Y, Zhang JY, et al. Concentration and distribution of trace elements in some coals from Northern China[J].International Journal of Coal Geology.2007,69:179-191
    [69]Zhao FH, Cong ZY, Sun HF, et al. The geochemistry of rare earth elements (REE) in acid mine drainge from the Sitai coal mine, Shanxi Province, North China[J].International Journal of Coal Geology.2007,70:184-192
    [70]Meij R, Winkel BHT. Trace elements in world steam coal and their behaviour in Dutch coal-fired power stations:A review[J],International Journal of Coal Geology.2009,77:289-293
    [71]Silva LFO, Oliveira MLS, Boit KMD, et al. Characterization of Santa Catarina (Brazil) coal with respect to human health and environmental concerns[J].Environ Geochem Health.2009,31:475-485
    [72]Finkelman RB, Aruscavage PJ. Concentration of some platinum-group metals in coal[J].International Journal of Coal Geology.1981,1:95-99
    [73]Hu J, Zheng BS, Finkelman RB, et al. Concentration and distribution of sixty-one elements in coals from DPR Korea[J].Fuel.2006,85:679-688
    [74]Pires M, Teixeira EC. Geochemical distribution of trace elements in Leao coal, Brazil[J].Fuel.1992,71:1093-1096
    [75]Eskenazy GM. Trace elements geochemistry of the Dobrudza coal basin, Bulgaria[J].International Journal of Coal Geology.2009,78:192-200
    [76]Lewinska-Preis L, Fabianska MJ, Cmiel S, et al.Geochemical distribution of trace elements in Kaffioyra and Longyearbyen coals, Spitsbergen, Norway[J].International Journal of Coal Geology.2009.doi:10.1016/j.coal.2009.09.007
    [77]Demir I, Ruch RR, Damberger HH, et al. Environmentally critical elements in channel and cleaned samples of Illinois coals[J].Fuel.1998,77:95-107
    [78]卢新卫.陕西各成煤期煤中硒的含量赋存特征及环境效应研究[J].干旱区资源与环境.2004,18(2):27-31
    [79]张军营,任德贻,赵峰华,等.煤中微量元素赋存状态研究方法[J].煤炭转化.1998,21(4):12-17
    [80]王运泉,张汝国,王良平,等.煤中微量元素赋存状态的逐提试验研究[J].中国煤田地质.1997,9(3):23-25
    [81]唐修义,赵继尧.微量元素在煤中的赋存状态[J].中国煤田地质.2002,14(s):14-17
    [82]代世峰.任德贻,刘建荣.等.河北峰峰矿区煤中微量有害元素的赋存与分布[J].中国矿业大学学报.2003,32(4):358-362
    [83]杨建业.贵州普安矿区晚二叠世煤中微量元素的质量分数和赋存状态[J].燃料化学学报.2006,34(2):129-135
    [84]赵峰华,彭苏萍,唐跃刚,等.合山超高有机硫煤中Fe-Mn-Hg-Zn-Ni-Cr-V的赋存状态及意义[J].中国矿业大学学报.2005,34(1):33-36
    [85]Finkelman RB. Modes of occurrence of environmentally-sensitive trace elements in coal. In: Environmental aspects of trace elements in coal (eds. Swaine DJ and Goodarzi F)[M].Dordrecht:Kluwer Academic Publishers.1995.24-50
    [86]Finkelman RB. Modes of occurrence of potentially hazardous elements in coal:levels of confidence[J].Fuel Processing Technology.1994,21-34
    [87]Dreher DB, Finkelman RB. Selenium mobilization in a surface coal mine, Powder River Basin, Wyoming, USA[J].Environmental Geology.1992,19(3):155-167
    [88]Huggins FE, Huffman GP. Modes of occurrence of trace elements in coal from XAFS spectroscopy[J].International Journal of Coal Geology.1996,32:31-53
    [89]Zhuang XG, Querol X, Plana F, et al. Determination of elemental affinities by density fraction of bulk coal samples from the Chongqing coal district, Southwestern China[J].International Journal of Coal Geology.2003,55:103-115
    [90]Shah P, Strezov V, Prince K, et al. Speciation of As, Cr, Se and Hg under coal fired power station conditions[J].Fuel.2008,87:1859-1869
    [91]Baruah MK, Kotoky P, Borah GC. Distribution and nature of organic/mineral bound elements in Assam coals, India[J].Fuel.2003,82:1783-1791
    [92]Finkelman RB, Stanton RW. Identification and significance of accessory minerals from a bituminous coal[J].Fuel.1978,57:763-768
    [93]Goodarzi F. Mineralogy, elemental composition and modes of occurrence of elements in Canadian feed-coals[J].Fuel.2002,81:1199-1213
    [94]Huggins FE, Huffman GP. How do lithophile elements occur in organic association in bituminous coal?[J].International Journal of Coal Geology.2004,58:193-204
    [95]Querol X, Klika Z, Weiss Z, et al. Determination of element affinities by density fractionation of bulk coal samples[J].Fuel.2001,80:83-96
    [96]Huggins FE, Seidu LBA, Shah N, et al. Elemental modes of occurrence in an Illinois #6 coal and fractions prepared by physical separation techniques at a coal preparation plant[J]. International Journal of Coal Geology.2009,78:65-76
    [97]Zhu JM, Zuo W, Liang XB, et al.Occurrence of native selenium in Yutangba and its environmental implications[J].Applied Geochemistry.2004,19:461-467
    [98]Spears DA, Booth CA. The composition of size-fractionated pulverized coal and the trace element associations[J].Fuel.2002,81:683-690
    [99]Raask E. The mode of occurrence and concentration of trace elements in coal[J].Prog Energy Combust Sci.1985,11:97-118
    [100]刘桂建,张威,杨萍月,等.回归分析法在煤中微量元素赋存状态研究中的应用[J].中国煤田地质.1999,11(4):10-13
    [101]钱清让,杨晓勇.安徽二叠纪龙潭组煤中潜在毒害元素分布的因子分析研究[J].煤田地质与勘探.2003,31(1):11-14
    [102]陆晓华,徐涛,刘汉珍,等.因子分析法在煤中痕量元素分布特征研究中的应用[J].燃料化学学报.1994,22(4):444-448
    [103]冯新斌,洪业汤,倪建宇,等.煤中潜在毒害元素分布的多元分析及其地球化学意义[J].矿物学报.1999,19(1):34-40
    [104]陆晓华,Ali A,刘汉珍,等.煤中痕量元素分布的多变量分析及实验研究[J].环境化学.1995,14(6):494-499
    [105]曾汉才,陆晓华,晏蓉,等.煤中痕量元素分布特征的聚类分析研究[J].华中理工大学学报.1994,22(s):36-39
    [106]樊金串,樊民强.煤中微量元素间依存关系的聚类分析[J].燃料化学学报.2000,28(2):157-161
    [107]陆晓华,曾汉才,晏容,等.煤中痕量元素与三态硫关系的模型[J].环境化学.1997,16(4):306-310
    [108]吴江平.淮南煤田东部煤中微量元素及其环境意义研究[D].淮南:安徽理工大学.2006
    [109]陈健,刘文中,陈萍SPSS在淮南矿区煤中微量元素研究中的应用[J].选煤技术.2009,2:46-50
    [110]Wang J, Yamada O, Nakazato T, et al. Statistical analysis of the concentrations of trace elements in a wide diversity of coals and its implications for understanding elemental modes of occurrence[J].Fuel.2008,87:2211-2222
    [111]Suarez-Ruiz I, Flores D, Marques MM, et al. Geochemistry, mineralogy and technological properties of coals from Rio Maior (Portugal) and Penarroya (Spain) basins[J].International Journal of Coal Geology.2006,67:171-190
    [112]Mukherjee KN, Dutta NR, Chandra D, et al. A statistical approach to the study of the distribution of trace elements and their organic/inorganic affinity in lower Gondwana coals of India[J]. International Journal of Coal Geology.1988,10:99-108
    [113]Limic N, Valkovic V. The occurrence of trace elements in coal[J].Fuel.1986,65:1099-1102
    [114]张军营,任德贻,王运泉,等.煤中有机态微量元素含量与煤级关系[J].煤田地质与勘探.2000,28(6):11-13
    [115]王馨,董国文,姚多喜.三种不同变质程度煤中微量元素的分布特征[J].安徽理工大学学报(自然科学版).2004,24(s):20-25
    [116]黄文辉,杨起,汤达祯,等.潘集煤矿二叠纪主采煤层微量元素亲和性研究[J].地学前缘.2000,7(s):263-270
    [117]赵峰华,彭苏萍,李大华,等.低煤级煤中部分元素有机亲和性的定量研究[J].中国矿业大学学报.2003,32(1):18-22
    [118]Solari JA, Fiedler H, Schneider CL. Modelling of the distribution of trace elements in coal[J].Fuel.1989,68:536-539
    [119]Klika Z, Kolomaznik I. New concept for the calculation of trace element affinity in coal[J].Fuel.2000,79:659-670
    [120]徐明厚,郑楚光,冯荣,等.煤燃烧过程中痕量元素排放的研究现状[J].中国电机工程学报.2001,21(10):33-38
    [121]单晓梅,朱书全,李中和,等.煤中有害微量元素对环境的影响及控制[J].选煤技术.2003,3:3-6
    [122]黄文辉,杨起.燃煤过程中有害元素转化机理研究进展[J].地质科技情报.1999,18(1):71-74
    [123]王淅芬,孙学信,李敏.煤燃烧中微量元素的转换机理及富集规律研究[J].煤炭转化.1999,22(1):58-62
    [124]郭欣,郑楚光,贾晓红,等.煤燃烧过程中汞、砷、硒反应机理研究[J].工程热物理学报.2003,24(4):703-706
    [125]孟韵,张军营,钟秦,等.燃煤过程中微量元素砷和硒形态转化的热力学平衡模拟[J].环境污染治理技术与设备.2002,3(9):1-5
    [126]朱文渊,徐明厚,隋建才,等.燃煤过程中典型痕量元素的挥发过程模拟的研究[J].煤炭技术.2005,24(9):115-117
    [127]詹靖,徐明厚,韩军,等.燃煤过程中As,Se的挥发行为的研究[J].工程热物理学报.2004,25(s):201-204
    [128]张军营,郑楚光,刘晶,等.燃煤易挥发微量重金属元素行为的试验研究[J].工程热物理学 报.2003,24(6):1043-1046
    [129]刘桂建,彭子成,杨萍明,等.煤中微量元素在燃烧过程中的变化[J].燃料化学学报.2001,29(2):119-123
    [130]郭瑞霞,杨建丽,刘振宇.煤中微量有害元素的挥发性[J].中国环境科学.2004,24(6):641-645
    [131]宋党育,秦勇,王文峰.电厂燃煤中有害微量元素的燃烧迁移行为研究[J].中国矿业大学学报.2003,32(3):316-320
    [132]王文峰,秦勇,宋党育.燃煤电厂微量元素迁移释放研究[J].环境科学学报.2003,23(6):748-752
    [133]姚多喜,支霞臣,郑宝山.煤燃烧过程中5种微量元素的迁移和富集[J].环境化学.2004,23(1):31-37
    [134]王运泉,任德贻,谢洪波.燃煤过程中微量元素的分布及逸散规律[J].煤矿环境保护.1995,9(6):25-28
    [135]刘桂建,杨萍明,余明亮,等.燃煤过程有害微量元素挥发与其赋存状态及燃烧温度的关系[J].燃烧科学与技术.2003,9(1):6-10
    [136]张军营,郑楚光,任德贻,等.循环流化床煤燃烧产物中微量元素分布特征[J].燃烧科学与技术.2003,9(1):64-67
    [137]王起超,邵庆春,周朝华.不同粒度飞灰中16中微量元素的含量分布[J].环境污染与防治.1998,20(5):37-41
    [138]王起超,邵庆春,康淑莲,等.煤中15种微量元素在燃烧产物中的分配[J].燃料化学学报.1996,24(2):137-142
    [139]宋党育,秦勇,张军营,等,西部煤中环境敏感痕量元素的燃烧迁移行为[J].煤炭转化.2005,28(2):56-60
    [140]刘桂建,杨萍玥,彭子成.煤灰基本特征及其微量元素的分布规律[J].煤炭转化.2003,26(2):81-86
    [141]张军营,任德贻,钟秦,等.同硫剂对煤燃烧过程中硒挥发性的抑制作用[J].环境科学.2001,22(3):100-103
    [142]张智慧,胡俊玲,曾汉才,等.用固体吸附剂控制燃煤重金属排放及其对SO2、NOx的影响[J].燃料化学学报.1998,26(6):486-491
    [143]姚多喜,支霞臣,郑宝山,等.煤添加高岭土燃烧控制有害微量元素的排放[JJ.中国环境科学.2003,23(6):622-626
    [144]李金洪,鲁安怀,高永华.民用燃煤烟尘特征及环境矿物材料固硫剂开发[J].地学前 缘.2001,8(2):315-320
    [145]孔维辉,刘文中.陈萍.燃煤过程中铬迁移转化和排放控制的研究进展[J].洁净煤技术.2007,13(1):53-56
    [146]刘文中,孔维辉.淮南煤及其燃烧产物的成分研究[J].矿业快报.2007,11:26-28
    [147]MJ.查德威克,NH.海顿,N.林德曼著,谈鸣时译.煤炭开采和利用对环境的影响[M].北京:地震出版社.1991:36-395
    [148]Karuppiah M, Gupta G. Toxicity of metals in coal combustion ash leachate[J].Journal of Hazardous Materials.1997,56:53-58
    [149]Vejahati F, Xu Z, Gupta R. Trace elements in coal:Associations with coal and minerals and their behavior during coal utilization-A review[J].Fuel.2009,doi:10.1016/j.fuel.2009.06.013
    [150]Nelson PF, Shah P, Strezov V, et al. Environmental impacts of coal combustion:A rish approach to assessment of emissions[J].Fuel.2009,doi:10.1016/j.fuel.2009.03.002
    [151]Furimsky E. Characterization of trace element emissions from coal combustion by equilibrium calculations[J].Fuel Processing Technology.2000,63:29-44
    [152]Swaine DJ. Trace elements in coal and their dispersal during combustion[J].Fuel Processing Technology.1994,39:121-137
    [153]Wang YQ, Ren DY, Zhao FH. Comparative leaching experiments for trace elements in raw coal, laboratory ash, fly ash and bottom ash[J].International Journal of Coal Geology.1999,40:103-108
    [154]Ward CR, French D, Jankowski J, et al. Element mobility from fresh and long-stored acidic fly ashes associated with an Australian power station[J]. International Journal of Coal Geology.2009.doi:10.1016/j.coal.2009.09.001
    [155]Goodarzi F. Assessment of elemental content of milled coal, combustion residues, and stack emitted materials:Possible environmental effects for a Canadian pulverized coal-fired power plant[J]. International Journal of Coal Geology.2006,65:17-25
    [156]Helble JJ. A model for the air emissions of trace metallic elements from coal combustors equipped with electrostatic precipitators[J].Fuel Processing Technology.2000,63:125-147
    [157]Ito S, Yokoyama T, Asakura K. Emissions of mercury and other trace elements from coal-fired power plants in Japan[J].Science of the Total Environment.2006,368:397-402
    [158]Gogebakan Z, Selcuk N. Trace elements partitioning during co-firing biomass with lignite in a pilot-scale fluidized bed combustor[J].Journal of Hazardous Materials.2009,162:1129-1134
    [159]Meij R, Winkel HT. The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations[J].Atmospheric Environment.2007,41:9262-9272
    [160]Sekine Y, Sakajiri K, Kikuchi E, et al. Release behavior of trace elements from coal during high-temperature processing[J].Powder Technology.2008,180:210-215
    [161]Reddy MS, Basha S, Joshi HV, et al. Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion[J].Journal of Hazardous Materials.2005,123:242-249
    [162]Selcuk N, Gogebakan Y, Gogebakan Z. Partitioning behavior of trace elements during pilot-scale fluidized bed combustion of high ash content lignite[J].Journal of Hazardous Materials.2006,137:1698-1703
    [163]Depoi FS, Pozebon D, Kalkreuth WD. Chemical characterization of feed coals and combustion-by-products from Brazilian power plants[J].International Journal of Coal Geology.2008,76:227-236
    [164]Levandowski J, Kalkreuth W. Chemical and petrographical characterization of feed coal, fly ash and bottom ash from the Figueira Power Plant, Parana, Brazil[J].International Journal of Coal Gcology.2009,77:269-281
    [165]Huang YJ, Jin BS, Zhong ZP, et al. Trace elements (Mn, Cr, Pb, Se, Zn, Cd and Hg) in emissions from a pulverized coal boiler[J].Fuel Processing Technology.2004,86:23-32
    [166]Marrero J, Polla G, Rebagliati RJ, et al. Characterization and determination of 28 elements in fly ashes collected in a thermal power plant in Argentina using different instrumental techniques[J].Spectrochimica Acta Part.2007,62:101-108
    [167]Seames WS, Wendt JOL. Regimes of association of arsenic and selenium during pulverized coal combustion[J].Proceedings of the Combustion Institute.2007,31:2839-2846
    [168]Diaz-Somoano M, Unterberger S, Hein KRG. Prediction of trace element volatility during co-combustion processes[J].Fuel.2006,85:1087-1093
    [169]Luttrell GH, Kohmuench JN, Yoon RH. An evaluation of coal preparation technologies for controlling trace element emissions[J].Fuel Processing Technology.2000,65:407-422
    [170]王文峰,宋党育,秦勇.煤中有害元素对环境和人体健康影响的评价参数[J].煤矿环境保护.2002,16(1):8-17
    [171]王文峰,秦勇,傅雪梅.煤中有害元素潜在污染综合指数及洁净等级研究[J].自然科学进展.2005,15(8):973-980
    [172]徐艳杰,杨永国,唐书恒.煤炭资源洁净等级评价系统设计及应用[J].煤田地质与勘探.2005,,33(3):12-14
    [173]刘文中.朱东军,孔维辉,等.淮南矿区11煤的微量元素洁净程度评价[J].现代矿业.2009,3:112-114
    [174]Pentari D, Typou J, Goodarzi F, et al. Comparison of elements of environmental concern in regular and reclaimed soils, near abandoned coal mines Ptolemais-Amynteon northern Greece: Impact on wheat crops[J]. International Journal of Coal Geology.2006,65:51-58
    [175]Mohorovic L. First two months of pregnancy-critical time for preterm delivery and low birthweight caused by adverse effects of coal combustion toxics[J].Early Human Development.2004,80:115-123
    [176]Dai SF, Ren DY, Ma SM. The cause of endemic fluorosis in western Guizhou Province, Southwest China[J].Fuel.2004,83:2095-2098
    [177]Dai SF, Li WW, Tang YG, et al. The sources, pathway, and preventive measures for fluorosis in Zhijin County, Guizhou, China[J].Applied Geochemistry.2007,22:1017-1024
    [178]Zheng BS, Ding ZH, Huang RG, et al.Issues of health and disease relating to coal use in southwestern China[J],International Journal of Coal Geology.1999,40:119-132
    [179]Liu GJ, Zheng LG, Qi CC, et al. Environmental geochemistry and health of fluorine in Chinese coals[J].Environmental Geology.2007,52:1307-1313
    [180]Finkelman RB, Orem W, Castranova V, et al.Health impacts of coal and coal use:possible solutions[J]. International Journal of Coal Geology.2002,50:425-443
    [181]Finkelman RB, Greb SF. Environmental and health impacts[M]. Applied Coal Petrology.2008.263-287
    [182]Belkin HE, Zheng BS, Zhou DX, et al. Chronic arsenic poisoning from domestic combustion of coal in rural China:A case study of the relationship between earth materials and human health[M].EnvironmentalGeochemistry.2008.doi:10.1016/B978-0-444-53159-9.00017-6.401-420
    [183]Liu GJ, Huang WD, Moir RD, et al. Metal exposure and Alzheimer's pathogenesis[J].Journal of Structural Biology.2006,155:45-51
    [184]Warren HV. Geology, trace elements and health[J].Soc Sci Med.1989,29(8):923-926
    [185]刘文中,严家平,王兴阵,等.花沟西井田煤层赋存条件综合评价研究[R].淮南:安徽理工大学.2009.4-34
    [186]GB16297-1996,大气污染物综合排放标准[S]
    [187]GB3838-2002,地表水质量标准[S]
    [188]GB15618-1995,十壤环境质量标准[S]
    [189]GB5085.3-2007,危险废物鉴别标准:浸出毒性鉴别[S]
    [190]Swaine DJ, Goodarzi F. Environmental aspects of trace elements in coal[M].Dordrecht: Kluwer Academic Publishers.1995.312
    [191]任德贻,许德伟,张军营,等.沈北煤田煤中伴生元素分布特征[J].中国矿业大学学报.1999,28(1):5-8
    [192]滕彦国,倪师军.地球化学基线的理论与实践[M].北京:化学工业出版社.2007.39-62
    [193]Ketris MP, Yudovich YE. Estimations of Carbonaceous biolithes:World averages for trace element contents in black shales and coals[J].International Journal of Coal Geology.2009,78:l35-148
    [194]蒋敬业.应用地球化学[M].武汉:中国地质大学出版社.2006.327-328
    [195]黎彤,倪守斌.中国大陆岩石圈的化学元素丰度[J].地质与勘探.1997,33(1):31-37
    [196]鄢明才,顾铁新,迟清华,等.中国土壤化学元素丰度与表生地球化学特征[J].物探与化探.1997,21(3):161-167
    [197]GB/T212-2001,煤的工业分析方法[S]
    [198]GB/T476-2001,煤的元素分析方法[S]
    [199]GB/T19145-2003,沉积岩中总有机碳的测定[S]
    [200]Ward CR. Analysis and significance of mineral matter in coal seams[J].International Journal of Coal Geology.2002,50:135-168
    [201]程子峰,徐富春.环境数据统计分析基础[M].北京:化学工业出版社.2006.109-124
    [202]马立平.统计数据标准化-无量纲化方法[J].北京统计.2000,3:34-35
    [203]肖云茹.概率统计计算方法[M].天津:南开大学出版社.1994.318-320
    [204]宇传华SPSS与统计分析[M].北京:电子工业出版社.2007.461-507
    [205]秦勇,王文峰,宋党育.太西煤中有害元素在洗选过程中的迁移行为与机理[J].燃料化学学报.2002,30(2):147-150
    [206]白向飞,李文华,陈文敏.中国煤中铍的分布赋存特征研究[J].燃料化学学报.2004,32(2):155-159
    [207]白向飞.中国煤中微量元素分布赋存特征及其迁移规律试验研究[D].北京:煤炭科学研究总院.2003.90-101
    [208]许德伟,任德贻,赵峰华,等.煤中铬的研究现状[J].煤田地质也勘探.1998,26(6):18-21
    [209]Yang JY. Concentrations and modes of occurrence of trace elements in the Late Permian coals from the Puan Coalfield, southwestern Guizhou, China[J].Environmental Geochemistry and Health.2006,28:567-576
    [210]Luo KL, Lu JD, Chen LW. Lead distribution in Permo-Carboniferous coal from the North China Plate, China[J].Environmental Geochemistry and Health.2005,27:31-37
    [211]唐跃刚,张会勇,代世峰,等.煤中铅的地球化学特征[J].煤田地质与勘探.2001,29(2):7-10
    [212]Pires M, Fiedler H, Teixeira EC. Geochemical distribution of trace elements in coal: modelling and environmental aspects[J].Fuel.1997,76:1425-1437
    [213]黄宗理,张良弼.地球科学大辞典[M].地质出版社.2006.103
    [214]Palmer CA, Filby RH. Distribution of trace elements in coal from the Powhatan No.6 mine, Ohio[J].Fuel.1984,63:318-328
    [215]Paul M, Seferinoglu M, Aycik GA. Acid leaching of ash and coal:Time dependence and trace element occurrences[J].International Journal of Mineral Processing.2006,79:27-41
    [216]牟保磊.元素地球化学[M].北京:北京大学出版社,1999.66-69
    [217]Swaine DJ. The organic association of elements in coals[J].Org Geochem.1992,18(3):259-261
    [218]Whitworth C, Pagenkopf GK. Cadmium complexation by coal humic acid[J].J inorg nucl Chem.1979,41:317-321
    [219]田晓兰,柳金甫.用主成分分析法作综合评价时数据的预处理问题[J].科学技术与工程.2007,7(5):678-681
    [220]Pires M, Querol X. Characterization of Candiota (South Brazil) coal and combustion by-product[J].International Journal of Coal Geology.2004,60:57-72
    [221]GB3095-1996,环境空气质量标准[S]
    [222]GB/T15224.1-94,煤炭质量分级-煤炭灰分分级[S]
    [223]GB/T15224.2-94,煤炭质量分级-煤炭硫分分级[S]
    [224]GB/T16417-1996,煤炭可选性评定方法[S]
    [225]陈清,卢国强.微量元素与健康[M].北京:北京大学出版社.1989.63
    [226]张杰,周硕,郭丽杰.运筹学模型与实验[M].北京:中国电力出版社.2007.86-288
    [227]周爱国,周建伟,梁合诚,等.地质环境评价[M].武汉:中国地质大学出版社.2008.43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700