用户名: 密码: 验证码:
毛竹林长期生产力保持机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛竹(Phyllostachys pubescens)是我国分布最广、面积最大、经济价值最高的竹种,经过多年的经营,在取得良好经济效益的同时,毛竹林立地生产力发生衰退的现象,如何保持毛竹林的长期生产力已成为一个亟待解决的科学问题。本文以我国重要的毛竹产地福建省永安市、福建省顺昌县、江西安福县、浙江安吉县、四川长宁县的毛竹林为研究对象,对大量不同类型、不同经营时间的毛竹林的生长情况进行了调查,对毛竹林的退化情况、退化机理和保持技术进行了研究。主要研究结论如下:
     1、毛竹林生产力随着经营时间的增长呈退化趋势,胸径可以作为反映毛竹林生产力退化的指标。
     (1)毛竹林随着经营时间的增长,平均胸径和树高呈下降的趋势。为探讨长期经营毛竹林生产力的变化情况,对福建永安、福建顺昌、江西安福、浙江安吉、四川长宁四省五地的164块毛竹林样地进行了调查,总的来看,这些常规经营措施在短期内可以提高毛竹林地平均胸径和树高,胸径在经营10年后达到最大值为10.95㎝,树高在13年达到最大值为15.01 m,均极显著高于未经营林分的8.44㎝和12.72 m;但是随着经营时间的增长,毛竹林的平均胸径和树高呈下降的趋势,经过30年的经营,毛竹林平均胸径(10.12㎝)的下降幅度达到极显著水平,而树高(14.18 m)未达到显著水平。劈草、垦复、施肥等不同类型的常规经营措施对毛竹林生长的影响程度各有不同。
     劈草。竹林的平均胸径在0-10年间极显著增加,胸径从8.67㎝增加到10.94㎝,并达到最大值,随着经营时间的进一步增加,竹林的平均胸径逐步降低,30年经营后,平均胸径为9.78㎝,极显著低于10年毛竹林胸径。树高在劈草20年时达到最高值,为14.58 m,极显著高于未劈草毛竹林的树高(12.51 m);其后树高逐步降低,30年时树高降低为13.82,极显著低于劈草20年毛竹林。不同地点毛竹林平均胸径和树高对劈草时间的响应程度不同,劈草10年的毛竹林胸径较未经营毛竹林的胸径提高了25.43%(福建顺昌)、13.30%(福建永安)和41.89%(四川长宁);树高提高了21.95%(福建顺昌)、8.30%(福建永安)和17.31%(四川长宁)。劈草30年较劈草10年的毛竹林胸径降低了5.73%(福建顺昌)、11.74%(福建永安)和13.65%(四川长宁);树高降低了1.87%(福建顺昌)、7.66%(福建永安)和3.31%(四川长宁)。
     垦复。毛竹林平均胸径和树高随着垦复时间的延长呈现出先上升后下降的趋势,垦复10年后达到最大值,胸径从8.21㎝增加到11.32㎝,树高从11.66 m增加到13.88 m,均极显著高于未经营毛竹林;其后胸径和树高均有下降的趋势,其中垦复30年平均胸径(10.63㎝)的下降幅度达到显著水平,而树高(13.51 m)的下降幅度未达到显著水平。垦复时间对不同地点的影响程度不一致,垦复10年毛竹林平均胸径较未垦复毛竹林平均胸径提高了40.25%(福建顺昌)和35.64%(江西安福);树高提高了32.57%(福建顺昌)和6.56%(江西安福),达到极显著水平;垦复30年后,胸径较最高值降低了9.95%(福建顺昌)和2.25%(江西安福),降幅达到极显著水平;树高降低了4.68%(福建顺昌),达到极显著水平,而江西安福毛竹仅降低0.38%,未达到显著水平。
     施肥。毛竹林在施肥5年后,平均胸径和树高达到最大值,随后胸径和树高呈下降的趋势。施肥5年后,平均胸径达到最大值11.70㎝,树高达到最大值15.90 m,极显著高于未施肥毛竹林的9.69㎝和13.40 m;施肥10年较施肥5年的毛竹林平均胸径低6.24%,平均树高低3.84%,未达到显著水平。
     (2)毛竹林平均胸径可以作为反映毛竹林生产力退化的指标。通径分析表明毛竹林的平均胸径与经营措施、经营时间和混交比例显著相关,而树高与混交比例、坡向和经营措施相关性更为显著,表明了毛竹林胸径可以作为反应毛竹林生产力的退化的指标。
     2、毛竹林生物循环特性是毛竹林长期经营生产力下降的内在原因之一。森林凋落物是森林生态系统的重要组成部分,是森林生态系统物质循环的重要环节,是森林生态系统自肥的重要机制之一。毛竹林分年凋落量很小,仅为1.73 t·hm-2·a-1,明显低于丛生竹小叶龙竹和麻竹的年凋落量,与年凋落物量较小的杉木林比,毛竹林凋落物仅为杉木林的49.43%。通过对永安经营措施相同的毛竹纯林,竹阔混交林(混交比8:
     2)和竹针混交林(混交比8:2)的养分循环特征研究表明,三种林分年吸收量分别为421.37±42.09 kg·hm-2、690.88±65.09 kg·hm-2和376.22±15.95 kg·hm-2;年归还量分别为26.70±2.79 kg·hm-2、58.47±12.04 kg·hm-2和64.84±3.73 kg·hm-2 ;年存留量分别为406.64±40.55 kg·hm-2、670.81±60.95 kg·hm-2和357.21±14.85 kg·hm-2,毛竹林具有较大的年吸收量和较小的年归还量。
     3、毛竹林生产作业特点和不合理的经营措施加速了养分的流失和土壤性质退化
     (1)毛竹林经营特性是毛竹林生长退化的重要原因。对永安不同管护类型毛竹林的研究表明,垦复+施肥+灌溉毛竹林每年采伐和挖笋的生物量占林分总生物量的27.87%,垦复+施肥的林分占24.54%,劈草的林分占24.51%;带出林分的五种养分(N、P、K、Ca、Mg)总量分别为307.65 kg·hm-2、215.49 kg·hm-2和222.90 kg·hm-2,可见,每年毛竹林通过采竹和挖笋,大量的营养被带出竹林系统。
     (2)劈草、垦复、施肥、灌水等常规经营措施在短期内能够提高毛竹林地生产力,但随着经营时间的增长,毛竹林生产力开始下降,土壤质量退化。
     劈草。不同劈草时间毛竹林地土壤性质综合评价得分分别为0.6390(劈草0年)、0.3558(<10年)和0.4320(>30年),反映了劈草降低了土壤质量。土壤具体指标分析也表明,劈草毛竹林地土壤容重增加,土壤孔隙度、持水能力、土壤渗透性、有机质、pH值、主要营养及酶活性的降低。
     垦复。不同垦复时间毛竹林土壤性质综合得分分别为0.3548(0年)、0.4117(3年)、0.4635(10年)和0.5815(30年),可见垦复会提高土壤的性质。研究结果表明垦复对土壤物理性质的影响较复杂,未随经营时间的延长表现出一致的变化规律。与未垦复毛竹林相比,垦复作业可以短期内迅速增加土壤有机质含量,垦复3年后有机质含量最高,随后有机质含量呈下降的趋势。全氮、水解氮、全磷、有效磷的变化规律与有机质变化规律相似,这些指标的降低可能是长期垦复毛竹林生产力下降的原因。
     施肥。施肥作业通常伴随着垦复作业,与垦复作业林地土壤综合性质得分随经营时间的延长而升高不同,施肥毛竹土壤性质综合得分呈下降趋势,分别为0.5693(0年)、04286(5年)和0.3744(10年),可见施用化学肥料对土壤性质的破性十分严重。具体的指标分析表明,施肥可以改善土壤物理性质,如土壤容重降低、非毛管孔隙度增加、渗透性增强等,这可能是因为施肥的同时进行垦复作业造成的。施用化学肥料的毛竹林地土壤的化学性质的退化较为严重,有机质、全氮、水解氮、钙、镁含量明显降低。灌水。灌水10年毛竹林土壤性质综合得分为0.4610,而未灌水毛竹林得分为0.5123,灌水降低了土壤的综合性质。研究发现,灌水增加了土壤的容重,降低了土壤的持水能力和土壤渗透性能;灌水毛竹林地有较低的土壤有机质、土壤全氮、水解氮、有效钾、速效磷和Ca、Mg的含量,土壤过氧化氢酶和磷酸酶的活性降低。反映了灌水损害了毛竹林地持续地力的维持能力。
     4、以营养管理为核心的经营措施是毛竹林生产力保持的关键
     (1)合理的经营措施可以加速养分循环速度,提高毛竹林生产力劈草、施肥、垦复、灌水在短期内均能明显的提高林分生产力,合理运用这些经营手段是毛竹林长期生产力得以保持必不可少的条件。劈草经营提高了毛竹林分养分的贮存量、年吸收量和年存留量,降低了毛竹林的养分归还能力;施肥可以对土壤养分库进行有效补充,降低林分养分利用系数,提高养分的循环速率,降低养分周转时间;灌水提高了毛竹林的养分归还量,降低了养分循环系数,缩短了养分的周转时间。可见,经营措施不同对毛竹林系统的影响不同,根据立地条件、经营目标,对毛竹林常规经营手段进行组合、轮替以及同一经营措施的间隔应用,既可以显著提高毛竹林的生产力,又不会造成林地土壤的退化,可能是提高毛竹林生产力行之有效的方法。
     (2)结构调整是毛竹林生产力保持的重要手段
     树种组成、年龄结构和林分密度等林分结构因子对林分生产力有重要的影响,通过对毛竹林分结构进行调整可以提高毛竹林生产力。混交林具有较高的养分的储存量和年吸收量,且竹阔混交林凋落物分解速度更快。同时,混交经营的生物多样性高于毛竹纯林,对维持毛竹林系统稳定有重要的作用。年龄结构是指林木株数按年龄分配的状况,它是林木更新过程长短和更新速度快慢的反映。对毛竹林年龄结构进行调整可以维持毛竹林活力,并能保持较为稳定的产出。合理密度是竹林持续生产力保持的重要因子,根据毛竹林经营目的、经营措施、立地条件对毛竹林的密度进行调整,是毛竹长期生产力维持的的主要手段之一。
     (3)采伐剩余物在养分归还过程中有重要的作用,毛竹林采伐过程中,把枝、叶、根留在林分中可以增加毛竹林养分归还量。研究表明,枝、叶、篼生物量占林分总生物量的23.87%,移出的养分元素占总量的32.40%。如果枝、叶、篼全部进行利用,林分将损失大量养分。
Moso bamboo (Phyllostachys pubescens), which is most widely distributed in South China, has the largest amount and highest economic value among the bamboo species. A set of high-yield cultivation technique of Moso bamboo was built by scientific research and production practice for a long time, which was fast effect, simple operation, and practical method. However, the structure and function of ecosystem of Moso bamboo were destroyed and productivity of site was decline while the higher economic benefits were obtained. Therefore, an important scientific issue was proposed, which was to maintain long-term productivity of Moso bamboo. The main conclusions are as follows:
     1 The productivity of bamboo was declined by operating time prolonged. And the diameter at breast height may reflect the trend of Moso bamboo productivity.
     (1) The average diameter at breast height and tree height were declined with the time. 164 sample plots with herb chopping, reclamation measure, and fertilization were investigated which distributed in Yongan County of Fujian Provinecwere, Shunchang County of Fujian Province, Anfu County of Jianxi Province, Anji County of Zhejiang Provice, and Changning County of Sichan Province. Generally, the average DBH and the height of bamboo with the conventional operations increased in a short period. The DBH increased significantly in ten years and reached the maximum 10.95㎝, and the height of bamboo increased significantly in thirteen years and reached the maximum 15.01㎝. However, the DBH and the height of bamboo appeared a decreasing trend with the operation time. The descent range of bamboo DBH reaches extremely significant, but the descent range of bamboo height does not reach significant.
     Herb chopping. In the management model of herb chopping bamboo forest, the DBH increased significantly within 10 years, and reached the maximum 10.94㎝. Then the average DBH began to descend and reached the value 9.78㎝, extremely significant in 30 years . The height of bamboo increased significantly in 20 years, and reached the maximum 14.58 m, and then the heights of bamboo decreased significantly in 30 years, and reach the value 13.82 m. The average DBH and height of bamboo forest in different plots were influenced differently by measure of herb chopping. The DBH of bamboo with herb chopping within 10 years increased 25.43% compared to no herb chopping in Shunchang County, Fu Jian Province; 13.30% in Yongan County, Fu Jian Province, and 41.89% in Changning County, Sichuan Province. The tree height of bamboo with herb chopping within 10 years increased 21.95% compared to no herb chopping in Shunchang County, Fu Jian Province; 8.30% in Yongan county , Fu Jian Province, and 17.31% in Changning County ,Sichuan Province. The DBH of bamboo forest with herb chopping more than 30 years decreased 5.73% compared to herb chopping within 10 years in Shunchang County, Fu Jian Province; 11.74% in Yongan County, Fu Jian Province, and 13.65% in Changning County, Sichuan Province. The tree height of bamboo forest with herb chopping more than 30 years decreased 1.87% compared to herb chopping within 10 years in Shunchang County, Fu Jian Province; 7.66% in Yongan County, Fu Jian Province, and 3.31% in Changning County, Sichuan Province.
     Reclamation measure. In the management model of reclamation measure bamboo forest, the DBH and tree height increased significantly within 10 years and reached the maximum 11.32㎝ and 13.88 m. Then the DBH decreased significantly in 30 years, but the height of bamboo decreased insignificantly. The average DBH and height of bamboo forest in different plots were influenced differently by measure of reclamation measure. The DBH of reclamation measure bamboo forest within 10 years increased 40.25% compared to no reclamation measure bamboo forest in Shunchang County, Fu Jian Province; 35.64% in Anfu County, Jiangxi Province. The tree height of reclamation measure bamboo forest within 10 years was increased 32.57% compared to no reclamation measure bamboo forest in Shunchang County, Fu Jian Province; 6.56% in Anfu County, Jiangxi Province. The increased range reaches the extremely significant. However, the DBH and height of bamboo decreased with time. The DBH decreased significantly by 9.95% in Shunchang County, Fu Jian Province and 35.64% in Anfu County, Jiangxi Province. The height of bamboo decreased significantly by 4.68% in Shunchang County and decreased insignificantly 0.38% in Anfu County. Fertilizer application. In the management model of fertilizer application bamboo forest, the DBH and tree height increased significantly in 5 years, and reached the maximum 11.70㎝ and15.90 m. Then the DBH and tree height decreased insignificantly. The DBH of bamboo forest with 10 year fertilizer decreased by 6.24% compared with the DBH of bamboo forest with5 year fertilizer, and the height of bamboo decreased by 3.84%. The decreased range did not reach the significant.
     (2)The average DBH of Moso bamboo forest is an index which can reflect the productivity degradation of bamboo. The path analysis showed that operating time affect the DBH directly, and the tree height indirectly. Therefore, the index of DBH can reflect the productivity degradation of bamboo, but the index of tree height can’t.
     2 The biological characteristics of bamboo possess fragility. The forest litters is an important part of ecosystem, an important step of material cycling, and a self-fertilization mechanism. First, the litters of bamboo are least among D.barbatus Hsueh et D.Z.Li forest, D.latiflorus Munro forest, and Chinese Fir plantations. The nutrient cycling characteristics were measured in pure bamboo forest, bamboo stand mixed with broadleaves trees and bamboo stand mixed with coniferous trees were studied in YongAn County, FuJian Province. The result showed that the annual uptake is 421.37±42.09 kg·hm-2 in pure bamboo forest, 690.88±65.09 kg·hm-2 in bamboo stand mixed with broadleaves trees, and 376.22±15.95 kg·hm-2 in bamboo stand mixed with coniferous trees;the annual value of return is 26.70±2.79 kg·hm-2 in pure bamboo forest, 58.47±12.04 kg·hm-2 in bamboo stand mixed with broadleaves trees, and 64.84±3.73 kg·hm-2 in bamboo stand mixed with coniferous trees;The annual annual storage amount is 406.64±40.55 kg·hm-2 in pure bamboo forest, 670.81±60.95 kg·hm-2 in bamboo stand mixed with broadleaves trees, and 357.21±14.85 kg·hm-2 in bamboo stand mixed with coniferous trees. There was greater annual absorption and less annual return amount in bamboo forest.
     3 The loss nutrients and deterioration of soil was accelerated by the unreasonable management and the operating features of bamboo.
     (1) The operation character of bamboo leads the productivity to degrade. The operation character was invested in Phyllostachys pubescens forests with different operations and management modes in YongAn County, Fujian Province. The results showed that the biomass was carried off the bamboo forest account for 27.87% of total biomass in model of herb chopping+ special fertilizer+ irrigation forest, account for 24.54% in model of herb chopping+ special fertilizer forest, and 24.51% in model of herb chopping forest. The nutrient(N、P、K、Ca、Mg)amount was carried off the forest is 307.65 kg·hm-2 in model of herb chopping+ special fertilizer+ irrigation forest, 215.49 kg·hm-2 in model of herb chopping+ special fertilizer forest, and 222.90 kg·hm-2 in model of herb chopping forest. A large amount nutrient was carried off the forest by chopping bamboo and shoot digging.
     (2) Generally, the management model of herb chopping, soil turning, special fertilizer, and irrigation can improve the productivity of bamboo forest in short period. However, the soil was degenerated usually by a single operation if the operation sustained enough a long time.
     Herb chopping. The comprehensive evaluation scores of chopping herb bamboo forest with different time was 0.6390 in no herb chopping forest , 0.3558 in herb chopping forest less 10 years, and 0.4320 in herb chopping forest more than 30 years. The result showed the soil quality was degenerated by the prolongation time of herb chopping. Many indexes of soil properties was degenerated with the time of prolongation of management, such as, soil bulk density, soil porosity, water holding capacity, soil organic matter, pH, the amount nutrient of maim elements, and enzyme activity.
     (2) Reclamation measure. The comprehensive evaluation scores of soil were increased with the time prolongation of reclamation measure. The comprehensive evaluation scores was 0.3548 in no soil turning forest , 0.4117 in soil turning in 3 years, and 0.4635 in soil turning forest in 10 years, and 0.5815 in soil turning forest more than 30 years. The results showed that the soil turning improve the soil quality. Soil turning affected the indexes of soil physical properties in different ways. Although the comprehensive evaluation scores was increased with management time prolonged, the sustainable productivity of bamboo forest were damaged because of the decreeing of main nutrients of soil, for example, the organic matters, total nitrogen, hydrolysable nitrogen, total phosphorus, and available phosphorus.
     Fertilizer application. Usually the fertilizer application implemented adjoins to reclamation measure. Contrary to the reclamation, the comprehensive evaluation scores of soil were decreased with the time prolongation of special fertilization. The comprehensive evaluation scores of soil was 0.5693 in bamboo forest with the management of no special fertilization, 0.4286 in bamboo forest the management of special fertilization for 5 years, and 0.3774 in bamboo forest the management of special fertilization for 10 years. The results showed that soil quality was degenerated acutely by the prolongation time of the management of special fertilization. The indexes of soil physical properties increased with the management time prolonged, such as, soil bulk density, non-capillary pore, buy the indexes of soil chemical properties deteriorated with the management time prolonged, such as, organic matters, total nitrogen, hydrolysable nitrogen, calcium, magnesium.
     (4) The operation of irritation decreased the comprehensive evaluation scores of soil. The comprehensive evaluation scores of soil was 0.4610 in bamboo forest with the irritation, 0.5123 in bamboo forest with no irrational. Many indexes of soil properties were deteriorated with the management time prolonged, such as, soil bulk density, the soil water capacity, soil water infiltration characteristics, the soil organic matters, total nitrogen, hydrolysable nitrogen, available potassium, available phosphorous, calcium, magnesium, catalase, and phosphatase. The result showed that the management of irritation damaged the sustainable productivity of bamboo forest.
     4 The management measures of organic matters is key to maintain the productivity of bamboo forest.
     (1) The reasonable management measures can improve the productivity of bamboo forest.
     The productivity was improved by implementation of some operators in a short period, such as, herb chopping, soil turning, special fertilization, and irrational, etc. It is very important to practice the measures reasonably. The nutrients of storage amount, annual uptake, and annual storage was promoted by the management of herb chopping, but the nutrients of return amount were reduced. The nutrients were supplemented by fertilizer application, and the utilization coefficient was reduced. However, if the time of fertilization application was enough long, the utilization coefficient would be promoted. The circulation rate of nutrients was promoted with the management time prolonged, and the turnover time was reduced. The operator of irritation improved the return amount of nutrients, reduced the circulation coefficient and the turnover time of nutrients. The utilization coefficient of nutrients and circulation coefficient of nutrients of bamboo stand mixed with broadleaves trees were biggest among different mixed plantations. It was promoting the productivity of bamboo forest and the soil qualities deteriorate slowly to combine, alternation, and interval those operators of management reasonably. It may be an effect method to sustainable productivity of bamboo forest.
     (2) The structure adjustment is an important tool to maintain the productivity of bamboo forest.
     The composition of species, age structures, and stand density were important impact factors of bamboo forest productivity. To adjust the structure of bamboo can improve the productivity of bamboo forest. The annual return amount of nutrient of mixed plantation is higher than the pure bamboo forest. The annual return amount of bamboo stand mixed with coniferous trees nutrient of is 3.36 times as large as pure bamboo forest, and the annual return amount of bamboo stand mixed with broadleaves trees nutrient is 2.13 times as large as pure bamboo forest. Generally, the litter of bamboo stand mixed with broadleaves is easier degradation than the litters of pure bamboo forest. The results reflected that management of mixed plantation can increase both the litters amount and degradation of litters. The index of bio-diversity is higher than the pure bamboo forest. The bio-diversity can maintain the ecosystem stability.
     The age structure of forest is the tree numbers in different ages. The index can reflect the time and rate of regenerations. The productivity of bamboo forest can be maintained by adjusting the age structure of bamboo forest.
     Reasonable density of bamboo forest is an important factor for sustainable productivity of bamboo forests. To adjust the density of bamboo forest can improve the productivity of bamboo forest in accordance with the purpose of operating, management measures, and site conditions.
     (3) The return of logging residue plays an important role in the return process of nutrient. It can increase the return amount of nutrients if the branches, leaves, and root of bamboo were placed in the bamboo forest. In the article, the biomass of branches, leaves, and culms stump accounted for 23.87% of total biomass and nutrient contents of them acounted for 32.40% of tatol nutrient contents. A large number of nutrients lost if the branches, leaves, and culms stump were transferred form the bamboo forest.
引文
[1]于宁楼.九龙山不同森林类型立地长期生产力研究.中国林业科学研究院博士学位论文,2001
    [2] Krauss G, Muller K, Gartner G, et al. Standortsgemasse Durchführung der Abkehr von der Fichtenwirtschaft im nordwestsachsischen Niederland. Tharandter Forstiches Jahrvuch, 1939, 90: 481-715
    [3] Holmsgaard E, Holstener-Jorgensen H, Yde-Anderson A. Bodenvildung, Zuwachs und Gesundheitszustand von Fichtenbestanden erster und zweiter Generation. 1. NordSeedland. Forstl. Forsogsv. Danm., 1961, 27: 167
    [4] Wiedemann E. Uberdie Schaden der Streunutzung im Deutschen Osten. Forstarchiv, 1935, 11: 386-390
    [5] Keeves A. Some evidence of loss of productivity with successive rotations of Pinus radiata in the south-east of South Australia. Aust. For, 1966, 30(1): 51-63
    [6] Powers RF, Alban DH, Miller RE, et al. Sustaining site productivity in North American forests: problems and prospects. Sustained Productivity of Forest Soils, ed. D.S. Lacata S.P. Gessel, G.F. Weetman, and R.F. Powers. 1988, Faculty of Forestry Pub: British Columbia 49–79
    [7] Gholz HL,Fisher RF The limits to productivity: fertilization and nutrient cycling in coastal plain slash pine forests, 1983
    [8] McKee Jr WH,Hatchell GE. Pine growth improvement on logging sites with site preparation and fertilization. in Fourth Biennial Southern Silviculture Research Conference, Atlanta ,1986
    [9] Doolittle W.T. Site Index of Scarlet and Black Oak in Relation to Southern ztppalachian Soil and Topography. Forest Science, 1957,3(2): 114-124
    [10] kimmins JP. A Strategy for Research on the Maintence of Long-term Site Productivity. in IUFRO 19th world Congress Proceedings,Montreal ,1990
    [11] Evans J. long-term productivty of forest plantation-sitatus in 1990. in IUFRO 19th world Congress Proceedings,Montreal ,1990
    [12] Miwa M.Physical and Hydrologic Responses of an Intensively Managed Loblolly Pine Plantation to Forest Harvesting and Site Preparation. Doctoral dissertation in Department of Forestry,1999
    [13]盛炜彤.人工林地力衰退研究.北京:中国科学技术出版社,1992
    [14]俞元春.杉木林土壤肥力变化和长期生产力维持研究.南京林业大学博士学位论文,1999
    [15]黄玉梅.桉树人工林地力衰退及其成因评述.西部林业科学,2004,33(4):21-26
    [16]方升佐.经营措施对辐射松及杨树人工林长期立地生产力的影响.南京林业大学博士学位论文,1999
    [17]刘福德.杨树连作地力衰退及林地生产力维持技术的研究.山东农业大学硕士学位论文,2005
    [18]刘明国,吴祥云,孙海宏,等.多年生樟子松人工纯林生长衰退及地力衰退原因分析.沈阳农业大学学报,2002,33(4):274-277
    [19]王胤.一、二代马尾松人工林生态系统比较研究.贵州大学硕士学位论文,2005
    [20]盛炜彤,范少辉.杉木人工林长期生产力保持机制研究.北京:科学出版社,2005
    [21]陈婷,温远光,孙永萍,等.连栽桉树人工林生物量和生产力的初步研究.广西林业科学,2005,34(1):8-12
    [22]沈国舫.对世界造林发展新趋势的几点看法.世界林业研究,1988,1:21-27
    [23]楼一平,吴良如.毛竹纯林长期经营对林地土壤肥力的影响.林业科学研究,1997,10(2):125-129
    [24]楼一平,盛炜彤.我国毛竹林长期立地生产力研究问题的评述.林业科学研究,1999,12(2):172-178
    [25]楼一平.毛竹林长期立地生产力评价和预测研究的评述.竹子研究汇刊,1998,17(4):31-35
    [26]楼一平.毛竹人工林持续立地生产力的研究.中国林业科学研究院博士学位论文,2001
    [27]陈双林,萧江华,薛建辉.竹林水文生态效应研究综述.林业科学研究,2004,17(3):399-404
    [28]张艳艳,李宝银,吴承祯,等.阔叶林林分结构特征Ⅰ.林分年龄与林分密度的关系.福建林学院学报,2007,27(1):44-47
    [29] Noguchi M,Yoshida T. Tree regeneration in partially cut conifer-hardwood mixed forests in northern Japan: roles of establishment substrate and dwarf bamboo. Elsevier Science BV Amsterdam, Netherlands, 2004, 335-344
    [30]潘德成,姜涛,于涛.林分结构调整对固沙林地生态环境影响.水土保持应用技术,2007,(2):4-5
    [31]罗德光.不同强度人为干扰对马尾松林分结构及物种多样性的影响.福建林业科技,2005,32(4):90-94
    [32]林开敏,俞新妥.不同密度杉木林分生物量结构与土壤肥力差异研究.林业科学,1996,32(5):385-391
    [33]盛炜彤,杨承栋.关于杉木林下植被对改良土壤性质效用的研究.生态学报,1997,17(4):377-385
    [34]陈继祥.柳杉与火力楠、湿地松混交林分结构和生物量的研究.亚热带水土保持,2007,19(2):10-12,32
    [35]左益华.马尾松枫香混交林生态效益的研究.安徽林业,2007,33(5):21-21
    [36]潘文忠.杉楠混交林生长及生态效应研究.安徽农学通报,2007,13(9):144-145,227
    [37]鲁绍伟,刘凤芹,余新晓,等.华北土石山区油松-元宝枫混交林的结构与功能.东北林业大学学报,2007,35(9):20-23
    [38]李春明,杜纪山,张会儒.抚育间伐对森林生长的影响及其模型研究.林业科学研究,2003,16(5):636-641
    [39]刘晨峰,尹婧,贺康宁.林下植被对半干旱区不同密度刺槐林地土壤水分环境的指示作用.中国水土保持科学,2004,2(2):62-67,79
    [40]刘晨峰,王正宁,贺康宁,等.黄土高原半干旱区几种人工林的土壤水分、光照变化及其对林分的影响.西部林业科学,2004,3:34-41
    [41]熊有强,盛炜彤.不同间伐强度杉木林下植被发育及生物量研究.林业科学研究,1995,8(4):408-412
    [42] Smith HC,Miller GW. Managing Appalachian hardwood stands using four regeneration practices: 34-year results. Northern Journal of Applied Forestry, 1987, 4(4): 180-185
    [43]罗菊春,王庆锁.干扰对天然红松林植物多样性的影响.林业科学,1997,33(6):498-503
    [44] Gilliam FS, Turrill NL, Adams MB. Herbaceous-Layer and Overstory Species in Clear-cut and Mature Central Appalachian Hardwood Forests. Ecological Applications, 1995,5(4): 947-955
    [45] Buongiorno J., Dahir S, Lu HC, et al. Tree size diversity and economic returns in uneven-aged forest stands. Forest Science, 1994, 40(1): 83-103
    [46]马祥庆,范少辉,陈绍栓,等.杉木人工林连作生物生产力的研究.林业科学,2003,39(2):78-83
    [47]吴明晶.关于不炼山整地造林在林业生产中的应用研究.华东森林经理,2001,15(3):7-8
    [48]何水东.桉树人工林可持续经营的造林措施研究.安徽农学通报,2007,13(18):196-198
    [49] Calderon FJ, Jackson LE, Scow KM, et al. Short-term dynamics of nitrogen, microbial activity, and phospholipid fatty acids after tillage. Soil Science Society of America Journal, 2001,65:118-126
    [50] Jackson LE, Calderon FJ, Steenwerth KL, et al. Responses of soil microbial processes and community structure to tillage events and implications for soil quality. Geoderma, 2003,114: 305-317
    [51] Piovanelli C, Gamba C, Brandi G, et al. Tillage choices affect biochemical properties in the soil profile. Soil and Tillage Research,2006,90:84-92
    [52] Drinkwater LE, Janke RR, Rossoni-Longnecker L. Effects of tillage intensity on nitrogen dynamics and productivity in legume-based grain systems Plant and Soil ,2000,227: 99-113
    [53] Six J, Elliott ET, Paustian K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Science Society of America Journal, 1999, 63: 1350-1358
    [54] Papendick R, ParrJ F . Thew ayo fth efu turefo ra s ustainabled rylanda griculture Annals of arid zone, 1997,36: 193-208
    [55] Franzluebbers AJ. Soil organic matter stratification ratio as an indicator of soil quality. Soil and Tillage Research ,2002,66:95-106
    [56] Morse RD. Components of sustainable production systems for vegetables -conserving soil moisture. HortTechnology,1993, 3:211-214
    [57] Kay BD. Conservation tillage and depth stratification of porosity and soil organic matter. Soil and Tillage Research, 2002, 66:107-118
    [58]陈军胜,苑丽娟,呼格?吉乐图.免耕技术研究进展.中国农学通报,2005,21(5):184-190
    [59]温美丽,刘宝元,叶芝菡等.免耕与土壤侵蚀研究进展.中国生态农业学报,2006,14(3):1-3
    [60] Nambiar EK, Squire R, Cromer RT, et al. Management of water and nutrient relations to increase forest growth. Forest Ecology and Management, 1990,30:480-486
    [61]李卫忠,吉文丽,刘军.秦岭林区可持续经营理论与技术研究.西北林学院学报,2004,19(4):184-188
    [62]李鑫,巨晓棠,张丽娟,等.不同施肥方式对土壤氨挥发和氧化亚氮排放的影响.应用生态学报,2008,19(1):99-104
    [63] South DB, Zwolinski JB, Lee Allen H. Economic returns from enhancing loblolly pine establishment on two upland sites: Effects of seedling grade, fertilization, hexazinone, and intensive soil cultivation. New Forests, 1995, 10(3): 239-256
    [64] Ingestad T, Aronsson A, Agren GI. Nutrient flux density model of mineral nutrition in conifer ecosystems. Studia Forestalia Suecica, 1981, 160: 61-71
    [65] Albaugh TJ, Allen HL, Dougherty PM,et al. Leaf area and above-and belowground growth responses of loblolly pine to nutrient and water additions. Forest Science, 1998, 44(2): 317-328
    [66] Adair EC,Binkley D. Co-limitation of first year fremont cottonwood seedlings by nitrogen and water. Wetlands, 2002, 22(2): 425-429
    [67] Hooper DU,Johnson L. Nitrogen limitation in dryland ecosystems: Responses to geographical and temporal variation in precipitation. Biogeochemistry, 1999,46(1): 247-293
    [68] Shumway J.,Chappell .N. Preliminary DRIS norms for coastal Douglas-fir soils in Washington and Oregon. Canadian journal of forest research(Print), 1995,25(2): 208-214
    [69] Velazquez-Martinez A, Perry DA, Bell TE. Response of aboveground biomass increment, growth efficiency, and foliar nutrients to thinning, fertilization, and pruning in young Douglas-fir plantations in the central Oregon Cascades. Canadian journal of forest research(Print), 1992,22(9): 1278-1289
    [70] Tonitto C, David MB, Drinkwater LE . Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics. . Agriculture Ecosystems & Environment 1, 2006,12 :58-72
    [71] Wyland LJ, Jackson LE, Chaney WE,et al. Winter cover crops in a vegetable cropping system: Impacts on nitrate leaching, soil water, crop yield, pests and management costs Agriculture Ecosystems & Environment,1996,59: 1-17
    [72] Teasdale JR. Contribution of cover crops to weed management in sustainable agricultural systems. Journal of Production Agriculture, 1996,9 :475-479
    [73] Reeves DW. The role of soil organic matter in maintaining soil quality in continuous cropping systems Soil and Tillage Research, 1997, 43:131-167
    [74] Fageria NK, Baligar VC, Bailey BA.. Role of cover crops in improving soil and row crop productivity Communications in Soil Science and Plant Analysis, 2005,36: 2733-2757
    [75] Kavdir Y. Soil aggregate sequstration of cover crop root and shoot-derived nitrogen. Plant and Soil, 2005 ,272: 263-276
    [76] Liu A, MB L, Bomke AA. Effects of cover crops on soil aggregate stability, total organic carbon, and polysaccharides. Soil Science Society of America Journal, 2005, 69 :2041-2048
    [77] Franzluebbers AJ. Water infiltration and soil structure related to organic matter and its stratification with depth Soil and Tillage Research ,2002, 66: 197-205
    [78] Flach K. Low-input agriculture and soil conservation Journal of Soil Water Conservation, 1990,45: 42-44
    [79] Lundquist EJ, Jackson LE, Scow KM,et al. Changes in microbial biomass and community composition,and soil carbon and nitrogen pools after incorporation of rye into three California agricultural soils. Soil Biology & Biochemistry,1999,31:221-236
    [80] Drinkwater LE, Wagoner P, Sarrantonio M. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature, 1998,396: 262-265
    [81]张正雄,周新年,高山,等.皆伐对短轮伐期尾叶桉林地土壤性质的影响.福建林学院学报,2004,24(2):111-113
    [82] Raison RJ,Crane WJB. Nutritional costs of shortened rotations in plantation forestry. Forestry, 1986
    [83]余雪标,徐大平.不同连栽代次桉树人工林的养分循环.热带作物学报,1999,20(3):60-66
    [84]孙志虎.长白落叶松人工用材林长期生产力维持的研究.东北林业大学博士学位论文,2005
    [85] Mann LK, Johnson DW, West D, et al. Effects of whole-tree and stem-only clearcutting on postharvest hydrologic losses, nutrient capital, and regrowth. For. Sci, 1988,34(2): 412–428
    [86] Johnson DW. Effects of forest management on soil carbon storage. Water, Air, & Soil Pollution, 1992, 64(1): 83-120
    [87]叶学华,罗嗣义.杉木人工林地力衰退研究概述.江西林业科技,2001,(6):42-45
    [88] Smith C, McCormack M, Hornbeck JW,et al. Nutrient and biomass removals from a red spruce-balsam fir whole-tree harvest. Canadian journal of forest research(Print), 1986,16(2): 381-388
    [89]杨玉盛,陈光水,谢锦升,等.不同收获与清林方式对杉木林养分的影响.自然资源学报, 2000, 15(2): 133-137
    [90]马祥庆.杉木人工林连载生产力下降研究进展.福建林学院学报,2001,21(4):380-384
    [91]吴炳生,周家珩,文华薄.促进实生毛竹幼林成材技术的研究.竹类研究,1990,9(1):68-71
    [92]徐家琦.毛竹秆材解析与材用竹低产林改造措施.安徽林业科技,1989,(1):8-11
    [93]汪阳东.人工经营对毛竹秆形结构变异的影响.林业科学研究,2001,14(3):245-250
    [94]汪奎宏,陆松发,蔡纫秋.毛竹笋用林产量因素相关分析.浙江林业科技,1990,10(5):32-38
    [95]程晓阳,方乐金,詹鸿章,等.立地条件对毛竹实生林生长发育影响的研究.世界竹藤通讯,2004,2(4):26-27
    [96]彭九生,黄小春,程平,等.江西毛竹林土壤肥力变化规律初探.世界竹藤通讯,2003,1(4):37-42
    [97]吴蓉,汪奎宏,何奇江,等.不同立地级毛竹笋用林施肥效果分析.西南林学院学报,2001,21(4):210-215
    [98]黄礼祥.坡位对毛竹生长的影响.广东林业科技,2005,21(1):66-68
    [99]郑蓉,陈开益,郭志坚,等.不同海拔毛竹林生长与均匀度整齐度的研究.江西农业大学学报,2001,23(2):236-239
    [100]聂道平,朱余生,徐德应.林分结构、立地条件和经营措施对竹林生产力的影响.林业科学研究,1995,8(5):564-569
    [101] Walker TW,Syers JK. The fate of phosphorus during pedogenesis. Geoderma, 1976,15(1): 1–19
    [102] Wardle DA, Walker LR, Bardgett RD. Ecosystem Properties and Forest Decline in Contrasting Long-Term Chronosequences. American Association for the Advancement of Science,2004, 305(5683):509-513
    [103] Jones MD. Effects of Disturbance History on Forest Soil Characteristics in the Southern Appalachian Mountains, in Crop and Soil Environmental Sciences. Doctoral Dessertation Virginia Polytechnic Institute and State University, 2000
    [104] Sayer EJ. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews, 2006, 81(1): 1-31
    [105]周芳纯.竹林培育和利用.南京林业人学竹类研究编委会,1998
    [106] Bowman RA, Reeder JD, Lober RW. Changes in soil properties in a central plains rangeland soil after 3, 20, and 60 years of cultivation. Soil Science, 1990,150(6): 851-837
    [107] Hallberg GR, Wollenhaupt NC, Miller GA. A century of soil development in spoil derived from loess in Iowa. Soil Science Society of America Journal, 1978,42: 339-343
    [108] Anderson DW. Early stages of soil formation on glacial till mine spoils in a semi-arid climate. Geoderma, 1977,19: 11-19
    [109]吴家森,周国模,钱新标,等.不同经营类型毛竹林营养元素的空间分布.浙江林学院学报,2005,22(5):486-489
    [110]项文华,田大伦,闫文德,等.第2代杉木林速生阶段营养元素的空间分布特征和生物循环.林业科学,2002,38(2):2-8
    [111]刘广全,土小宁,赵士洞,等.秦岭松栎林带生物量及其营养元素分布特征.林业科学,2001,37(1):28-36
    [112] Feng Z., Chen C., Wang K. Studies on the accumulation,distribution and cycling of nutrient elementsin the ecosystem of the pure stand of subtropical Cunninghamia lanceolata. Acta Phytoecological et Geobotonica Sinic, 1985, 9: 245—257
    [113]何艺玲.不同类型毛竹林林下植被的发育状况及其与土壤养分关系的研究.中国林科院硕士学位论文,2000
    [114]李正才,傅懋毅,谢锦忠,等.毛竹竹阔混交林群落地力保持研究.竹子研究汇刊,2003,22(1):32-37
    [115] Dearden FM, Dehlin H, Wardle DA, et al. Changes in the ratio of twig to foliage in litterfall with species composition, and consequences for decomposition across a long term chronosequence. Oikos, 2006,115(3): 453-462
    [116]曹流清,李晓凤.毛竹大径材培育技术研究.竹子研究汇刊,2003,22(4):34-41
    [117]陈建寅,兰林富.毛竹林现代经营技术初探.竹子研究汇刊,2001,20(3):8-14
    [118]宣涛涛,陈建寅,陈根.不同经营类型毛竹林立竹结构稳定性分析.林业科技开发,2002,16(2):30-31
    [119]陈双林,杨伟真.我国毛竹人工林地力衰退成因分析.林业科技开发,2002,16(5):3-6
    [120]楼一平,吴良如,邵大方,等.毛竹纯林长期经营对林地土壤肥力的影响.林业科学研究,1997,10(2):125-129
    [121] Siegel-Issem CM. Forest Productivity as a Function of Root Growth Opportunity, in the Virginia Polytechnic Institute and State University. The doctoral dissertation of the Virginia Polytechnic Institute and State University ,2002
    [122] Aust WM, Mader SF, Mitchell LJ, et al. An approach to the inventory of forested wetlands for timber-harvesting impact assessment. Forest Ecology and Management, 1990,33(1): 215-225
    [123] Aust WM, Reisinger TW, Burger J A. Soil physical and hydrological changes associated with logging a wet pine flat with wide-tired skidders. Southern Journal of Southern Forestry, 1993, 17(1 ): 22-25
    [124] Aust WM, Lea R. Comparative Effects of Aerial and Ground Logging on Soil Properties in a Tupelo-Cypress Wetland. Forest Ecology and Management, 1991,50 57-73
    [125] Miller WP,Baharuddin MK. Relationship of Soil Dispersibility to Infiltration and Erosion of Southeastern Soils. Soil Science, 1986,142(4): 235-240
    [126]潘怡.不同经营毛竹林土壤生化性质及其变化动态.中国林业科学研究院硕士学位论文,2000
    [127]郑成洋,何建源,罗春茂,等.不同经营强度条件下毛竹林植物物种多样性的变化.生态学杂志,2003,22(6):1-6
    [128]高志勤,傅懋毅.不同毛竹林土壤碳氮养分的季节变化特征.竹子研究会刊,2006,22(3):248-254
    [129]孟承安,陈黎,方乐金.毛竹实生苗造林基肥种类比较研究.竹子研究汇刊,2004,23(1):24-27
    [130]符树根,黄宝祥,沈彩周,等.毛竹专用肥试验研究.江西林业科技,2006,1:10-12
    [131]顾小平,吴晓丽,汪阳东.毛竹材用林高产优化施肥与结构模型的建立.林业科学,2004,40(3):96-101
    [132]洪伟,陈辉,吴承祯.毛竹专用复合肥研究.林业科学,2003,39(1):81-85
    [133]郭晓敏,牛德奎,张斌,等.集约经营毛竹林平衡施肥效应研究.西南林学院学报,2005,25(4):84-89
    [134]吴礼栋,翁益明,邱永华,等.毛竹林地施厩肥效应试验初报.世界竹藤通讯,2005,3(3):33-35
    [135]陈乾富.毛竹林不同经营措施对林地土壤肥力的影响.竹子研究汇刊,1999,18(3):19-24
    [136]杨芳,吴家森,姜培坤,等.不同施肥雷竹林土壤水溶性有机碳动态变化.浙江林业科技,2006,26(3):34-37
    [137]吴国强.毛竹栽培与垦复技术要点.安徽林业,2005,1:31-31
    [138]丁魏发.毛竹垦复技术初步研究.现代农业科技,2006,11S:23-24
    [139]李昌栋.不同垦复时间和深度对毛竹生长发育的影响.安徽林业,2004,2:17-17
    [140]董晨玲.毛竹扩鞭成林新竹生长效果研究.竹子研究汇刊,2003,22(4):30-33
    [141]罗国芳.闽东竹业经营发展战略研究.林业经济问题,1997,3:29-33
    [142]陈双林,杨清平.散生类竹子地下鞭系生长影响因子研究综述.林业科学研究,2003,16(4):473-478
    [143]陶芳明,李昌栋.不同垦复时间和深度在毛竹林生长发育中的作用.竹子研究汇刊,1994,13(2):61-65
    [144]詹祖仁,张文勤.毛竹枯梢病综合治理技术的应用.林业科技开发,1998,2:56-57
    [145]王明旭,戴良英,陈良昌.毛竹枯梢病病原菌致病机制及防治技术.森林病虫通讯,2000,19(5):8-10
    [146]姚筱羿,刘素芬,董月发.杨歧山毛竹枯梢病发生规律及综合防治技术.江西林业科技,2001,6:26-27
    [147]刘巧云,陈国顺,陈伟,等.毛竹林经营管理与螨类危害关系的调查.竹子研究汇刊,2003,22(2):33-35
    [148]张飞萍,陈清林,尤民生,等.毛竹林经营干扰、林下植物与冠层螨类之间的关系.林业科学,2004,40(5):143-150
    [149]高清贵.浅谈毛竹山的水土保持.亚热带水土保持,2006,18(2):39-40
    [150]吴志勇,王云珠.安吉竹业发展现状和思路.竹子研究汇刊,2000,19(4):76-79,83
    [151]徐秋芳,徐建明,姜培坤.集约经营毛竹林土壤活性有机碳库研究.水土保持学报,2003,17(4):15-17,21
    [152]周东雄,陈善治,张君寿.沙县毛竹低产林改建笋竹两用丰产林培育模式.福建林学院学报,1994,12(2):176-179
    [153]张芳山.低产毛竹林改造技术.安徽林业科技,2004,4:37-38
    [154]杨校生,黄衍串,梁文焰.毛竹纸浆林分类栽培及效果研究.林业科学研究,1999,12(3):268-274
    [155]张咸进.毛竹丰产措施效益研究.安徽林业,2004,3:15-15
    [156]王新疆.毛竹混交林生产力和生态效益的研究.林业勘察设计,2002,2:69-72
    [157]向梓昌,张运文,杨圣芳.杉竹混交林分毛竹生长特性数值分析.湖北林业科技,1999,1:14-15,17
    [158]傅国建.毛竹肉桂混交对毛竹林初期生长的影响.林业勘察设计,2002,1:89-91
    [159]刘文忠.天然毛竹混交林改造效果研究.福建林业科技,2001,3:78-80
    [160]陈慈禄.泡桐毛竹混交林混交效果试验研究.西南林学院学报,2003,23(2):31-33
    [161]张艳璇,张智强,斋藤裕等.混交林和纯竹林与毛竹害螨爆发成灾关系研究.应用生态学报,2004,15(7):1161-1165
    [162]郑郁善,李仁昌.毛竹杉木混交林经营模式决策分析.福建林学院学报,2000,20(2):105-109
    [163]陈礼光,连进能.杉木毛竹混交林造林效果评价.福建林学院学报,2000,20(4):309-312
    [164]廖军,张卫栋,薛建辉,等.竹阔混交林混交类型的综合评价.江西农业大学学报,2002,24(3):346-349
    [165]高志勤.毛竹林群落特征与生态功能评价.中国林业科学研究院博士研究生,2004
    [166]郑郁善,洪伟,陈礼光.毛竹林合理经营密度的研究.林业科学,1998,34(专1):5-10
    [167]陈存及.毛竹林分密度效应的初步研究.福建林学院学报,1992,12(1):98-104
    [168]潘金灿.闽南毛竹林合理经营密度的研究.经济林研究,2000,18(2):20-22
    [169]杨玉盛,陈光水,何宗明,等.杉木观光木混交林和杉木纯林群落细根生产力、分布及养分归还.应用与环境生物学报,2002,8(3):223-233
    [170]盛炜彤,范少辉.杉木及其人工林自身特性对长期立地生产力的影响.林业科学研究,2002,15(6):629-636
    [171] Novotny V,Olem H. Water quality- Prevention, identification, and management of diffuse pollution. Van Nostrand Reinhold ,1994
    [172]吴家森,周国模,徐秋芳,等.不同年份毛竹营养元素的空间分布及与土壤养分的关系.林业科学,2005,41(3):171-173
    [173]顾小平,吴晓丽,汪阳东.毛竹林氮素营养诊断的研究.浙江林业科技,2004,23(2):1-4
    [174]顾小平.竹林肥培理论与技术研究.中国林业科学研究院博士学位论文,2000
    [175]徐秋芳,姜培坤.毛竹竹根区土壤微生物数量与酶活性研究.林业科学研究,2001,14(6):648-652
    [176]陈存及.福建毛竹林生态培育与生态系统管理.竹子研究会刊,2004,23(2):1-4
    [177]陈存及.毛竹林的生态培育.福建林学院学报,1996,16(2):188-192
    [178]肖良成,周早弘.食用笋集约经营开发技术.江西园艺,2004,3:19-21
    [179]蒋俊明,费世民,余英等.长宁竹海5种林分类型的水文效应评价.西部林业科学,2006,35(2):17-22
    [180]周礼恺.土壤酶学.科学出版社,1987,237-239
    [181]郑郁善,荣俊冬,陈礼光,等.沿海沙地小叶龙竹林凋落物分解及养分归还动态.福建农林大学学报:自然科学版,2008,37(5):487-490
    [182]吕春艳,余雪标.海南麻竹林凋落物及养分动态研究.竹子研究汇刊,2004,23(4):25-27
    [183]于明坚,邵剑波.浙江建德青冈常绿阔叶林凋落量研究.植物生态学报,1996,20(2):144-150
    [184]吴仲民,卢俊培.海南岛尖峰岭热带山地雨林及其更新群落的凋落物量与贮量.植物生态学报,1994,18(4):306-313
    [185]盛伟彤,范少辉,等.杉木人工林长期生产力保持机制研究.科学出版社,2005
    [186]冯宗伟,王效科,吴刚.中国森林生态系统的生物量和生产力.科学出版社,1999
    [187]田大伦,文化,闫文德.马尾松与湿地松人工林生物量动态及养分循环特征.生态学报,2004,24(10):2207-2210
    [188]张希彪,上官周平.黄土丘陵区主要林分生物量及营养元素生物循环特征.生态学报,2005,25(3):527-537
    [189]马克平.试论生物多样性的概念.生物多样性,1993.1(1):20-22
    [190]蒋志刚.保护生物学.抗州科学技术出版杜,1997,20-33
    [191]张昌顺.闽北不同类型毛竹林生态功能研究.中国林业科学研究院博士研究生,2008
    [192]姜培坤,徐建明.集约经营毛竹林土壤微生物量与多样性研究.中国竹业发展论坛论文集,2005
    [193]张刚华,萧江华,聂洁珠,等.不同类型毛竹林植物物种多样性研究.林业科学研究,2007,20(5):615-621
    [194]邱波,王刚.生产力与生物多样性关系研究进展.生态科学,2003,22(3):265-270
    [195]张飞萍,尤民生.不同林分类型毛竹林节肢动物群落的多样性与稳定性.昆虫学报,2007,12(1):31-37
    [196]刘怀,赵志模,徐学勤,等.毛竹林竹冠节肢动物群落结构与多样性研究.林业科学研究,2007,6(6):841-846
    [197]王宗英,朱永恒,路有成,等.宁国县竹林大型土壤动物群落结构与竹笋夜蛾危害程度的关系.生态学杂志,2000,6(1):32-35,31
    [198]张蓬军,刘学聪,傅荣恕.济南市植物园竹林土壤动物群落的研究.山东师范大学学报:自然科学版,2003,4(2):84-86
    [199]张崇邦,金则新,施时迪.天台山不同林型土壤微生物区系及其商值(qMB,qCO2).生态学杂志,2003.22(2):28-31,55
    [200]肖慈英阮宏华,屠六邦.宁镇山区不同森林土壤生物学特性的研究.应用生态学报,2002,13(9):1077-1081
    [201]刘春华.毛竹杉木混交林生产力和空间结构研究.海峡科学,2008,8:33-35
    [202]戴玉斌.福建省毛竹混交林竹林结构比较研究.华东森林经理,2006,20(1):35-39
    [203]高志勤,傅懋毅.经营方式对毛竹林土壤肥力指数的影响.南京林业大学学报:自然科学版,2008,32(4):81-85
    [204]高志勤,傅懋毅.毛竹林土壤速效养分的季节变化特征.竹子研究汇刊,2008,27(2):25-31
    [205]刘巧云,张艳璇,蔡锦秋.福建省毛竹害螨发生情况与综合治理.森林病虫通讯;沈阳,2000,19(3):38-40
    [206]黄启堂.毛竹天然混交林乔木层主要伴生种群生态位的研究.福建林学院学报,2008,28(2):101-105
    [208]曹永慧,萧江华,陈双林,等.竹阔混交林阔叶树下土壤养分对毛竹生长的影响.南京林业大学学报:自然科学版,2007,31(6):43-47
    [209]尚玉昌,普通生态学.北京大学出版社,2002,258
    [210] Dietz H. Plant Invasion Patches–Reconstructing Pattern and Process by Means of Herb-chronology. Springer,2002, 211-222
    [211]卢寅六.用材毛竹林最佳年龄结构与年度新竹高产稳产的关系.江苏林业科技,1998,25(3):29-32
    [212]郑郁善,洪伟.毛竹林丰产年龄结构模型与应用研究.林业科学,1998,34(3):32-39
    [213] Wenk G, Antaitis J, Smelko S. Waldertragslehre. Deutscher Landwritschaftverlag Berlin, 1990,189-203
    [214]吴承祯,洪伟.杉木数量经营学引论.中国林业出版社,2000
    [215]王光剑,马光良,李呈翔,等.合江方竹笋产量与林分结构的相关性.林业科技开发,2006,20(4):38-41
    [216]湖州市笋用林高产技术推广协作组.毛竹笋用林培育技术模式探讨.浙江林学院学报,1989,6(3):266-269
    [217]江泽慧.世界竹藤.辽宁科学技术出版社,2002
    [218]傅懋毅,曹根群,方敏瑜.竹林养分循环:Ⅱ、毛竹林内降水的养分输入及其林地径流的养分输出.林业科学研究,1992,5(5):497-505
    [219]盛炜彤,范少辉,等,杉木人工林长期生产力保持机制研究.科学出版社,2005
    [220]秦武明.马占相思近熟林养分循环研究.广西农业生物科学,2008,27(3):270-275
    [221]秦武明,何斌,覃世赢,等.厚荚相思人工林营养元素生物循环的研究.水土保持学报,2007,21(4):103-107
    [222]李燕燕,樊后保,卢小兰.马尾松-火力楠混交林营养元素与养分循环研究.南昌工程学院学报,2007,26(4):5-8
    [223]杨玉盛,黄宝龙.不同栽杉代数29年生杉木林净生产力及营养元素生物循环的研究.林业科学,1998,34(6):3-11
    [224]宋春雨,张兴义,刘晓冰,等.土壤有机质对土壤肥力与作物生产力的影响.农业系统科学与综合研究,2008,24(3):357-362
    [225]姜培坤,徐秋芳.施肥对雷竹林土壤活性有机碳的影响.应用生态学报, 2005,16(2): 253-256
    [226]宗海英,荣,谢小立.长期施肥对红壤性水稻土有机氮组分的影响.应用生态学报,2008,19(8):1721-1726
    [227]霍琳,武天云,蔺海明,等.长期施肥对黄土高原旱地黑垆土水稳性团聚体的影响.应用生态学报,2008,19(3):545-550
    [228]于立忠,丁国泉,朱教君,等.施肥对日本落叶松人工林细根生物量的影响.应用生态学报,2007,18(4):713-720
    [229]于立忠,丁国泉,史建伟,等.施肥对日本落叶松人工林细根直径、根长和比根长的影响.应用生态学报,2007,18(5):957-962
    [230]蒋廷惠,占新华,徐阳春,等.钙对植物抗逆能力的影响及其生态学意义.应用生态学报,2005,16(5):971-976
    [231]许联芳,王克林,朱捍华,等.桂西北喀斯特移民区土地利用方式对土壤养分的影响.应用生态学报,2008,19(5):1013-1018
    [232]张国盛,Chan,Li,等.长期保护性耕种方式对农田表层土壤性质的影响.生态学报,2008,28(6):2722-2728
    [233]李文凤,张晓平,梁爱珍,等.不同耕作方式下黑土的渗透特性和优先流特征.应用生态学报,2008,19(7):1506-1510
    [234]盛炜彤.杉木林的密度管理与长期生产力研究.林业科学,2001,37(5):2-9
    [235]盛炜彤,杨承栋.关于杉木林下植被对改良土壤性质效用的研究.生态学报,1997,17(4):377-385
    [236]张亚丽,李怀恩,张兴昌,等.牧草覆盖对坡面土壤矿质氮素流失的影响.应用生态学报,2006,17(12):2297-2301

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700