用户名: 密码: 验证码:
岷江上游干旱河谷坡地不同利用模式下土壤理化性质的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为防止水土严重流失,生态环境恶化,保证土壤可持续性利用,本研究选择岷江上游理县薛城段干旱河谷坡地四种土地利用模式(荒地、剑麻地、剑麻×花椒地、农耕地),通过剖面分层取样,分不同季节(旱季与雨季)分别测定土壤容重、持水状况、孔隙度、碳、氮、磷钾养分等土壤的理化指标。旨在揭示栽种剑麻与剑麻×花椒后对土壤的改良效果及其与农耕地的差异大小,以期为该区域水土保持和土壤肥力恢复提供一种较优的农业栽种模式,也为该区域后期的植被营造与科学管理提供理论依据。主要研究结果是:
     1.在土壤物理指标方面,旱雨季两个土层土壤容重都呈现出明显的规律:荒地最高,其次为剑麻×花椒地与剑麻地,农耕地最低。具体而言,在0-20cm土层,剑麻地和剑麻×花椒地土壤容重与荒地相比较,旱季分别降低0.20g·cm?3、0.18g·cm?3;雨季分别降低了0.29g·cm?3、0.25g·cm?3。0-20cm土层,旱季剑麻地与剑麻×花椒地土壤的毛管持水量分别为7.36%、8.23%,比荒地高出了2.26%、3.13%;雨季分别为10.39%、12.43%,比荒地分别高出了5.29%、7.33%。土壤毛管孔隙、非毛管孔隙及总孔隙呈现的规律为:农耕地最大,荒地最小,荒地与其它三种模式的大小差异显著,剑麻与剑麻×花椒地差异不显著。除荒地外,其它三种模式同一土层土壤的毛管孔隙、非毛管孔隙及总孔隙均是雨季大于旱季。
     2.在土壤化学指标方面,研究区土壤的pH值均为中性偏弱碱性。旱雨季有机质含量两个土层均是农耕地最高,其次为剑麻地和剑麻×花椒地,荒地土壤含量最低。雨季与旱季相比,除荒地外,其它三种模式0-20cm土层土壤有机质均有不同程度的增加。0-20cm土层,两个季节四种模式土壤中的全氮含量排序为:农耕地>剑麻地>剑麻×花椒地>荒地,除荒地外,其它三种模式的土壤全氮含量较为充足,但在干旱季节,剑麻地、剑麻×花椒地土壤中易于植物吸收的碱解氮不够充足。两个土层,旱季土壤全磷含量大小为:农耕地最高,其次为剑麻地与剑麻×花椒地,荒地土壤含量最低。两个土层雨季土壤全磷大小顺序均为:农耕地>剑麻×花椒地>剑麻地>荒地。旱雨季全磷含量均偏低,小于0.1%。四种模式旱季土壤全钾含量在7.99 g·kg-1至18.39g·kg-1之间。旱雨季两土层有效磷含量均是农耕地>剑麻×花椒地>剑麻地>荒地,荒地土壤有效磷含量极低,剑麻地与剑麻×花椒地差异显著。旱雨季两土层土壤中速效钾含量均是农耕地最高,荒地最低。其中0-20cm土层,旱季剑麻地和剑麻×花椒地两种模式土壤中速效钾含量差异不显著,而雨季两者之间差异显著,表现为剑麻×花椒地土壤含量大于剑麻地。这两种模式栽种土壤中速效钾含量是荒地的两倍以上。剑麻地、剑麻×花椒地与农耕地三种模式,雨水季节相对于干旱时期土壤中速效钾有效磷的增加量,速效钾在0-20cm与20-40cm两个土层均有大幅度的增加,而有效磷值只在0-20cm有所增加,且增加量不大。
     本文研究结果表明:季节变化对土壤的水肥效应影响较明显,特别影响土壤中速效养分含量的变化。旱雨季剑麻地与剑麻×花椒地土壤的水肥效益均优于荒地,但差于农耕地,剑麻地与剑麻×花椒地之间相比,后者水肥效益稍好一些,可考虑为当地栽种的优选模式。
In order to prevent serious soil erosion, environmental deterioration, and ensure the sustainable use of soil. This paper studys on four land-use modes (wasteland, sisal, sisal×pepper land, agricultural land) of the arid valley in Minjiang River. The reflection of soil fertility on the measurement of soil bulk density, water retention status, porosity, carbon, nitrogen, phosphorus and potassium nutrients in dry or rainy seasons by the means of stratified sampling by section. In order to reveal soil improvement effect of planting sisal and sisal×pepper land and the difference with the agricultural land, to provide an optimal planting pattern for the water conservation and soil fertility restoration in the region, and provide the theoretical basis of vegetation creation and scientific management in the region. The major findings are:
     1. It presents obvious regulations on two layers of soil bulk density in the dry and rainy season, wasteland is the highest, followed as sisal×pepper and sisal, farmland is the lowest.0-20cm soil, sisal and sisal×pepper soil compare with wasteland on oil bulk density: dry reason reduces 0.20g/cm-3, 0.18g/cm-3; rainy season reduces 0.29g/cm-3, 0.25g/cm-3. 0- 20cm soil, capillary water-holding capacity of sisal and sisal×pepper in the dry reason is respectively 7.36%, 8.23%, higher than the wastelands of 2.26%, 3.13%. The rainy season is 10.39%, 12.43%, higher than the wasteland of 5.29% ,7.33%. The rules on soil capillary pore, non-capillary pore and total porosity rendering: farmland is highest, wasteland is the lowest, wasteland significantly varies in the other three modes, little difference between sisal and sisal×pepper. In addition to the wasteland, capillary pore, non-capillary pore and total porosity of the other three modes in the same soil is the rainy season higher than the dry season.
     2. PH values are neutral and alkaline in the research soil. Soil organic matter content in the dry- rainy season, farmland is highest, followed as sisal and sisal×pepper, wasteland soil is the lowest. Rainy season compares with the dry season, in addition to wasteland, organic matter of the other three modes has a level of increase in 0-20cm layer of soil. 0-20cm soil layer, four models of total nitrogen in soil in two reasons is farmland > sisal > sisal×pepper> wasteland; wasteland, in addition to wasteland, the other three modes of soil nitrogen content is adequate, but in the dry season, sisal, sisal×pepper soils in easy-to-plant uptake of alkaline hydrolysis nitrogen is not enough. The content of total phosphorus in two soil layers in the dry season: farmland is highest, followed as sisal and sisal×pepper, wasteland soil is the lowest. The content of total phosphorus in two soil layers in the rainy season: farmland > sisal×pepper> sisal > wasteland. Total phosphorus concentration in two periods is lower than 0.1%. Total phosphorus content of four models in the dry season is 7.99 g·kg-1-18.39 g·kg-1. Available phosphorus content in two soil layers in dry-rainy season is farmland > sisal×pepper> sisal > wasteland, available phosphorus content in the wasteland is very low, sisal and sisal×pepper is significant different. Available K content in two soil layers in the dry-rainy season is farmland is highest, wasteland is the lowest. 0-20cm soil layer, Available K content has little difference between sisal and sisal×pepper of two modes in dry season, but of significant differences in the rainy season, in which sisal×pepper is higher than sisal. Available K content in the two-mode types is twice more than the wasteland. Three models of sisal, the sisal×pepper and farmland, in rainy reason compared with dry reason, available K has significant increase in 0-20cm and 20-40cm soil layers, while the available phosphorus only increases little in the 0-20cm.
     The results show that: soil water and fertilizer efficiency is affected obviously by season changes, particularly the soil available nutrient content changes. In the dry-rainy season, water and fertilizer efficiency in sisal and sisal×pepper is better than wasteland, but worse than agricultural land, water and fertilizer efficiency in sisal×pepper is slightly better than sisal, which is considered as a optimal model in the local.
引文
[1]张荣祖.横断山区干旱河谷[M].北京:科学出版社,1992.
    [2]王金锡,许金铎.长江上游高山高原林区迹地生态与营林更新技术[M].北京::中国林业出版社:1995,37-53.
    [3]何飞,刘兴良,郑绍伟,等.四川卧龙自然保护区川滇高山栋林在海拔梯度上的植物种-面积的关系[J].成都大学学报(自然科学版),2005,25(l):31-34.
    [4]郭晓鸣.四川千早河谷地区生态建设的主要问题与对策建议[J].社会科学研究,2001,(5):33-36.
    [5]沈茂英.川西干早河谷区生态环境建设的社会保障机制研究[J].四川林业科技,2003,24(l):19-25.
    [6]SehweinfurthU. Plateau, rivergorge, and wind Phenomena. In:Geologieal and Eeological Studies of Qinghai-Xizang Plateau [J], Vol, 2, Beijing: Science Press, 1981, 205-210.
    [7]谢以萍,杨再强.攀西干早干热河谷退化生态系统的恢复与重建对策[J].四川林勘设计,2004(1):11-14.
    [8]李生秀,赵伯善.我国旱地土壤合理施肥之刍议[J].土壤通报,1995(4):145-148,
    [9]高以信.青藏高原土壤区划[J].山地研究,1995,13(4):203-211.
    [10]西南林学院、云南林业调查规划的设计院、云南省林业厅,高黎贡山国家自然保护区[M].北京:中国林业出版社:1995:30-49.
    [11]关文彬,冶民生,马克明,等..山民江干早河谷植被分类及其主要类型[J].山地学报,2004,22(6):679-686..
    [12]郑远昌,高生淮,柴宗新.试论横断山区自然垂直带[J].山地研究,1986,4(1):75-83.
    [13]杨勤业,沈达康.滇西北横断山区的自然垂直带[J].地理学报,1984,39(2):141-147.
    [14]周乐福.云南土壤分布的特点及地带性规律[J].山地研究,1983,1(4):31-38.
    [15]马溶之.中国山地土壤的地理分布规律[J].土壤学报,1965,13(1):1-7.
    [16]张万儒,李贻铃,杨继镐,等.中国森林土壤分布规律[J].林业科学,1981,17(2):163-172.
    [17]张谊光.横断山区气候区划[J].山地研究,1989,7(1):21-28.
    [18]文传甲.横断山区地形对水热条件的影响[J].山地研究,1989,7(1):65-73.
    [19]王春明,孙辉,陈建中,等.保水剂在干早河谷造林中的应用研究[J].应用与环境生态学报,2001,7(3):197-200.
    [20]杜平,高运茹,张恩生等.冀北山地华北落叶松人工林对土壤肥力的影响[J].河北林业科技,1999(2):6-8.
    [21]潘洪泽,聂媛.混交林土壤养分效益的初步分析[J].辽宁林业科技,1997(6):57-60.
    [22]张萍,刘宏茂,陈爱国,等.西双版纳热带山地利用过程中的土壤退化[J].山地学报,2001,19(1):9-13.
    [23]沙丽清,邓继武,谢克金,等.西双版纳次生林火烧前后土壤养分变化的研究[J].植物生态学报,1998,22(6):513-517..
    [24]MeDonaldMA, Healey JR. Nutrient cycling in secondary forests in the Blue Monntains of Jamaiea [J]. FOR Eeol Manag, 2000, 139: 257-278.
    [25]周厚诚,任海,向言词,等.南澳岛植被恢复过程中不同阶段土壤的变化[J].热带地理,2001,21(2):104-107.
    [26]刘义,关继义,葛建平.不同森林类型土壤肥力的差异分析[J].东北林业大学学报,2002,30(3):76-78.
    [27]刘世梁,傅伯杰,陈利顶,等..卧龙自然保护区土地利用变化对土壤性质的影响[J].地理研究,2002,21(6):682-688.
    [28]王国梁,刘国彬,许明样.黄土丘陵区纸坊沟流域植被恢复的土壤养分效应[J].水土保持通报,2002,22(1):1-5.
    [29]张全发,郑重,金义兴.植物群落演替与土壤发展之间的关系[J].武汉植物学研究,1990,8(4):325-334.
    [30]刘良梧,龚子同.全球土壤退化评价[J].自然资源,1994(1):10-14.
    [31]李香真,曲秋皓.蒙古高原草原土壤微生物量碳氮特征[J].土壤学报,2002,3(1):97-104.
    [32]戎郁萍,韩建国,王培.放牧强度对草地土壤理化性质的影晌[J].中国草地,2001,23(4):34-38.
    [33]文海燕,赵哈林,傅华.开垦和封育年限对退化沙质草地土壤性状的影响[J].草业学报,2005,14(1):31-37.
    [34]朱志诚.陕北黄土高原植被基本特征及其对土壤性质的影响[J].植物生态学与地植物学学报,1993,17(3):280-286.
    [35]张庆费,由文辉,宋永昌.浙江天童森林公园植物群落演替对土壤物理性质的影响[J].植物资源与环境,1997,6(2):36-40.
    [36]卢其明,林琳.车八岭不同演替阶段植物群落土壤特性的初步研究[J].华南农业大学学报,1997,18(3):48-52.
    [37]TisdallJ. M, Organic matter and water-stable aggregates[J]. Journal of soils Science, 1997, 48: 39-48.
    [38]戴小国,庞奖励,郭美娟,等.关中东部不同土地利用方式下土壤理化性质对比研究[J].农业系统科学与综合研究,2009,25(2):223-227.
    [39]张源沛,李娜,季波.半干旱退化山区不同土地利用方式土壤物理性质的特征分析[J].防护林科技,2009,93(6):3-6.
    [40]廖晓勇,陈治谏,刘邵权,等.三峡库区小流域土地利用方式对土壤肥力的影响[J].生态环境,2005,14(1):99-101.
    [41]李仲明,张先婉,唐时嘉,等.中国紫色土(上篇)[M].北京:科学出版社,1991:127-128.
    [42]黄丽,丁树文,董舟,等.三峡库区紫色土养分流失的试验研究[J].土壤侵蚀与水土保持学报,1998,4(l):8-13.
    [43]Dumanski J, Pieri C. Land quality indieators: research Plan Agriculture[J]. Ecosystems and Environment, 2000, 81: 93-102.
    [44]Wang Jun, Fu Bojie, Qiu Yang,et al.Ailalysis on soil nutrient characteristics for sustainable land use in Da Nangou catchment of the Loess Plateau, China[J]. CATENA, 2002, 22(8): 1173-1177.
    [45]王清奎,汪思龙,高洪文,等.土地利用方式对土壤有机质的影响[J].生态学杂志,2005,24(4):360-363.
    [46]傅伯杰,郭旭东,陈利顶,等.土地利用变化与土壤养分的变化-以河北省遵化县为例[J].生态学报,2001,21(6):926-931.
    [47]史衍玺,唐克丽.林地开垦加速侵蚀卜土壤养分退化的研究[J].土壤侵蚀与水土保持学报,1996,2(4):26-33.
    [48]王艳芬,陈佐忠,LarryT.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响[J].植物生态学报,1998,22(6):545-551.
    [49]Thuille A, Bucmann N, Sehulze E D.Carbon socks and soil respiration rates during deforestation, grassland use and subsequent Norway sqruce affore station in the Southern Alps[J]. Italy Tree Physiology, 2000, 20: 849-857.
    [50]周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99-104.
    [51]张玉斌,吴发启,曹宁,等.泥河沟流域不同土地利用土壤养分分析[J].水土保持通报,2005,25(2):23-26.
    [52]刘一世,傅伯杰,陈利顶,等..卧龙自然保护区土地利用变化对土壤性质的影响[J].地理研究,2002,21(6):682-687.
    [53]廖晓勇,陈治谏,刘邵权,等.三峡库区小流域土地利用方式对土壤肥力的影响[J].生态环境,2005,14(1):99-101.
    [54]巩杰,陈利顶,傅伯杰,等.黄土丘陵区小流域植被恢复的土壤养分效应研究[J].水土保持学报,2005,19(l):93-96.
    [55]常凤来,田昆,莫剑锋,等.不同利用方式对纳帕海高原湿地土壤质量的影响[J].湿地科学,2005,3(2):132-135.
    [56]巩杰,陈利顶,傅伯杰,等.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响[J].应用生态学报,2004,5(12):2292-2296.
    [57]王国梁,刘国彬,许明祥.黄土丘陵区纸坊沟流域植被恢复的土壤养分效应[J].水土保持通报,2002,22(1):1-5.
    [58]叶伟建,黄春应,翁俊基,等.不同利用方式对荒地退化红壤肥力状况的影响[J].水土保持研究,2004,11(6):108-109.
    [59] Ma KM, Fu BJ, Liu SL, et al. Multiple-scale soil moisture distribution and its implications for ecosystem restoration in an arid river valley[J]. China. Land Degradation and Development, 2004, 15: 75-85.
    [60] Xu XL, Ma KM, Fu BJ, et al. Relationships between vegetation and soil and topography in a dry warm river valley[J]. SW China.Catena, 2008, 75: 138-145.
    [61]晏少春,冉生隆,程隆鑫.汉川干旱河谷地区油松、云南松等树种撤播试验[J].四川林业科技,1983,42-44.
    [62]包维楷,陈建中,王春明.岷江上游山地退化治理与恢复过程中物种选择的技术方法与实践[J].山地学报,2000,16(2):334-336.
    [63]包维楷,陈庆但,陈克明.岷江上游山地困难地段植被恢复优化调控技术研究[J].应用生态学报,1999,10(5):542-544.
    [64]包维楷,王春明.岷江上游山地生态系统退化机制[J].山地学报,2000,18(1):57-62.
    [65]Claudia P J, Sisti,Henrique, P,et al. Change in carbon and nitrogen stocks in soil Under 13 years of conventional or zertillage in southern Brazil[J]. Sloil Tillage Research, 2004, 76: 39-58.
    [66]鲁如坤.土壤农业化学分析法[M].北京:中国农业出版社,1999.
    [67]劳家柽.土壤农化分析手册[M].北京:农业出版社,1988:266-281.
    [68]中国科学院南京土壤研究所.土壤理化性质分析[M].上海:上海科学出版社,1978,1.
    [69]王莉,张强,牛西午,等.黄土高原丘陵区不同土地利用方式对土壤理化性质的影响[J].中国生态农业学报,2007,15(4):53-56.
    [70]王夏晖,王益权,Kuznetsov M S.黄土高原几种主要土壤的物理性质研究[J].水土保持通报,2000,14[4]:99-103.
    [71]Duryea M L, Land is TD. Forest nursery manual: production of bare root seedlings[M]. The Hague: Martinus N ijhoff/DrW. Junk Pub lishers for Forest Research Laboratory, Corvallis, 1984, 386.
    [72]谢锦升,杨玉盛,陈光水,等.植被恢复对退化红壤团聚体稳定性及碳分布的影响[J].生态学报,2008,28(2):702-709.
    [73]方乐金,张运斌.杉木幼林地土壤肥力变化研究[J].土壤学报,2003,40(2):316-319.
    [74]Jobbagy EG, Jackson R B.The vertical distribution of soil organic carbon and it is relation to climate and vegetation[J]. Ecological Application, 2002, 10(2): 423-436.
    [75]吴建国,张小全,徐德应.六盘山林区几种土地利用方式对土壤有机碳矿化影响的比较[J].植物生态学报,2004,28(4):530-538.
    [76] Ohrui K, Mitchell M J, Bischoff J M. Effect of landscape position on N mneralization and nitrification in a forested watershed in the dirondack Mountains of New York[J]. Canadian Journal of forest 1999, 29: 497-508.
    [77]李贵才,韩兴国,黄建辉.哀牢山木果柯林及其退化植被下土壤无机氮库的干季动态特征[J].植物生态学报,2001,25(2):210-217.
    [78]莫江明,郁梦德,孔国辉.鼎湖山马尾松人工林土壤硝氮和铵态氮动态研究[J].植物生态学报,1997,21(4):335-341.
    [79]尹飞,毛任钊,傅伯杰,等.枣粮间作生态系统土壤氮空间分布特性[J].生态学报,2009,29(1):235-330.
    [80]Sharpley A N, Smith SJ,Jones O R. The transport of bioavailable phosphorus in agriculture runoff[J]. Environ Oual, 1992, 21: 30-35.
    [81]朱显谟.黄土高原土壤与农业[M].北京:中国农业出版社.1997.
    [82]王春明,包维楷,陈建中,等.岷江上游干旱河谷区褐土不同亚类剖面及养分特性[J].应用生态学报,2003,9(3):230-234.
    [83]贾恒义,彭琳,彭祥林,等.黄土高原地区养分资源分区及评价[J].水土保持学报,1994,8(3):22-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700