用户名: 密码: 验证码:
湛江港近江牡蛎中碳氮同位素时空分布及其对无机氮响应的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文于2008年至2009年期间,在湛江港海区采集了海水、近江牡蛎、浮游植物、沉积物和大型底栖藻类。利用稳定碳氮同位素方法测试了近江牡蛎、浮游植物、沉积物和大型底栖藻类的碳氮同位素比值;紫外-可见分光光度法分析了海水中无机氮(亚硝酸盐、硝酸盐、氨盐)的含量,运用统计方法对数据进行处理,分析近江牡蛎的食物来源、近江牡蛎各组织的δ15N值对无机氮的响应情况等,主要结果如下:
     (1)牡蛎各组织对稳定碳氮同位素的富集与牡蛎生长年龄无关,各组织的稳定碳氮同位素富集或贫化的趋势基本一致。所有组织中,内脏团的δ13C值和δ15N值变化最明显。在空间上,同一组织在不同站点的δ13C和δ15N富集程度各不相同;在时间上,只有内脏团在各季节中变化显著。
     (2)牡蛎不同组织对δ13C和δ15N的富集各不相同,闭壳肌、鳃、外套膜和内脏团的δ13C平均值范围分别是:-24.13‰~-15.01‰、-23.81‰~-16.43‰、-24.37‰~-16.36‰和-25.16‰~-17.05‰;δ15N是:7.70‰~14.26‰、7.13‰~13.23‰、6.39‰~13.55‰、5.74‰~12.74‰。闭壳肌的δ13C值和δ15N值最富集,最贫化的是内脏团,富集趋势大致为内脏团<外套膜<鳃<闭壳肌;牡蛎滤食获营养物质后,在其体内的流动途径大致是:内脏团→外套膜→鳃→闭壳肌。
     (3)近江牡蛎食物的稳定碳氮同位素各不相同。浮游植物和大型底栖海藻δ13C值的范围分别为-19.93‰~-20.90‰、-13.43‰~-18.47‰,前者比后者的变化范围小,可能由光合作用利用不一的碳源引起光合作用同位素效应,而这使大型海藻比浮游植物更容易富集δ13C。不同的大型底栖海藻δ15N值各不相同,范围是:8.06‰~12.60‰,这可能与其利用不同氮源有关,与大气沉降、人工合成化学肥料和人类排放废物的δ15N值比较,湛江港大型底栖藻类的氮源可能来至大气沉降和人类排放废物。不同站点间表层沉积物的稳定碳氮同位素比值差异显著,这可能与其组成成分复杂有关,其在几种食物中也相对较贫化,δ13C值和δ15N值范围分别是:-24.57‰~-16.96‰、2.33‰~10.75‰。
     (4)不同食物对同一站点牡蛎的贡献比例差异较大,同种食物对不同站点的牡蛎贡献也各异,这可能与牡蛎对滤食的食物选择利用有关。本研究中,大型底栖藻类是牡蛎有机碳的主要贡献者,在四季所占的平均比例范围是:55.38%~86.09%;三种大型底栖藻类中,尤以条浒苔最大。浮游植物贡献最大季节为冬季,最小为春季,分别是23.8%、7.8%;沉积物在春夏秋冬四季的贡献分别为:6.1%、18.4%、6.5%、26.6%。
     (5)近江牡蛎闭壳肌和鳃的δ13C值和δ15N值在不同站点间有显著的差异,但季节间的差异不明显,这与闭壳肌和鳃的物质转化率较慢有关,这一特性使闭壳肌和鳃适于作长期污染物示踪组织,闭壳肌尤佳;内脏团在各组织中变化最大,它的δ13C值和δ15N值在不同站点和季节间都有显著的差异,可适于作短期和长期污染物示踪组织,由于内脏团成份复杂,在选择其作为示踪组织时应进一步纯化;外套膜的δ15N值与内脏团相似,在不同站点和季节间都有显著的差异,适于作短期和长期污染物示踪组织。在示踪组织的优先选择上,闭壳肌宜于作长期污染物示踪组织,外套膜适于作短期污染物示踪组织。
     (6)牡蛎各组织稳定氮同位素比值的变化与海水中无机氮(亚硝酸盐、氨盐、硝酸盐和总无机氮)含量的变化具有相同趋势,说明组织中δ15N值的富集或贫化与无机氮含量存在一定的关系。通过相关分析得出,近江牡蛎闭壳肌δ15N值与亚硝酸盐、硝酸盐、氨氮和总无机氮均体现了较好的响应关系。其次为鳃和外套膜,与亚硝酸盐、硝酸盐和总无机氮均有明显的响应,而与氨盐没有明显的响应。内脏团与无机氮的响应最弱,仅与硝酸盐有明显相应。因此,闭壳肌和鳃适宜用于监测无机氮的长期状况,尤以闭壳肌为佳;外套膜适宜用于监测亚硝酸盐、硝酸盐和总无机氮的短期状况,而氨盐的短期监测还需进一步的研究分析。
Ostrea rivularis Gould, Phytoplankton, Sediment and Benthic-Macroalgae were collected to investigate the stable isotope ratios of carbon(δ13C) and nitrogen(δ15N) and Sea wate were collected to Inorganic nitrogen( nitrite nitrogen, nitrate nitrogen, ammonia nitrogen) in 2008 to 2009, Zhanjiang Harbor. All datas calculate by statistical survey to analysis the food source of Ostrea rivularis Gould, the relation Inorganic nitrogen andδ15N of tissues. the main results are shown as follows:
     (1)It was not relation between the stable carbon and nitrogen isotope enrichment of tissues and the age of Ostrea rivularis Gould. Different tissues had the same enrichment or dilution trend on stable carbon and nitrogen isotope. In spatial, the same tissue had different enrichment grade ofδ13C andδ15N values. In temporal, only the visceral mass were bigger change on seasons, And itsδ13C andδ15N values were pronounced change in all tissues.
     (2) Theδ13C andδ15N values of adductor muscle、mantle tissue、ctenidia and visceral mass on Ostrea rivularis Gould were differed from each other, the rang ofδ13C values were -24.13‰~-15.01‰、-23.81‰~-16.43‰、-24.37‰~-16.36‰、-25.16‰~-17.05‰;, and the range ofδ15N values were 7.70‰~14.26‰、7.13‰~13.23‰、6.39‰~13.55‰、5.74‰~12.74‰. Theδ13C和δ15N values of adductor muscle were best enrichment, the visceral mass were best dilution, relatively. The enrichment trend were: adductor muscle>ctenidia>mantle tissue>visceral mass. So, when it gained nutrition from SPOM and SOM, the flow pathway in its body was: viscera mass→mantle tissue→ctenidia→adductor muscle.
     (3)The food of Ostrea rivularis Could had different carbon and nitrogen isotope features.Theδ13C values of Phytoplankton and Benthic-Macroalgae were: -19.93‰~-20.90‰、-13.43‰~-18.47‰,the later had more enrichmentδ13C values. That because they used different carbon when photosynthesis. So the Benthic-Macroalgae enriched 13C more easily. Different Macroalgae had differδ15N values, the ranged of values was 8.06‰~12.60‰,that maybe because they used different nitrogen. It was inferred that the nutrient source of Macroalgae in Zhanjiang Harbor were mainly from atmospheric and human-drived waste according to the comparision ofδ15N values among atmospheric and human-drived waste and man-made ferilizer. Sediment had different stable carbon and nitrogen isotopes on stations, and its isotopes values were dilution at all foods, relatively, theδ13 andδ15N values were:-24.57‰~-16.96‰、2.33‰~10.75‰。
     (4)It’s quite different in proportion of the contribution between different food on the same site oyster. It’s also different in proportion of the contribution between the same kinds of food on different oyster different sites. This may be related to oyster filter feeding choices and using food. In this study, large benthic algae is a major contributor to organic carbon in oyster. The average ratio of range in the four seasons is 55.38%~86.09%. Among the three kinds of benthic macro-algae, the largest is Enteromorpha clathratha. The largest and smallest contribution to the season of phytoplankton as Winter and Spring, the values were 23.8% and 7.8%. The contribution of sediment in four seasons( Spring, Summer, Autumn, Winter) respectively were 6.1%,18.4%,6.5% and 26.6%.
     (5)There were significantly diversity forδ13C andδ15N values of adductor muscle and ctenidia of Ostrea rivularis Gould in stations, but seasonal variation were not significantly. It has relation with the slow turnover rate of adductor muscle and ctenidia. This characteristic made adductor muscle and ctenidia can use to indicate the long-term pollutant, and the adductor muscle was better. Viscera mass showed the maximal variability forδ13C andδ15N values in four tissues, it showed significantly diversity in different stations and seasons. The characteristic make it can use to indicate the short-term or long-term pollutant, however, due to its complicated composition, so, should be make it further purified when using as a tracer. Theδ15N values of mantle tissue was similar as the viscera, they also had significantly diversity forδ13C andδ15N values in different stations and seasons,can use to indicate the short-term or long-term pollutant. So,in the preference of tracer, adductor muscle was suitable to using as long-term pollutant tracer, and mantle tissue was suited to indicate short-term pollutant.
     (6)Theδ13C andδ15N values in tissues of oyster has the same changed tend as contents of inorganic nitrogen( nitrite nitrogen, nitrate nitrogen, ammonia nitrogen and total inorganic nitrogen).Accossing the correlation analysis, the results were showed as: theδ15N values in adductor muscle can better respond to the contents of nitrite nitrogen, nitrate nitrogen, ammonia nitrogen and total inorganic nitrogen. The next were ctenidia and mantle tissue, also better respond to the contents of inorganic nitrogen besides ammonia nitrogen. The viscera mass was less, only to nitrate nitrogen. Hence, adductor muscle and ctenidia can use to indicate the long-term status of inorganic nitrogen, in the preference of adductor muscle. And mantle tissue was suitable to indicate the short-term status of nitrite nitrogen, nitrate nitrogen and total inorganic nitrogen, but indicate the short-term status of ammonia nitrogen need the next study.
引文
[1]http://www.cas.cn/xw/kjsm/gndt/201003/t20100312_2795773.shtml.
    [2]李忠义,金显仕,庄志猛,等.稳定同位素技术在水域生态系统研究中的应用[J].生态学报,2000,11(25):3052-3060.
    [3]唐启升,苏纪兰.中国海洋生态系统动力学研究I关键科学问题与研究发展战略[M].北京:科学出版社,2000:4-5.
    [4]易现峰,张晓爱.稳定性同位素技术在生态学上的应用[J].生态学杂志,2005,24 (3):306-314.
    [5]蔡德陵,王荣,毕洪生.渤海生态系统的营养关系:碳同位素研究的初步结果[J].生态学报,2001,21(8):1354-1359.
    [6]易显峰,张晓爱,李来兴,等.高寒草甸生态系统食物链结果分析-来自稳定碳氮同位素的证据[J].动物学研究,2003,25(1):1-6.
    [7]Dauby P.The stable carbon isotope ratios in benthic food webs of the Gulf of Calvi,C orsica[J].Cont.Shelf Res.,1989,9(2):181-195.
    [8]Kiriluk RM, Servos MR,Whittle DM,et al.Using ratios of stable nitrogen and carbon isotopes to characterize the biomagnification of DDE, mires and PCB in a Lake Ontario pelagic food web[J].Can.J. Fish. Aquat. Sci.1995,52(12):2660-2674.
    [9]Jarman WM, Hobson KA, Sydeman WJ. et al. Influence of trophic position and feeding location web on contaminant levels in the Gulf of the Farallones food revealed by stable isotope analysis[J].E nviron.Sci.Technol.,1996,30(2):654~660
    [10]Atwell L, Hobson KA, Welch HE. Biomagnification and bioaccumulation of mercury in anarctic marine food web:Insights from stablen itrogen isotope analysis[J].Can.J. Fish. Aqual Sci.,1998,55(5):1114-1121.
    [11]Kidd KA, Schindler DW, Hesslein RH, et al. Effects of trophic position and lipid onOrganchlorine concentrations in fishs from subaectic lakes in YukouTerritory[J].Can.J.F ish.Aqual.Sci.,1998,55(4):869-881.
    [12] http://baike.baidu.com/view/929770.htm.
    [13]DeNiroMJ,EpsteinS.Mechanismofcarbonisotopefractionationassociatedwithlipidsynthesis[J].Science,1978,197:261-263.
    [14]Haines EB, Montague CL. Food sources of estuarinein vertebrates analyze dusing13C/12C ratios[J].Ecology,1979,60(1):48-56.
    [15]McConnaugheyT,McroyCP.FoodwebstructureandthefractionofcarbonisotopeintheBeringSea[J].MarineBiology,1979,53(2):257-262.
    [16]Minagawa M,Wada E. Stepwise enrichment of 15N along food chains:further evidence and there lation between 15N and animalage[J].Geochim Cosmochim Acta,1984,48(5):1135-1140.
    [17]DeNiro MJ, Epstein S.Influence of diet on the distribution of nitrogen isotopes inanimals[J].GeochimCosmochimActa,1981,45(3):341-351.
    [18]Karyne M Rogers. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealan[J].Marine Pollution Bulletin, 2003:821-827.
    [19]Rogers K M. Effects of sewage contamination on macro-algae and shellfish at Moa Point, New Zealand using stable carbon and nitrogen isotopes[J].NZ Journal of Marine and Freshwater Research,1999:181-188.
    [20]Kayoko Fukumori,Misa Oi , Hideyuki Doi, et al. Food sources of the pearl oyster in coastal ecosystems of Japan[J]. Estuarine,Coastal and Shelf Science,2008,76:704-709.
    [21]J P Bucci, S Rebach, D DeMaster,et al.A comparison of blue crab and bivalveδ15N tissue enrichmentin two North Carolina estuaries[J]. Environmental Pollution,2007:299-308.
    [22] TUCKER J,SHEATS N,GIBL IN AE,et al. Using Stable Isotopes to Trace Sewage-derived Matterial Through Boston Harbor and Massachusetts Bay[J].Marine Environmental Research,1999,48:353-375.
    [23]蔡德陵,毛兴华,韩贻兵.13C/12 C比值在海洋生态系统营养关系研究中的应用[J].海洋与湖沼,1999,3(30):306-314
    [24]蔡德陵,孟凡,韩贻兵,高素兰..13C/12C比值作为海洋生态系统食物网示踪剂的研究-崂山湾水体生物食物网的营养关系[J].海洋与湖沼. 1999,30: 671-678.
    [25]蔡德陵,洪旭光,毛兴华等.崂山湾潮间带食物网结构的碳稳定同位素初步研究[J].海洋学报,2001,23 (4):41-47
    [26]蔡德陵,张淑芳,张经..稳定碳、氮同位素在生态系统研究中的应用[J].青岛海洋大学学报. 2002,32: 287-295.
    [27]陈绍勇,周伟华,吴云华,林昭进.南沙珊湖礁生态系生物体中δ13C的分布[J].海洋科学. 2001,25(6): 4-7.
    [28]万祎,胡建英,安立会,安伟,杨敏,伊藤光明,服部达也,陶澍.利用稳定氮和碳同位素分析渤海湾食物网主要生物种的营养层次[J].科学通报. 2005,50(7): 708-712.
    [29]吴莹,张经,张再峰,等.长江悬浮颗粒物中稳定碳、氮同位素的季节分布[J].海洋与湖沼,2002,5 (33):546-552.
    [30]吴莹,张经,曹建平,张再峰,任景玲刘素姜,陈洪涛,熊辉.长江流域有机碳同位素地球化学特征[J].青岛海洋大学学报,2000,4(30):309-314.
    [31]宋飞.长江口海域富营养化的氮同位素特征研究[D].中国科学院研究生院(海洋研究所).2006.
    [32]魏秀国,沈承德,孙彦敏,易惟熙.珠江水体悬浮物颗粒有机碳稳定同位素组成及分布特征[J].地理科学.2003, 4 (23):471-476.
    [33]施春光.长江口悬浮颗粒有机碳的稳定同位素[J].海洋通报.1993,2 (12):49-53.
    [34]全为民.长江口盐沼泽地食物网的初步研究:稳定同位素分析[D]上海:复旦大学,2007.
    [35]余婕,刘敏,侯立军,许世远,欧冬妮,程书波.崇明东滩大型底栖动物食源的稳定同位素示踪.自然资源学报[J].2008, 23 (2):319-326.
    [36]中国海湾志编纂委员会.中国海湾志[M].北京:海洋出版社. 1999:187~247
    [37]方和平,邹定顺,张立柱,李开军,唐谋生.湛江内港水域无机氮含量分布特征及其与环境因子的关系[J].交通环保, 2003,2.24(1) :22-24.
    [38]陈伟珍,林轩,邓秀清,等.湛江港水产养殖区水体氮磷含量及潜在性营养化程度分析[J].海洋渔业.2004,2(26):99-102.
    [39]蔡英亚,邓陈,刘志刚.湛江港近江牡蛎的生态研究[J].热带海洋1992,8.11(3) :37-44.
    [40]王海,王春铭,韩超群,等.湛江港湾富营养化评价及对策探讨[J].甘肃环境研究与监测.2002, 4 (15):294-296.
    [41] http://baike.baidu.com/view/136917.htm?fr=ala0_1_1#5
    [42]唐谋生,方和平,路静,李开军.湛江港海水中氮、磷含量及其营养盐分布特征[J].交通环保,2000, 21(6) :30-33.
    [43]http://www.lrn.cn/basicdata/communique/200707/t20070717_131369.htm
    [44]王东升.氮同位素比(15N/14N)在地下水氮污染研究中的应用基础[J].地球学报.1997.18(2):220-223.
    [45]Gearing G N, Gearing P L, Rudnick D T, et al. Isotope variability of organic carbon in a phytoplankton-based temperate estuary[J].Geochim. Cosmochim.Acta 1984,48:1089-1098.
    [46]Boutton T W. Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments.Carbon isotopes techniques[J]. San Diego, Academic Press, 1991:173-185.
    [47]吕颂辉,齐雨藻,钱宏林,梁松.湛江港浮游植物与赤潮的初步研究[J].海洋与湖沼1994,25(2):190~196.
    [48]CRAIGH.Isotopic standards for carbon and oxygen and correction factors for mass-spectromet ricanalysis of carbon dioxide[J].Geochim Cosmochim Acta,1957, 12:133-149.
    [49]PETERSONB,FRYB.Stable isotopes in ecosystem studies[J].Annu Rev Ecol Syst,1987,18:293-320.
    [50]MARIOTTIA.Atmospheric nitrogen is a reliable standard for natural15N abundance measurements[J].Nature,1983 (23) :685-687.
    [51]Richard F, Piola, Stephanie K, et al . Carbon and nitrogen stable isotope analysis of three types of oyster tissue in an impacted estuary[J].Estuarine Coastal and Shelf Science,2006:255-266.
    [52]蔡德陵,张淑芳,唐启生.鲈鱼新陈代谢过程中的稳定碳、氮同位素分馏作用[J].海洋科学进展. 2003,21(3): 308-317.
    [53]S VIZZINI, B SAVONA, M CARUSO, et al.Analysis of stable carbon and nitrogen isotopes as a tool for assessing the environmental impact of aquaculture: a case study from the western Mediterranean[J].AquacultureInternational ,2005,13:157-165.
    [54]杨美兰.大鹏湾大梅沙海域氮、磷含量及富营养化状态[J].海洋环境学,1999(4).
    [55]HOBSON K A, WELCH HE. Delerminacion of trophic relationships within a high Arctic marine food web usingδ13C andδ15N analysis[J].Mar Ecol Prog Ser,1992(84):9-18.
    [56]Bunn S E, Boon P I. What sources of organic carbon drive food webs in billabongs, A study based on stable isotope analysis[J].Oecologia,1993:85-94.
    [57]Peterson BJ .Stable isotopes as tracers of organic matter input and transfer in benthic food webs: a review[J]. Acta Oecologia,1999,20:479-487.
    [58]Passow U, Alldredge AL, Logan BE. The role of particulate carbohydrate exudates in the flocculation of diatom blooms[J]. Deep-Sea Res,1994,41:335-357.
    [59]Alldredge AL, Gotschalk C. Direct observations of the mass flocculation of diatom blooms: characteristics, settling velocities and formation of diatom aggregates[J]. Deep-Sea Res,1989,36:159-171.
    [60]Crocker KM, Passow U. Differential aggregations of diatoms[J]. Mar Ecol-ProgSer,1995, 117: 249-257.
    [61]Bricelj VM, Shumway SE. Physiology: energy acquisition and utilization In: Shumway, S.E. (Eds.), Scallops: biology, ecology and aquaculture[J]. Elsevier, Amsterdam, pp. 1991:305-318.
    [62]Kayoko Fukumori, Misa Oi a, Hideyuki Doi, et al.Bivalve tissue as a carbon and nitrogen isotope baseline indicator in coastal ecosystems[J]. Estuarine,Coastal and Shelf Science,2008,76:45-50.
    [63]Julio Ce, sar Mar? , n Leal, et al.Stable isotopes (δ13C,δ15N) and modelling as tools to estimatethe trophic ecology of cultivated oysters in two contrasting environments[J].Mar Biol,2008:673-688.
    [64]Bachok Z, Mfilinge PL, Tsuchiya M. The diet of the mud clam Geloinacoaxans (Mollusca, Bivalvia) as indicated by fatty acid markers in a subtropical mangrove forest of Okinawa, Japan[J]. J Exp Mar Biol Ecol,2003,292:187-197.
    [65]Mann KH. Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems[J]. Limnol Oceanogr,1988,33:910-930.
    [66]Seiderer LJ, Newell RC.Relative significance of phytoplankton, Bacteria and plant detritus as carbon and nitrogen resources for the kelp bed filter-feeder Choromytilus meridionalis[J]. Mar Ecol Prog Ser,1985,22:127-139.
    [67]Bustamante RH, Branch GM.The dependence of intertidal consumers on kelp-derived organic matter on the west coast of South Africa[J]. J Exp Mar Biol Ecol,1996,196:1-28.
    [68]De Jonge, V.N., Van Beusekom, J.E.E.,. Contribution of resuspended microphytobenthos to total phytoplankton in the Ems estuary and its possible role for grazers[J]. Netherlands Journal of Sea Research,1992 ,30, 91-105.
    [69]Riera, P., Richard, P.,. Isotopic determination of food sources of Crassostria gigas along a trophic gradient in the estuarine bay of Marennes- Ole′ron[J]. Estuarine, Coastal and Shelf Science, 1996,42, 347-360.
    [70]Takai, N., Yorozu, A., Tanimoto, T., Hoshika, A., Yoshihara, K.,. Transport pathways of microphytobenthos-originating organic carbon in the food web of an exposed hard bottom shore in the Seto Inland Sea, Japan[J]. Marine Ecology Progress Series, 2004,284:97-108.
    [71]蔡德陵,毛兴华,韩贻华.13C/12C比值在海洋生态系统营养关系研究中的应用-海洋植物的同位素组成及其影响因素的初步探讨[J].海洋与湖沼,1999,306-314.
    [72]Maksymowska D, Richard P, Piekarek-Jankowska, et al.Chemical and isotopic composition of the organic matter sources inthe Gulf of Gdansk (Southern Baltic Sea). Estuar[J]. Coast. Shelf Sci,2000,51:585-598.
    [73]Currin C A, Newell S Y, Paerl H W. The role of standing dead Spartina alterni?ora and benthic microalgae in salt-marsh food webs:considerations based on multiple stable isotope analysis[J]. Mar. Ecol.Prog. Ser,1995,121:99-116.
    [74]Beer S, Bjork M, Hellblom F, et al.Inorganic carbon utilization in marine angiosperm (seagrasses) [J]. Functional PlantBiology,2002,29:349-354.
    [75]Raven J A, Johnston A M, Ku bler, et al. Mechanistic interpretation of carbon isotope discrimination by marine macro-algae and seagrasses[J]. Functional Plant Biology.2002,29:355-378.
    [76]Grice A M, Loneragan N R, Dennison W C.Light intensity and the interactionsbetween physiology,morphology and stable isotope ratios in five species of seagrass[J]. Journal of Experimental Marine Biology and Ecology.1996,195:91-110.
    [77]Hemminga M A, Mateo M A. Stable carbon isotopes in seagrasses: variability in ratios and use in ecological studies[J]. Marine Ecology Progress Series, 1996,140:285-298.
    [78]Anderson W T, Fourqurean J W , Intra and interannual variability on seagrass carbon and nitrogen stable isotopes from south Florida, a preliminary study[J].Organic Geochemistry, 2003,34:185-194.
    [79]Rose C D, Dawes C J. Effects of community structure on the seagrass Thalassia testudinum[J]. Marine Ecology Progress Series, 1999,184:83-95.
    [80]Vizzini S, Sara G, Mateo M A, et al.δ13C andδ15N variability in Posidonia oceanica associated with seasonality and plant fraction[J].Aquatic Botany,2003,75:195-202.
    [81]郭卫东,杨逸萍,吴兴林等.南海渚碧礁生态系营养关系的稳定碳同位素研究[J].台湾海峡,2002,21(1):95-101.
    [82]Degens ET, Guilland RL, Sackett W M etal. Metabolic fractionation of carbon isotopes in marine plankton.I . Temperature and respiration experiments[J]. Deep-Sea Res,1968,15:1-9.
    [83]Mclelland J M,Valiela I, Michener RH. Nitrogen Stable Isotope Signatures in Estuarine Food Webs: A Record of Increasing Urbanization in Coastal Watersheds[J].Limnol Oceanogr,1997,42(5):930-937.
    [84]Phillips DL, Koch PL.Incorporating concentration dependence in stable isotope mixing models[J]. Oecologia,2002,130:114-125.
    [85]Phillips DL, Gregg JW .Source partitioning using stable isotopes: coping with too many sources[J]. Oecologia,2003,136:261-269.
    [86]Bustamante RH, Branch GM .The dependence of intertidal consumers on kelp-derived organic matter on the west coast of South Africa[J]. J Exp Mar Biol Ecol,1996,196:1-28.
    [87]Dunton KH,Schell DM. Dependence of consumers on macroalgal(Laminariasolidungula) carbon in an arctic kelp community:δ13Cevidence[J]. Mar Biol, 1987,93:615-625.
    [88]Fielding PJ, Davis CL .Carbon and nitrogen resources available to kelp bed filter feeders in an upwelling environment[J]. Mar Ecol-Prog Ser ,1989,55:181-189.
    [89]Kawabata Z., Satake M. .Changes in water movement, nutrient concentrations and phytoplankton biomass caused by the kyucho in a bay[J]. Bulletin on Coastal Oceanography ,1992,30:27-36.
    [90]Bustamante RH, Branch GM The dependence of intertidal consumers on kelp-derived organic matter on the west coast of South Africa[J]. J Exp Mar Biol Ecol,1996,196:1-28.
    [91]Scanes,P.‘OysterWatch’:monitoring trace metal and organochlorin concentrations in Sydney’s coastal waters[J]. Marine Pollution Bulletin, 1996,33:226-238.
    [92]杨小玲,杨瑞强,江桂斌.用贻贝、牡蛎作为生物指示物监测渤海近岸水体中的丁基锡污染物[J].环境化学.2006.25(1):88-91.
    [93]McClelland, J., Valiela, I., 1998. Linking nitrogen in estuarine producers to land-derived sources[J]. Limnology & Oceanography 43, 577-585.
    [94]陆超华.近江牡蛎作为重金属污染生物指示种的初步研究[J].台湾海峡,1994,13(1):14-20.
    [95]陆超华,全桂英.重金属在近江牡蛎软体部和贝腔液中的分布[J].海洋环境科学,1992,11(3):41-44.
    [96]陆超华,贾晓平,周国君.广东沿海牡蛎Cd含量的空间分布和时间变化[J].海洋环境科学,1995,14(4):27-33.
    [97]陆超华.广东沿岸海域生物可利用性重金属的地理分布[J].海洋环境科学,1996,15(2):17-22.
    [98]Lu Chaohua ,Jia Xiaoping ,Lin Qin et al. Temporal and spatial fluctuations in trace metal levels in the oyster Crassost rea riv u2laris . In : The Marine Biology of the South China SeaⅡ(Morton B ,Xu Gongzhao ,Zou Renlin , Pan Jinpei and Cai Guoxiong ,eds) [J].World Publishing Co ,China ,1993 ,223-227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700