用户名: 密码: 验证码:
浙江省生态公益林主要群落结构的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以浙江省生态公益林长期监测样地为基础,结合典型调查,通过系统研究498个生态公益林典型样地的群落特征,对浙江省生态公益林的主要群落常绿阔叶林、针阔混交林、杉木林、松林、毛竹林和灌木林的物种组成结构、种群生态位、植物多样性、生物量与碳储量等群落结构特征及相互关系进行了比较研究,以揭示浙江省生态公益林主要群落的结构特征和动态变化规律,为科学构建高效生态公益林提供理论依据。研究结果表明:
     (1)浙江省生态公益林主要群落类型各层次的物种数均以常绿阔叶林树种数量最多,分别达到乔木层树种共有52科103属183个种,下木层树种为59科125属198个种,草本层为36科56属59个种;下木层以常绿阔叶林最多,毛竹林最少;草本层则以松林最少。
     松林、杉木林、竹林在较大尺度范围上呈集群分布,常绿阔叶林和灌木林的主要树种都呈随机分布,针阔混交林大部分树种呈集群分布;乔木层中的枫香、木荷、青冈、苦槠、马尾松、香樟、杉木、麻栎、冬青、白栎、黄檀和甜槠的生态位宽度最宽,灌木林依次为檵木>白栎>盐肤木>黄檀>杜鹃>算盘子>乌药>豆腐柴>麻栎>青冈>乌桕>木荷>覆盆子>山苍子>合欢;常绿阔叶林中的马尾松与木荷、青冈,针阔混交林中甜槠与香樟,短柄枹与杨梅、黄檀、麻栎,灌木林中黄檀与算盘子、豆腐柴,覆盆子与木荷、山苍子等生态位重叠值最大。
     (2)群落物种多样性指数随着海拔的升高而增加,乔木层物种多样性指数均随着海拔升高而先增后降。常绿阔叶林和针阔混交林群落物种丰富度、Simpson生态优势度、Shannon-Wiener指数和Pielou均匀度为下木层>乔木层>草本层,松林为下木层>草本层>乔木层,杉木林为下木层>草本层>乔木层。针阔混交林和常绿阔叶林的乔木层多样性指数高于其它林型,常绿阔叶林的物种丰富度、异质性和均匀性指数均高于针叶林,物种丰富度以针阔混交林最高。乔木层物种数随着年龄的升高略有下降,其它指数随着年龄的升高先增后减。植物多样性指数中的物种数、Simpson指数、均匀度指数均与Shannon-Wiener指数的相关性最为密切。
     (3)浙江省生态公益林中常绿阔叶林生物量初期增速快、后期则增幅较少,针阔混交林整体水平较高,幼龄林、中龄林、近熟林与成熟林的林分平均值分别为65.02t/hm2、103.31t/hm~2、124.89 t/hm~2和170.78t/hm~2,松林、杉木林和竹林较低。乔木层随着年龄的增长而增加,下木层生物量及比重总体上呈随林龄地增长而下降的趋势,草本层表现为针阔混交林低、变化小;常绿阔叶林、杉木林和马尾林中幼龄时生物量较大,中龄林后急剧下降。乔木层生物量是乔木林群落生物量的主要组成部分,占总生物量的70%以上,其中竹林达到92.16%、常绿阔叶林为83.94%、杉木林为82.17%、松林为77.44%、针阔混交林为74.15%,下木层生物量则是灌木林生物量的主要贡献者,占总生物量的74.09%,在幼龄林阶段,也是常绿阔叶林和针阔混交林生物量的主要贡献者,草本层生物量在总生物量所占比例均为最小,不足5%。乔木层地上部分生物量约占70-80%,地下部分生物量占20-30%,其中竹林的地上部分生物量比例最高,为80.53%;常绿阔叶林的地下部分比例最高,为27.21%,结构最为均衡,杉木林和针阔混交林次之,竹林最不均衡。
     (4)常绿阔叶林和杉木林的乔木层各器官生物量组成结构在不同年龄阶段基本稳定,常绿阔叶林的组成结构为树干占50%、树枝占10-15%、树叶占5-10%、树根占25-30%,杉木林为树干占50-55%、树根占25%左右、树枝和树叶占20-25%,树枝和树叶各占一半;针阔混交林和松林的组成结构在不同年龄阶段表现出规律性变化,各器官生物量均随年龄的增长而增加,但增长速度则不同,生长初期的树干生物量的增长速度要高于树枝、树叶和树根的增长速度,进入近熟林期(马尾松为中龄林)后各器官生物量则表现为相对稳定,针阔混交林树干占60%、树根占20%、枝叶占20%左右;毛竹林主干比例高,根、枝、叶比例低,各器官所占乔木层生物量的比例分别为树干66.62%、树根19.47%、树枝9.13%、树叶4.78%。
     (5)常绿阔叶林的年凋落物量为4015.33kg/hm~2·a、针阔混交林3702.21kg/hm~2·a、松林2441.52kg/hm~2·a、杉木林2012.82kg/hm~2·a、毛竹林2047.73kg/hm~2·a、灌木林1230.76kg/hm~2·a;落叶是各群落凋落物中最为重要的组成成份,占总凋落量的85.43%,竹林最高占达96.04%,树枝平均占有量为7.31%,常绿阔叶林和杉木林最高,果实、树皮和碎屑等一般不超过5%;群落凋落物量表现为幼龄林<中龄林<近熟林<成熟林。
     (6)浙江省生态公益林主要群落的碳储量研究表明,群落的乔木层是主要的碳库,占总碳储量的70%以上。常绿阔叶林、针阔混交林、杉木林和松林4种群落类型在不同生长阶段的碳储量均随着年龄的增长增长,针阔混交林、杉木林和松林等含针叶树种的群落一直处于快速增长状态,针阔混交林在近熟林到成熟林过程中,增长尤为迅速,而常绿阔叶林在中幼龄阶段增长快、进入中龄林后增速减慢。
     (7)乔木林分中,群落凋落物量与生物量之间存在显著的线性关系,且各林分凋落物量与群落总生物量之间的相关性要高于林分凋落物量与乔木层生物量之间的关系,常绿阔叶林、针阔混交林和松林的林分凋落物量与林分生物量间的关系要比杉木林和毛竹林与更为密切,前者凋落物量与生物量的相关系数达到0.9以上,后者的相关系数在0.8左右。利用凋落物与生物量的关系模型估测森林凋落物量,不仅简便易行,而且具有较高的可靠性。
     (8)群落的物种组成、多样性、生物量、凋落物量及组成结构是一个有机的整体,如果物种组成丰富,层次结构、物种丰富度等多样性指数、生物量及结构、凋落物量、碳储量等就越高,相反就低,根据对主要群落类型的物种组成与多样性、林分生产力等群落结构特征分析可以得出:常绿阔叶林和针阔混交林群落物种组成丰富、多样性指数高,林分生物量、凋落物均显著高于松林、杉木林、毛竹林和灌木林,群落生物量结构乔灌草、各器官分配、地上部分与地下部分结构组成更为合理,群落稳定性高,常绿阔叶林和针阔混交林应是浙江省生态公益林的理想群落与目的群落。
Based on permanent sample plots, we investigated 498 stands community traits in ecological service forest (ESF) of Zhejiang province, covering 101 800 km2, in China's eastern subtropical zone. We estimated and analyzed population niche, plant diversity, biomass, carbon storage, community composition and interrelation at large scale, including main forest types of ESF: evergreen broadleaved forest, coniferous and broadleaved mixed forest, China fir (Cunninghamia lanceolata) forest, pine (Pinus massoniana) forest, bamboo forest and shrub. Through revealing the main characteristics of community structure and dynamics rules, we can provide a theoretical basis for scientifically constructing high-performance ESF. These research results show that:
     (1) Evergreen broad-leaved forest has the most species numbers at every layer in ESF of Zhejiang Province. There are 52 familys 103 genus 183 species in tree layer, 59 familys 125 genus 198 species in understory layer, and 36 familys 56 genus 59 species in herb layer respectively. Shrub forest has the lowest species numbers at tree layer, while bamboo forest has the lowest at understory layer and pine forest having the lowest at herb layer. Pine forest, Chinese fir forest, bamboo forest were cluster distribution at larger scale, main tree species of evergreen broadleaved forest and shrub were randomly distributed, many tree species of mixed forest were cluster distributed.
     (2) Community diversity index increased with increasing altitude, tree species diversity index increased then decreased with altitude. Species richness, Simpson ecological dominance index, Shannon-Wiener index and Pielou evenness index have same performance (understory layer>tree layer>herb layer) for evergreen broadleaved forest and coniferous and broadleaved mixed forest, which are understory layer>herb layer>tree layer for pine forest and understory layer>herb layer>tree layer for Chinese fir forest. Evergreen broadleaved forest and coniferous and broadleaved mixed forest have higher tree layer diversity index than other forest types. Evergreen broad-leaved forest has much higher species richness, heterogeneity and evenness index than coniferous forests, while coniferous and broadleaved mixed forest having higest species richness. Number of species in tree layer increased with age, and other indices increased then decreased. Plant species diversity index of the richness, Simpson index, evenness index most closely related with Shannon-Wiener index.
     (3) Biomass for evergreen broadleaved forest in ESF of Zhejiang Province grew fast early, then increased less late. Coniferous and broadleaved mixed forest has much higher biomass. Biomass for young, middle-age near-mature and mature age class of mixed forests were 65.02t/hm~2, 103.31t/hm~2, 124.89 t/hm~2 and 170.78t/hm~2, respectively. Contrastingly, Pine forest, Chinese fir forest and bamboo forest have lower biomass. Tree layer biomass increased with age, and understory layer biomass and its proportion were decreasing with age. Tree layer biomass accounted for over 70% of total biomass, 92.16% for bamboo forest, 83.94% for evergreen broadleaved forest, 82.17% for Chinese fir forest, 77.44% for pine forest and 74.15% for mixed forest. Biomass for understory is the main contributor (74.09%) to the total biomass of shrub forest, and also main contributor to young age of evergreen broadleaved forest and mixed forest. Herb layer biomass accounted for smallest proportion, less than 5%. Aboveground biomass of tree layer accounted for about 70-80% of biomass, while underground biomass for 20-30%. Bamboo has highest proportion (80.53%) for aboveground biomass and evergreen broadleaved forest has highest proportion (27.21%) for underground biomass. They both have most balance structure, and Chinese fir forest and mixed forest next. Bamboo forest has most unbalance structure.
     (4) Evergreen broad-leaved forest and Chinese fir tree layer biomass composition of various organs in different age structure are stable. Evergreen broad-leaved forest has 50% biomass of composition for trunk, 10-15% for branch, 5-10% for leaf, 25-30% for roots. Chinese fir forest has 50-55% biomass of composition for trunk, 25% for roots, 20-25% branch and leaf. Coniferous and broadleaved mixed forest and pine forest showed same changes in the composition of the structure of different age class, biological organs biomass both are increased with age, but with different growth rate. Coniferous and broadleaved mixed forest has 60% biomass of composition for trunk, 20% for root, around 20% for branch and leaf. Bamboo forest has high proportion (66.62%) for trunk and low for roots (19.47%), branch (9.13%) and leaf (4.78%).
     (5) Annual litter production for evergreen broadleaved forest was 4015.33 kg/hm~2·a, for coniferous and broadleaved mixed forest was 3702.21 kg/hm~2·a, for pine forest was 2441.52 kg/hm~2·a, for Chinese fir forest was 2012.82 kg/hm~2·a, for bamboo forest was 2047.73 kg/hm~2·a, and for shrub forest was 1230.76 kg/hm~2·a. Leaf litter is the most important composition (85.43%) of the total litter, which account for the highest (96.04%) of bamboo litter production. Branch litter accounted for 7.31% average, which account for the highest of evergreen broadleaved forest and Chinese fir forest. Litter of fruit, bark and debris are less than 5%. Community litter production was young      (6) Tree layer is the main carbon pools, which carbon storage accounted for above 70% of total carbon storage. Carbon storage of evergreen broadleaved forest, coniferous and broadleaved mixed forest, Chinese fir forest and pine forest all are increase with age at different age class. Carbon storage of forest type containing coniferous species such as coniferous and broadleaved mixed forest, Chinese fir forest and pine forest has been growing fast. Carbon storage of coniferous and broadleaved mixed forest growth especially fast from near-mature to mature age class, and evergreen broadleaved forest carbon storage growth rapid at young and mid-age stage, then growth rate slowed down.
     (7) There is linearity significant between total litter production and biomass of community, which are higher than relationship between litter production and biomass of tree layer. The relationship (0.9) between litter production and biomass of the evergreen broadleaved forest, mixed forest and pine forest were higher than the relationship (0.8) of Chinese fir forest and bamboo forest. Using relationship model between litter and biomass to estimates the amount of forest litter production is not only easy, but also has higher reliability.
     (8) Specie composition, biodiversity, biomass, litter production and structure composition of community is an organic whole. If the specie composition rich, hierarchical structure, diversity indices, biomass, litter and carbon storage all are higher, on the contrary all are low. The study of main forest type based on specie composition, diversity, biomass and other characteristics of community structure show these results: evergreen broadleaved forest and coniferous and broadleaved mixed forest both are higher than other four forest types at specie rich, diversity indices, biomass and litter production. They also has more rational biomass structure, organ distribution and above and under ground ratio, so more stable. Evergreen broadleaved forest and coniferous and broadleaved mixed forest ecosystem should be the ideal of ESF of Zhejiang Province.
引文
[1]安艳飞,周本智,温从辉等.不同经营方式对绿竹地下结构和林分生物量的影响林业科学研究,2009,22(1):1-6
    [2]陈楚莹,廖利平,汪思龙等.杉木人工林生态系统碳素分配与贮量的研究应用生态学报。2000,11:175-178
    [3]陈尔学.合成孔径雷达森林生物量估测研究进展世界林业研究,1999,12(6):18-23
    [4]陈光水,蔡丽平,林瑞余等.杉木观光木混交林凋落物热值及灰分含量的季节动态分析福建林业科技,2002,29(1):9-13
    [5]陈利军,刘高焕,励惠国.中国植被净第一生产力遥感动态监测遥感学报,2002,6(2):129-135
    [6]陈灵芝,任继凯,鲍显诚等.北京西山(卧佛寺附近)人工油松林群落学特性及生物量的研究植物生态学与地植物学丛刊,1984,8(3):173-181
    [7]陈灵芝,陈清朗,鲍显诚.北京山区的侧柏林及其生物量研究植物生态学与地植物学学报,1985,10:17-25
    [8]陈睿,洪伟,吴承祯.闽北常绿阔叶林物种多样性海拔梯度分析福建林学院学报,2004,24(1):12-16
    [9]陈玮,徐文铎.沈阳东陵区油松栋林群落数量特征的研究北京林业大学学报,2005,27(6):36-42
    [10]陈章和,张宏达,王伯荪等.广东黑石顶常绿阔叶林生物量及其分配的研究植物生态学与地植物学学报,1993,17(4):289-298
    [11]陈章和,王伯荪,张宏达.广东黑石顶南亚热带常绿阔叶林树木生长研究(英文)植物生学报,1999,23(5):441-450
    [12]陈章和,王伯荪,张宏达等.广东封开县黑石顶自然保护区南亚热带常绿阔叶林矿质元素的分布与循环植物学报,1995,37:558-565.
    [13]程堂仁,冯菁,马钦彦等.甘肃小陇山生物量研究北京林业大学学报,2007,29(1):31-36
    [14]程堂仁,冯菁,马钦彦等.甘肃小陇山森林植被碳库及其分配特征生态学报,2008,28(1):33-44
    [15]程煌,洪伟,吴承祯等.檫树群落主要树种分布格局及其动态研究植物资源与环境学报,2003,12(1):32-27
    [16]党承林,吴兆录.季风长绿阔叶林短刺栲群落的生物量研究云南大学学报,1992,14(2):95-107
    [17]邓坤枚,罗天祥,张林等.云南松林的根系生物量及其分布规律的研究应用生态学报,2005,16(1):21-24
    [18]丁圣彦,宋永昌.常绿阔叶林演替过程中马尾松消退的原因植物学报,1998,40(8):755-760
    [19]丁圣彦,宋永昌.浙江天童国家森林公园常绿阔叶林演替前期的群落生态学特征植物生态学报,1999,23(2):97-107
    [20]丁圣彦,宋永昌.演替研究在常绿阔叶林抚育和恢复上的应用应用生态学报,2003,14(3):423-426
    [21]董文渊,黄宝龙,谢泽轩等.筇竹无性系种群生物量结构与动态研究林业科学研究,2002,15(4):416-420
    [22]杜国坚,杨在娟,许天龙等.浙江省生态公益林经营问题探讨浙江林业科技,1999,19(6):54-57
    [23]樊后保,王义弘,臧润国.蒙古栎种群空间分布格局及其动态的研究福建林学院学报,1994,14(2):100-103
    [24]樊后保.格氏栲群落的结构特征林业科学,2000,36(2):6-12
    [25]樊后保,苏兵强,刘春华等.林下套种阔叶树的松林凋落物生态学研究-Ⅱ.凋落物养分归还动态,福建林学院学报,2003,23(2):97-101
    [26]方精云,刘国华,徐高龄等.我国森林植被的生物量和净生产量生态学报,1996,16(5):497-508
    [27]方精云,陈安平.中国森林植被碳库动态变化及其意义植物学报,2001,43(9):967-973
    [28]方精云,沈泽吴,唐志尧.中国山地植物物种多样性调查计划及若干技术规范生物多样性,2004,12(1):5-9
    [29]方运霆,莫江明.鼎湖山马尾松林生态系统碳索分配和贮量的研究广西植物,2002,2(4):305-310
    [30]方运霆,莫江明,彭少麟等.森林演替在南亚热带森林生态系统碳吸存中的作用生态学报,2003,23(9):1685-1693
    [31]方听,田大伦,项文化.速生阶段杉木人工林碳索密度、贮量和分布林业科学,2002,38(3):14-19
    [32]方听,田大伦,项文化等.第二代杉木中幼林生态系统碳动态与平衡中南林学院学报,2002,22(1):1-6
    [33]冯建盂,王襄平,徐成东等.Altitudinal patterns of plant species diversity and community structure on Yu long Mountains,Yunnan,China.山地学报,2006,24:110-116
    [34]冯宗炜,陈楚莹,张家武.湖南会同地区松林生物量的测定林业科学,1982,18(2):127-134
    [35]葛永金,袁位高,江波等.浙江省生态公益林土壤理化性质的初步研究江西农业大学学报,2006,28(6):828-832
    [36]官丽莉,周国逸,张德强等.鼎湖山南亚热带常绿阔叶林凋落物量20年动态研究植物生态学报,2004,28(4):449-456
    [37]郭志华,彭少麟,王伯荪.利用TM数据提取粤西地区的森林生物量生态学报,2002,22(11):1832-1839
    [38]郝文芳,陈存根,梁宗锁等.植被生物量的研究进展西北农林科技大学学报(自然科学版),2008,36(2):175-182
    [39]何海,乔永康,刘庆等.亚高山针叶林人工恢复过程中生物量和材积动态研究应用生态学报,2004,15(5):748-752
    [40]何绍箕,蔡壬侯,洪利兴.浙江龙泉县住溪常绿阔叶林调查简报植物生态学与地植物学丛刊,1984,8(3):228-235
    [41]何宗明,陈光水,刘剑斌等.杉木林凋落物产量、分解率与储量的关系应用与环境生物学报,2003,9(4):352-356
    [42]贺金生,陈伟烈.陆地植物群落物种多样性的梯度变化特征生态学报,1997,17(1):92-98
    [43]贺金生,陈伟烈,李凌浩.中国中亚热带东部常绿阔叶林主要类型的群落多样性特征植物生态学报,1998,22(4):303-311
    [44]黄承才,葛滢,朱锦茹等.浙江省马尾松生态公益林凋落物及与群落特征关系生态学报,2005,25(10):2507-2513
    [45]黄承才,张骏,江波等.浙江省杉木生态公益林凋落物及其与植物多样性的关系林业科学,2006,42(6):7-12
    [46]黄建辉,韩兴国,陈灵芝.森林生态系统根系生物量研究进展生态学报,1999,19(2):270~277
    [47]洪伟,吴承祯.Shannon-Wiener指数的改进热带亚热带植物学报,1999a,7(2):120-124
    [48]洪伟,林成来,吴承祯等.福建建溪流域常绿阔叶防护林物种多样性特征研究生物多样性,1999b,7(3):208-213
    [49]黄政.马尾松火力楠混交林生物量及水源特征研究防护林科技,2004,1(58):6-7
    [50]黄忠良,丁明愚,张祝平等.鼎湖山季风常绿阔叶林的水文学过程及其氮素动态植物生态学报,1994,18(2):194-199
    [51]江波.浙江省生态公益林群落结构特征及其调控研究北京林业大学,2005,博士学位论文
    [52]金则新.浙江天台山落叶阔叶林优势种群结构与动态分析浙江林学院学报,2001,18(3):245-251
    [53]兰思仁.福州国家森林公园人工群落结构与物种多样性福建林学院学报,2002,22(1):1-3
    [54]蓝振江,蔡红霞,曾涛.九寨沟主要植物群落生物量的空间分布应用与环境生物学报,2004,10(3):299-306
    [55]李培芝,范世华,王力华等.杨树细根及草根的生产力与周转的研究应用生态学报,2001,12(6):829-832
    [56]李俊清,王业蘧.天然林内红松种群数量变化的波动性生态学杂志,1986,5(5):1-5
    [57]李凌浩,林鹏,邢雪荣.武夷山甜储林细根生物量和生长量研究应用生态学报,1998,9(4):337-340
    [58]李契,朱金兆,朱清科.生态位理论及其测度研究进展北京林业大学学报,2003,23(1):100-106
    [59]李树战,田大伦,王光军等.樟树人工林细根生物量的时空动态中南林业科技大学学报,2008,28(6):51-55
    [60]李文华,邓坤枚,李飞.长白山主要生态系统生物量生产量的研究.森林生态系统研究(试刊),1981,34-50
    [61]李意德,曾庆波,吴仲民.尖峰岭热带山地雨林生物量的初步研究植物生态与地植物学报,1992,16(4):293-300
    [62]李意德,吴仲民,曾庆波等.尖峰岭热带山地雨林生态系统碳平衡的初步研究林业科学研究,1997,10(4):348~355.
    [63]李意德,吴仲民,曾庆波等.尖峰岭热带山地雨林群落生产和二氧化碳同化净增量的初步研究植物生态学报,1998,2(2):127-134
    [64]李援越,祝小科,朱守谦.退化喀斯特群落自然恢复程度评价南京林业大学学报,2003,27(4):31-34
    [65]廖军,王新根.森林凋落量研究概述江西林业科技,2000,(1):31-34
    [66]吕勇,唐代生.林木材积与生物量的相关性探讨.中南林业调查规划,1997,16(2):13~15
    [67]林波,刘庆,吴彦等.川西亚高山针叶林凋落物对土壤理化性质的影响应用环境生物学报,2003,9(4):346-351
    [68]林开敏,俞新妥,何智英等.不同密度杉木林分生物量结构与土壤肥力差异研究林业科学,1996,5(32):385-392
    [69]林开敏,俞新妥,黄宝龙等.杉木人工林林下植物物种多样性的动态特征应用与环境生物学报,2001,7(1):13-19
    [70]林开敏,章志琴,曹光球等.杉木与楠木叶凋落物混合分解及其养分动态生态学报,2006,26(8):2732-2738
    [71]林瑞余,谢锦升,蔡丽平等.木荚红豆群落的能量现存量南京林业大学学报(自然科学版),2002,26(1):37-40
    [72]刘金福,洪伟.格氏栲群落生态学研究——格氏栲林主要种群生态位的研究生态学报,1999,19(3):347-352
    [73]刘金林,周秀佳,顾洁.浙江省午潮山次生植被恢复过程中的群落学剖析植物生态学与地植物学丛刊,1983,7(1):8-18
    [74]刘其霞,常杰,江波等.浙江省常绿阔叶生态公益林生物量生态学报,2005,25(9),2139-2144
    [75]刘世荣.兴安落叶松人工林群落生物量及净初级生产力的研究东北林业大学学报,1990,18(2):40-46
    [76]罗辑,杨忠,杨清伟.贡嘎山森林生物量和生产力的研究植物生态学报,2000,24(2):191-196
    [77]罗辑,程根伟,陈斌如等.贡嘎山垂直带林分凋落物及其理化特征山地学报,2003a,21(3):287-292
    [78]罗辑,程根伟,宋孟强等.贡嘎山峨眉冷杉林凋落物的特征植物生态学报,2003b,27(1):59-65
    [79]马克明新安落叶松种群格局的分形特征——关联维数生态学报,1999,19:353-358
    [80]马克平,黄建辉,于顺利等.北京东灵山地区植物群落多样性的研究——II.丰富度、均匀度和物种多样性指数生态学报,1995,15(3):268-277
    [81]莫江明,方运霆,彭少麟等.鼎湖山南亚热带常绿阔叶林碳素积累和分配特征生态学报,2003,23(10):1970-1975
    [82]马明呈,宋西德,桓国江等.青海贵南高海拔沙地沙棘种群根系生物量的研究西北林学院学报,2006,21(3):11-14
    [83]梅莉,王政权,韩有志等.水曲柳根系生物量、比根长和根长密度的分布格局应用生态学报,2006,17(1):1-4
    [84]莫江明,彭少麟,Sandra Brown等.鼎湖山松林群落生物量生产对人为干扰的响应生态学报,2004,24(2):193-200
    [85]潘维俦,田大伦.森林生态系统第一性生产量的测定技术与方法湖南林业科学,1981,(2):1-12
    [86]彭龙福.35年生楠木人工林生物量及生产力的研究福建林学院学报,2003,23(2):128-131
    [87]彭少麟.森林群落稳定性与动态测度广西植物,1987,7(1):67-72
    [88]彭少麟.鼎湖山森林群落植物优势种群生态位宽度的研究中山大学学报,1989,(3):16-24
    [89]彭少麟.鼎湖山森林群落植物优势种群生态位重叠研究热带亚热带森林生态系统研究,1990,(6):19-27
    [90]彭少麟,张祝平.鼎湖山针阔叶混交林的第一性生产力研究生态学报,1994a,14(3):300-305
    [91]彭少麟,张祝平.鼎湖山地带性植被生物量、生产力和光能利用效率中国科学(B辑),1994b,24(5):497-502
    [92]沙丽清,郑征,冯志立等.西双版纳热带季节雨林生态系统氮的生物地球化学循环研究植物生态学报,2002,26(6):689-694
    [93]尚玉昌.现代生态学中的生态位理论生态学进展,1988,5(2):77-84
    [94]单建平,陶大立,王焱到等.长白山阔叶红松林细根周转的研究应用生态学报,1993,4(3):241-245
    [95]沈琪,张骏,朱锦茹等.浙江省生态公益林植被恢复过程中物种组成和多样性的变化生态学报,2005,25(9):2131-2138
    [96]盛炜彤,范少辉.杉木人工林的育林干扰对长期立地生产力的影响林业科学,2003,39(5):37-43
    [97]宋永昌,张绅,刘金林等.浙江泰顺县乌岩岭常绿阔叶林的群落分析植物生态学与地植物学丛刊,1982,6(1):14-35
    [98]苏志尧,吴大荣,陈北光.粤北天然林优势种群结构与分布格局动态应用生态学报,2000,11(3):337-341
    [99]唐建维,张建侯,宋启示等.西双版纳热带人工雨林生物量及净第一性生产力的研究应用生态学报,2003,14(1):1-6
    [100]唐旭利,周国逸,温达志等.鼎湖山南亚热带季风常绿阔叶林碳贮量分布生态学报,2003,23(1):90-97
    [101]唐志尧,方精云.植物物种多样性的垂直分布格局生物多样性,2004a,12(1):20-28
    [102]唐志尧,柯金虎.Altitudinal patterns of plant species diversity in Mt. Niubeiliang,Qinling Mountains生物多样性,2004b,12,108-114
    [103]田大伦,方晰,康文星.杉木林不同更新方式对林地土壤性质的影响中南林学院学报,2003a,23(2):1-5
    [104]田大伦,项文化.杉木人工林生态系统水文学过程的养分特性(英文)生态学报,2003b,23(7):1369-1376
    [105]王刚.关于生态位定义的探讨及生态位重叠计测公式改进的研究生态学报,1984a,4(4):119-127
    [106]王刚.植物群落学中生态位重叠的计测植物生态学与地植物学丛刊,1984b,8(4):329-335
    [107]王刚.青杆林次生演替的生态位模型生态学报,1990,8(4):371-379
    [108]王建国.建德山区的常绿阔叶林生态效益分析植物生态学与地植物学丛刊,1985,9(2):112-19
    [109]王俊波,季志平,白立强等.刺槐人工林土壤有机碳与根系生物量的关系西北林学院学报,2007,22(4):54-56
    [110]王淼,代力民,姬兰柱等.长白山阔叶红松林主要树种对干旱胁迫的生态反应及生物量分配的初步研究应用生态学报,2001,12(4):496-500
    [111]王希华,黄建军,闫恩荣.天童国家森林公园常见植物凋落叶分解的研究植物生态学报,2004,28(4):457-467
    [112]王祥荣,宋永昌.浙江天童国家森林公园常绿阔叶林种间相关的研究应用生态学报,1994,5(2):113-119
    [113]王效科,冯宗炜,欧阳志云等.中国森林生态系统的植物碳储量和碳密度研究应用生态学报,2001,12(1):13-16
    [114]邬建国.生态学范式变迁综论生态学报,1996,16(5):449-459
    [115]吴承祯,洪伟,陈辉等.万木林中亚热带常绿阔叶林物种多样性研究福建林学院学报,1996,16(1):33-37
    [116]吴承祯、洪伟,兰斌等.万木林群落生态学研究万木林中亚热带常绿阔叶林主要种群生态位研究江西农业大学学报,1996,18(3):292-298
    [117]吴承祯,洪伟,吴继林等.珍稀濒危植物长苞铁杉的分布格局植物资源与环境学报,2000,9(1):31-34
    [118]吴承祯,洪伟,姜志林等.我国森林凋落物研究进展江西农业大学学报,2000,22(3):405-410
    [119]吴蔚东.人工杉木林地有机物和养分库的退化与调控土壤学报,2000,37(1):41-48
    [120]吴泽民,孙启祥,陈美工等.安徽长江滩地杨树人工林生物量和养分积累应用生态学报,2001,12(6):806-810
    [121]吴泽民,吴文友,卢斌.安徽大别山黄山松林分生物量及物质积累与分配安徽农业大学学报,2003,30(3):294-298
    [122]项文化,田大伦,闫文德.森林生物量与生产力研究综述中南林业调查规划,2003,22(3):57-64
    [123]肖文发,聂道平,张家诚.我国杉木林生物量与能量利用率的研究林业科学研究,1999,12(3):237-243
    [124]胥辉.一种生物量模型构建的新方法西北农林科技大学学报,2001,29(3):35-40
    [125]薛春泉,叶金盛,杨加志等.广东省阔叶林生物量的分布规律研究华南农业大学学报,2008,29(1):48-52
    [126]薛立,杨鹏.森林生物量研究综述福建林学院学报,2004,24(3):283-285
    [127]阎传海.淮河下游地区针叶林多样性研究生态学杂志,1998,17(2):11-15
    [128]阎恩荣,王希华,周武.天童常绿阔叶林不同退化群落的凋落物特征及与土壤养分动态的关系植物生态学报,2008,32(1):1-12
    [129]杨娟,袁位高,江波等.环境因子对浙江省重点公益林生物量的影响研究浙江林业科技,2007,27(2):20-23
    [130]杨秀云,武小钢,韩有志关帝山亚高山华北落叶松林下植被根系生物量的时空变化草业科学,2007,24(12):14-18
    [131]杨玉盛,陈光水,何宗明等.杉木观光木混交林群落细根净生产力及周转林业科学,2001,37(1):35-41
    [132]杨玉盛,谢锦升,陈银秀等.杉木观光木混交林凋落物分解及养分释放的研究林业科学,2001,37(专刊1):30-34
    [133]杨玉盛,陈光水,郭剑芬.杉木观光木混交林凋落物分解及养分释放的研究植物生态学报,2002,26(3):275-282
    [134]杨玉盛,林鹏,郭剑芬.格氏栲天然林与人工林凋落物数量、养分归还及凋落叶分解生态学报,2003,23(7):1278-1289
    [135]杨玉盛,林瑞余,李庭波等.森林凋落物淋溶中的溶解有机物与紫外——可见光谱特征热带亚热带植物学报,2004,12(2):124-128
    [136]杨忠,张建平,王道杰等.元谋干热河谷桉树人工林生物量初步研究山地学报,2001,19(6):503-510
    [137]叶镜中,姜志林.苏南丘陵杉木人工林的生物量结构生态学报,1983,3(1):7-14
    [138]蚁伟民,张祝平,丁明懋等.鼎湖山格木群落的生物量和光能利用效率生态学报,2000,20(2):397-403
    [139]应宝根,袁位高,葛永金等.浙江省重点公益林松类生物量模型研究浙江林业科技,2008,28(2):1-5
    [140]袁位高,江波,葛永金等.浙江省重点公益林生物量模型研究浙江林业科技,2009,29(2):1-5
    [141]余世孝.鼎湖山厚壳桂群落植物优势种生态位宽度与重叠之研究热带亚热带森林生态系统研究,1985,(6):32-41
    [142]喻理飞,叶镜中,魏鲁明等.退化喀斯特森林自然恢复过程中群落动态研究林业科学,2002,38(1):1-7
    [143]张娜,于贵瑞,赵士洞等.长白山自然保护区生态系统碳平衡研究环境科学,2003,24(1):24-32
    [144]张东来,毛子军,朱胜英等.黑龙江省帽儿山林区6种主要林分类型凋落物研究植物研究,2008,1(1):104-108
    [145]张光富.浙江天童山区灌丛群落的物种多样性及其与演替的关系生物多样性,2000,8(3):271-276
    [146]张光明,谢寿昌.生态位概念演变与展望生态学杂志,1997,16(6):46-51
    [147]张克荣,刘应迪,朱晓文等.岳麓山马尾松生态位分析生态学杂志,2009,28(2):197-202
    [148]张克水,俞新妥.连载杉木林的根系研究植物生态学与地植物学学报,1991,15:374-379.
    [149]张庆费,宋永昌,由文辉.浙江天童植物群落次生演替与土壤肥力的关系生态学报,1999,19(2):174-178
    [150]张忠华,梁士楚,胡刚.桂林岩溶石山阴香群落主要种群生态位研究林业科学研究,2009,22(1):63-68
    [151]张治军,王彦辉,于澎涛等.不同优势度马尾松的生物量及根系分布特征南京林业大学学报(自然科学版),2008,32(4)71-75
    [152]郑成洋,刘增力,方精云.Tree species diversity along altitudinal gradient on southeastern and northwestern slopes of Mt. Huanggang,Wuyi Mountains,Fujian生物多样性,2004,12,63-74
    [153]郑兆飞.木荷叶凋落物的分解及养分动态分析浙江林学院学报,2009,26(1):22-26
    [154]曾凡荣,施家月,阎恩荣等.天童常绿阔叶林次生演替过程中细根的生物量动态华东师范大学学报(自然科学版),2008(6),56-62
    [155]钟晓青,张宏达,方炜.广东封开黑石顶一种亚热带常绿阔叶林群落演替动态研究林业科学,1996,32(4):305-310
    [156]钟章成.中国典型的亚热带常绿阔叶林(英文)西南师范大学学报,1988,3:109-121
    [157]周国模,姚建祥,乔卫阳等.浙江庆元杉木人工林生物量的研究浙江林学院学报,1996,13(3):235-242
    [158]周国逸,周存宇,LiuShuguang等.季风常绿阔叶林恢复演替系列地下部分碳平衡及累积速率中国科学D辑地球科学,2005,35(6):502-510
    [159]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡植物生态学报,2000,24(5):518-520.
    [160]周志春,徐高福,金国庆等.择伐经营后马尾松次生林阔叶树的生长与群落恢复林业科学研究,2004,17(4):420-426
    [161]朱慧,洪伟,吴承祯等.天然更新的檫木林根系生物量的研究植物资源与环境学报,2003,12(3):31-35
    [162]朱金兆,魏天兴,张学培.基于水分平衡的黄土区小流域防护林体系高效空间配置北京林业大学学报,2002,24(5/6):5-13
    [163]朱守谦贵州部分森林群落物种多样性初步研究植物生态学与地植物学学报,1987,11(4):286-295
    [164]朱源,康慕谊,江源等.贺兰山木本植物群落多样性的海拔格局植物生态学报,2008,32(3):574-581
    [165]祝燕,赵谷风,张俪文等.古田山中亚热带常绿阔叶林动态监测样地—群落组成与结构植物生态学报,2008,32(2):262-273
    [166]曹凑贵生态学概论北京:高等教育出版社,2002
    [167]陈启瑺青冈林生产力研究杭州:杭州大学出版社,1992
    [168]丁岩钦昆虫种群数学生态学原理与应用北京:科学出版社,1980:113-125
    [169]冯宗炜王效科吴刚中国森林生态系统的生物量和生产力北京:科学出版社,1999.9
    [170]洪伟闽江流域森林生态研究厦门:厦门大学出版社,2000:51
    [171]洪伟森林生态系统经营研究北京:中国林业出版社,2001
    [172]江洪云杉种群生态学北京:中国林业出版社,1992
    [173]李博杨持林鹏生态学北京:高等教育出版社,2000
    [174] Lieth H. Whittaker R H.生物圈的第一性生产力北京:科学出版社,1-264
    [175]林益明,杨志伟武夷山常绿林研究厦门大学出版社,2001,25-31
    [176]钱迎倩马克平生物多样性的原理与方法北京:中国科学技术出版社,1994,141-165
    [177]宋永昌王祥荣浙江天童森林公园的植被和区系上海:上海科学技术文献出版社,1995,1-27
    [178]孙儒泳李庆芬牛翠娟等基础生态学北京:高等教育出版社,2002,143
    [179]王景祥姚继衡牛瑞廷等浙江森林北京:中国林业出版社,1993,135- 188
    [180]俞新妥混交林营造原理及技术北京:中国林业出版社,1989,118
    [181]钟章成常绿阔叶林生态系统研究重庆:西南师范大学出版社,1992,333-364
    [182]周晓峰森林生态系统定位研究(第一集)哈尔滨:东北林业大学出版社,1991
    [183]佐藤大七郎堤利夫陆地植物群落的物质生产北京:科学出版社,1986,21-47
    [184] Alberektson. Relations between tree biomass fractions and conventional silivcultural measurements In Pers. Structure and function of Northern Coniferous Forests:An Ecosystem Study.Ecology Bulletin 32,Stockholm,1980,315-327
    [185] Austin M P,Nicholis A O and Margules C R. Measurement of the realized qualitative niche: environmental niches of five Eucalyptus species. Ecological Monographs,1990,60(2):161-177
    [186] BamesBV D R, Zak S R. Demon,S.H. Spuer. Forese Eoolohy(4th edition) John Wiley & Sonsine,1998
    [187] Benson J F. Value of non-priced recreation on the forestry commission estate in Great Britian. Journal of World Forest Resource .Management,1991(6):49-73
    [188] Blanken P D,blan k T A ,Yang P C.et a1.Energe balance and canopy conductance of a boreal aspen forest:Partitioning overstory and understory components.Journal of Geophysical Reseach.1979.
    [189] Botkin D B,Wooduell G M. Tempel,NlForest productivity estimated from carbon dioxide uptake. Ecology,1970,51(1):572-601
    [190] Boysen Jensen P. Studier over skovtraernes forhold till yset Tidsslr F. Skorvaessen,1910,22:11-16
    [191] Brown S L,Schroeder P.Kern J S.Spatial distribution of biomass in forest of the eastern USA.Forest Ecology and Management,1999,123:81~90
    [192] Burger H H B. Zuwachs Fichten im Plenterwald Mitteil,Schweiz,Anst. Forttl Versuchsw,1952,28:109-156
    [193] Carreiro M,Sinsabaugh R,Reperl D,et a1. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology,2000,81:2359-2365
    [194] Chang M T. Forest hydrology: an introduction to water and forests CRC press. Boca Raton 2003,pp373.
    [195] Chen L J,Liu G H,Feng X F. Estimation of net primary productivity of terrestrial vegetation in China by remote sensing. Acta Botanica Sinica,2001,43(11):1912-1981
    [196] Cihlar J. Land cover mapping of large areas from satellites: status and research priorities. International Journal of Remote Sensing,2000,21:1093-1114
    [197] Cohen W B,Maiersperger T K,Spies T A & Oetter D R. Modeling forest cover attributes as continuous variables in a regional context with Thematic Mapper data International Journal of Remote Sensing,2001,22:2279-2310.
    [198] Crowling R M,Pressey R L,Rouget M et al. A conservation plan for a global biodiversity hotspot the Cape floristic Region South Africa. Biological Conservation,2003,112:191-216
    [199] Cuevas E ,Medina E.Nutrient dynamics within Amazonian forestⅡFine root growth,nutrient availability and leaf litter decomposition.Oecologia(Berlin),1988,76:222~235.
    [200] Dray J R,G orham E .Litter production in forests of the world.Adv.Res.,1964,2:101~157.
    [201] Dietrich W E and Montgomery D R. Hillslopes,Channels,and landscape scale. 30-60. in Sposito G. Edited. Scale dependence and scale invariance in hydrology. Cambridge university press,Cambridge,1998 105
    [202] Dixon R K,Brown S,Delcourt R A. Carbon pools and flux of global forest ecosystems. Science,1994,263:185-190
    [203] Ebermayer E. Die estmate Lehre der woldeteru mit Rucksieht auf die ehemisehe static woldbaues. Berlin:Julius Springer,1876,116
    [204] Ebermeyr E. Diegesamte Lehre der Waldstreu mit Rucksicht auf die chemische static,des Waldb-aues Belin:J. Springer,1876
    [205] Engman E T and Gurney R J.Remote sensing in hydrology. Chapman and Hall,London. 1991,pp225.
    [206] Fang Y T,Mo J M,Peng S L.Role of forest succession on carbon sequestration of forest ecosystems in lower subtropica China,Acta Ecologica Sinica,2003,23(9):1685~1694
    [207] Forman R T T. Land mosaics,the ecology of landscapes and regions. Cambridge university press,2001,pp632
    [208] Grinell J. The niche-relations of the California Thrasher Auk,1917,34:427-433
    [209] Guo L B,Sims R E H. Litter production and nutrient return in New Zealand eucalypt short rotation forests:impheations for land management. Agric. Ecolo. Environ.,1999,73(1):93-100
    [210] Hallenschwiler S,Tiunov AV,Scheu S. Biodliversity and litter decomposition in terrestrial ecosystems. Annual Review of ecology Evolution and systematics,2005,36:191-218
    [211] He J S,Chen W L. A review of gradient changes in species diversity of landplant communities. Acta Ecologica Sinica,1997,17(1):92-98
    [212] He J S,Chen W L,Li L H. Community diversity of the main types of the evergreen broad-leaved forest in the eastern part of the middle subtropical China. Acta Phytoecol. Sin.,1998,22(4):303-311
    [213] Homer C G,Ramsey R D,Edwards T C,Jr & Falconer A. Landscape cover-type modeling using a multi-scene Thematic Mapper mosaic. Photogrammetric Engineering and Remote Sensing,1997,63:671-677
    [214] Hursh C R,Local climate in the Cooper basin of Tennessee as modified by the removal of vegetation USDA circular,1948,774
    [215] Hutchinson G E. Concluding remarks, Cold Spring Harbor Symp. Quant. Biol.,1957,22:415-422.
    [216] Ian Bateman. Recent developments in the evaluation of non-timber forest products: the extended CBA method. Quarterly Journal of forestry,1991,85(2):90-102
    [217] Keeling R F,Piper S C ,Hcim ann M Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration,Nature,1996,381:218-121
    [218] Koizumi H.Effect of carbon dioxide concentration on microbial respiration in soil,Ecological Research,1991,6:227~232
    [219] Kodrik M. Ditribution of root biomass and length in picea abies ecosystem under different immision regimes.Plant&Soil,1994,167:173-179.
    [220] Krutzsch H. Untersuchungen ueber die Waldstreu. Tharander Forstliches Jahrbuch (Dresden) 1869,19:193-227
    [221] Kirschbaum M U F C. A forest growth model with linked carbon, energy, mutrient and water cycles. Ecological Modelling,1999(118):17-59
    [222] Kitterge J. Estimation of amount of foliage of trees and shrubs. Forest,1944,42:905-912
    [223] Landsberg J J and Gower S T. Applications of physiological ecology to forest management. Academic Press,1997
    [224] Leibold M,Mcpeek M. Coexistence of the niche and neutral perspectives in community ecology. Ecology,2006,87:1399-1410
    [225] Leobold M A. The niche concept revisited mechanistic models and community. Ecology,1995,76(5):1371-1382
    [226] Lin B,Liu Q,Wu Y,et a1.Advances in the studies of forest litter.ChineseJournal of Ecology,2004,23(1):60~64.
    [227] Liu G H,Fu B J,Fang J Y Carbon dynamics of Chinese forests and its contribution to global carbo balance,Acta Botanica Sinica,2000,20(5):733~740
    [228] Ma K P,Huang J H,Yu S L et al. Plant community diversity in Dongling mountain,Beijing, China.species richness, evenness and species diversity. Acta Ecologica Sinica,1995,15(3):268-277
    [229] Margules C R,Pessey R L. Systematic conservation plalnlillg. Nature,2000,405:243-253
    [230] Ma K P. The Measurement of communities diversity. QianYingqian,Ma Keping. Principles and methodologies of miodiversity studies .Beijing:Chinese Science and Technology Press,l994,141-165
    [231] Müller P E. Studienüber die natürlichen Humusformen und deren Einwirkungen auf Vegetation und Boden,Julius Springer,Berlin,1887,324.
    [232] Ovinghton J D. The form,weights and productivity of trees pecies grown in closestands. New Phytol.,1956,55:289-304
    [233] Pielou E C. Ecological diversity. New York: John Wiley,1975:1-165
    [234] Pierce S M,Cowling R M. Systanatic conservation planning priorities for land-use planning interpretation for implementation. Biological Conservation,2005,125:441-458
    [235] Spellerberg et al. A tribute to Claude Shannon (1916-2001) and a plea for more rigorous use of species richness,species diversity and the Shannon-Wiener index. Global Ecology Biogeigraphy,2001:177-179
    [236] Tans P P,Fung I Y,Takahashi T. Observational constraints on the global atmospheric CO2 budget, Science,1990,247:1431~1438
    [237] Tian H Q,Jerry M M,Kicklighter D W. et al.Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle,Global and Planetary Change.2003.37
    [238] Tomohiro Yoshida,Naoki Hijii. Spatiotemporal distribution of above-ground litter in a cryptomeria japonica plantation. The Japanese Forest Society and Springer,2006,11:419-426
    [239] Whittaker P. The inhibitory effects of quinones on the succinic oxidase system of the respiratory chain. Bioehim Biophys Acta,1962,56:440-444.
    [240] Wu C Z,Hong W,Jiang Z L,et a1.Advances in research of forest litterfall in C hina.Acta Agriculturae Universitatis Jiangxiensis。2000,22(3):405~410.
    [241] Xue L. Nutrient cycling in a Chinese fir(Cunninghamia lanceloata)stand on a poor site in Yishan,Guangxi. For. Ecol.Manage.,1996,89:115-123
    [242] Yavitt J B.Fahey T J.Loss of mass and nutrient changes of decaying woody roots in lodgepole pine forests. Southeastern Wyoming.Can J For Res,1982,12:745-752.
    [243] Zhang J,Ge Y,Chang J,Jiang B,Jiang H,Peng C H,Zhu J R,Yuan W G,Qi L Z,Yu S Q. Carbon storage by ecological service forests in Zhejiang Province, subtropical China. Forest Ecological Management,2007,245:64-75
    [244] Zhang J,Chu Z Y,Ge Y,Zhou X L,Jiang H,Chang J,Peng C H,Zheng J W,Jiang B,Zhu J R,Yu S Q. TRIPLEX Model Testing and Application for Predicting Forest Growth and Biomass Production in the Subtropical Forest Zone of China’s Zhejiang Province. Ecol. Model.,2008,219:264-275

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700