用户名: 密码: 验证码:
四种人工纳米颗粒物在水相中的转化行为及生态毒理效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着各种纳米材料的广泛应用,人工纳米颗粒物(MNPs)将不可避免地释放到环境中,成为潜在的污染物,对生态健康和人体健康产生潜在不利影响。释放到环境中的MNPs可发生多种迁移和转化过程,进而影响其生态毒理学效应。如何评价和预测MNPs的水环境行为(尤其是MNPs与溶解性有机质(DOM)的相互作用及其对MNPs胶体团聚状态的影响)及对水生生物的毒理效应,是纳米生态毒理学研究的前沿领域。本文基于分子模拟方法,研究DOM与富勒烯(C60)的相互作用机制,阐明了DOM对C60在水中溶解与团聚行为的影响机制;通过生物测试,考察了纳米二氧化钛(nTiO2).纳米二氧化铈(nCeO2)以及纳米银(nAg)颗粒物对不同营养级水生生物的毒理效应,并探讨了其毒性作用机制。主要研究内容和研究成果如下:
     (1)利用分子力学和量子化学计算,模拟了C60与不同来源的DOM模型分子间的相互作用。相互作用能的计算结果表明,DOM模型分子可与C60间形成稳定的复合物。与来源于淡水或褐煤的DOM模型分子相比较,土壤中的DOM模型分子与C60间形成的复合物的稳定性更高。电荷转移分析的结果表明,DOM在C60-DOM的复合物中是电子受体。此外,DOM的存在显著地提高了C60的表观水溶解度(SC60/DOM),且SC60/DOM随C60-DOM复合物的前线分子轨道能级差的增加而降低。
     (2)采用荧光探针法研究了nTiO2和nCeO2胶体对斜生栅藻(Scenedesmus obliquus)细胞膜通透性和膜电位的影响。利用DLVO理论对这两种MNPs的胶体稳定性进行了评价。在总势能曲线上nTiO2胶体的势能峰值是nCeO2的4.2倍,表明nTiO2胶体的稳定性高于nCeO2胶体。nTiO2胶体降低了绿藻细胞膜通透性,nCeO2胶体却增加了绿藻细胞膜通透性。这两种MNPs胶体均引起细胞膜电位的升高,且nTiO2胶体诱导细胞膜电位升高程度明显高于nCeO2胶体,表明干扰绿藻细胞膜的正常生理功能是MNPs对绿藻的毒性作用机制之一。与nCeO2胶体相比,具有更高悬浮稳定性的nTiO2胶体表现出更强的绿藻细胞膜毒性效应,说明MNPs的胶体稳定性是决定其毒性差异的重要因素。
     (3)考察了nAg胶体对三种不同营养级水生生物的毒理效应,包括羊角月牙藻(Raphidocelis subcapitata)、圆形盘肠溞(Chydorus sphaericus)及斑马鱼(Danio rerio)胚胎。通过反应加和模型定量评价了游离态银离子(Ag+)对nAg胶体的毒性贡献。研究了三种商业nAg颗粒物:无包覆剂(Bare)nAg、聚乙烯吡咯烷酮包覆(PVP)nAg、悬浮剂分散(DIS)nAg。发现这三种nAg胶体对受试生物的毒性(以半数效应浓度为基础)大小顺序均为:DIS-nAg> PVP-nAg> Bare-nAg。DIS-nAg含有最高浓度的游离态Ag+,而Bare-nAg中的游离态Ag+的浓度最低,表明主解释nAg的毒性机制时不能忽略游离态Ag+的作用。此外,游离态Ag+对nAg胶体的Raphidocelis subcapitata毒性贡献最大,而对nAg胶体的Danio rerio毒性贡献最小,说国游离态Ag+对nAg颗粒对不同水生生物的毒性贡献不同,取决于水生生物的营养级水平。
     (4)研究了DOM对nAg胶体水生毒性的影响。以一种腐殖酸模型分子(HS)来模拟DOM,考察了HS对PVP包覆的nAg(一次粒径为20nm)对羊角月牙藻、圆形盘肠溞及斑马鱼胚胎的毒性影响。发现随HS浓度的升高,nAg胶体对三种水生生物的毒性降低。随着HS浓度的增加,nAg胶体颗粒物的尺度更小,意味颗粒物的尺度变化不是导致HS存在条件下nAg毒性降低的原因。HS浓度增高时,导致nAg表面电荷更负,说明表面电荷大小也不是导致有HS存在时nAg毒性降低的决定因素;HS浓度较高时,Ag+释放受到了抑制,以nAg胶体中游离态Ag+浓度来表达胶体的毒性反应时,存在明显的浓度-反应关系,说明HS通过抑制Ag+的释放来降低nAg胶体的水生毒性。
With the increasing use of various nanostructured materials, manufacuted nanoparticles (MNPs) are inevitablily discharged into the environment. Thereby MNPs could become potential pollutants, and pose a potential health risk to human and ecological species. Once released into the environment, MNPs can undergo many transport and transformation processes affecting their ecotoxicity. How to assess and predict aquantic behavior (particular for the interaction of MNPs with dissolved organic matter (DOM) and their effects on agglomeration of MNPs colloids) and toxicological effects to aquatic organisms is the frontier research in the field of nanoecotoxicology. In this thesis, interactions of fullerene (C6o) with dissolved organic matters (DOM) were investigated by the means of molecular modelling, and the mechanism by which DOM influence dissolution and agglomeration behavior of C6o was elucidated. In addition, toxicological effects of nano-titanium dioxide (nTiO2), nano-cerium dioxide (nCeO2) and nano-silver (nAg) colloids on aquatic organisms were observed and mechanisms of action for their aquatic toxicity were illustrated. Main contents and results are as follows:
     (1) The interaction of fullerene C60with DOM analogues is computationally simulated by molecular mechanics and density functional theory. The calculated interaction energies displayed that the DOM could stablize C60, and the stability between C60and the soil DOM analogues is greater than that between C60and the DOM analogues from fresh water or coal. The computed electrostatic potential indicates that DOM analogues are electron acceptors in the C60-DOM complexes. The presence of DOM increases the apparent water solubility of C60-It is also observed that the C60apparent water solubility decreases with the increase of the energy gaps of frontier molecular orbitals (ELUMO-EHOMO) for each C60-DOM complex.
     (2) The effects of nTiO2and nCeO2colloids on cell membrane permeability and cell membrane potential of a green alga (Scenedesmus obliquus) were investigated by the fluorescent probe technique. The stability of nanoparticle colloids was evaluated by the DLVO theory. The results show that the magnitude of the peak value in the potential energy profiles of the nTiO2colloids is4.2times that of the nCeO2colloids, indicating that nTiO2colloids displayed more stable than the nCeO2colloids. The nTiO2colloids inhibited the cell membrane permeability of Scenedesmus obliquus, conversely, the nCeO2colloids induced an enhancement of the cell membrane permeability of Scenedesmus obliquus. The two nanoparticle colloids induced an increase of the cell membrane potential of Scenedesmus ohliquus, and the nTiO2colloids showed stronger effects than the nCcO2colloids. These findings suggest that disturbing the functions of the cell membrane is a possible mechanism of toxicity of MNPs to algae. Compared with the nCeO2colloids, the nTiO2colloids with high stability displayed high toxicity to the cell membrane system in Scenedesmus obliquus, suggesting that the colloid stability of MNPs is an important factor governing their ecotoxcitity.
     (3) The relative contribution of ionic silver (Ag+) or particles in nano-silver (nAg) colloids to the toxicity to three aquatic organisms of different trophic levels, i.e. an alga species (Raphidocelis subcapitata), a cladoceran species (Chydorus sphaericus) and a freshwater fish larva (Dainio rerio), was quantitatively evaluated by a response addition model. A bare and a polyvinylpyrrolidone (PVP)-coated nAg, as well as a monodispersed nAg with a dispersant (DIS-nAg) were examined. The toxicity of the nAg in the form of colloids decreases in the order DIS-nAg> PVP-nAg> Bare-nAg for all the three trophic aquatic organisms (in terms of median effect concentration). The DIS-nAg had the highest free Ag+concentration. and the Bare-nAg the lowest concentration of free Ag+, implying that the free Ag+cannot be neglected in explaining the toxicity of the nAg colloids. Furthermore, it was found that the contribution of free Ag+to the toxicity of nAg colloids for Raphidocelis subcapitata is the highest, but for Danio rerio the lowest, implying that the organisms tested have different accumulation ability for Ag+or nAg particles.
     (4) The effects of DOM on the ecotoxicity of nAg colloids were investigated. A commercial DOM model compound (HS) and PVP-coated nAg with primary size of20nm were selected as test materials. Raphidocelis subcapitata, Chydorus sphaericus, and Danio rerio, representing different trophic organisms, were exposed to the nAg colloids in the presence and absence of HS. The results show that the presence of HS alleviates the aquatic toxicity of the nAg colloids to all the organisms in a concentration dependent manner. A particle size distribution shifts to lower values of the nAg colloidal particles due to the presence of HS, implying that the decrease in toxicity of the nAg colloids is not related to the variation of agglomerated size. Surface charge of nAg agglomerates only displayed more negative in the presence of HS with high concentration, suggesting that the surface charge is not a decisive factor for the decrease in the toxicity of the nAg colloids. The presence of HS inhibited Ag'release from the nAg particles, and the inhibition degree depended on the HS concentrations. In addition, a concentration-response relationship was observed clearly for the toxicity effects expressed as free Ag+in the colloids. This finding indicates that the HS controlling Ag'release is a crucial mechanism, which contributes to the detoxification of nAg released to the environment.
引文
[1]张英鸽.纳米毒理学[M].北京:中国协和医科大学出版社,2010:14-15.
    [2]Project on Emerging Nanotechnologies [2011-1 1-12]. Available online at: hitp://www.nanotechproiect.org/inventories/consumer/.
    [3]Klaine S J, Koelmans A A, Home N, et al. Paradigms to assess the environmental impact of manufactured nanomaterials [J]. Environmental Toxicology and Chemistry, 2012, 31(1): 3-14.
    [4]卫英慧,韩培德,杨晓华.纳米材料概论[M].北京:化学工业出版社,2009:76-78.
    [5]张玉绣,张大伟,金政伟.纳米材料的制备方法及其应用[M].北京:中国纺织出版社,2010:3-7.
    [6]Freedonia. World Class Market Research. [2012-12-20]. Available on line: http:www. frecdoniagroup.com/FreedoniaFocusReportsCol lection.aspx.
    [7]Nowack B, Bucheli T D. Occurrence, behavior and effects of nanoparticles in the environment [J]. Environmental Pollution, 2007, 150(1): 5-22.
    [8]Maynard A, Michelson E. The nanolechnology consumer products inventory. Woodrow Wilson International Center for Scholars [2011-11-12].http://www.nanotechproject.org/inventories/consumer/.
    [9]Serpone N, Dondi D, Albini A. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare product [J]. Inorganica Chimica Acta, 2007, 360(3): 794-802.
    [10]Yuranova T, Laub D, Kiwi J. Synthesis, activity and characterization of textiles showing self-cleaning activity under daylight irradiation [J]. Catalysis Today, 2007, 122(1-2): 109-117.
    [11]Kobichaud C O, Uyar A E, Darby M R, et al. Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment [J]. Environmental Science and Technology, 2009, 43(12): 4227-4233.
    [12]Klaine S J, Alvarez P J, Batley G E, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects [J]. Environmental Toxicology and Chemistry, 2008, 27(9): 1825-185 1.
    [13]Moore M N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? [J]. Environment International, 2006, 32(8): 967-976.
    [14]Holden P A, Nisbet R M, Lenihan II S, et al. Ecological nanotoxicology: Integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels [J]. Accounts of Chemal Research, 2013, 46(3): 813-822.
    [15]Mueller N C, Nowack B. Exposure modeling of engineered nanoparticles in the environment [J]. Environmental Science and Technology, 2008,42( 12): 4447-4453.
    [16]Service R F. Is nanomaterials show signs of toxicity [J]. Science, 2003, 300: 243.
    [17]Brumfiel G. Nanotechnology: A little knowledge ... [J]. Nature, 2003, 424(6946): 246-248.
    [18]Walker C H, Hopkin S P, Sibly R M, et al. Principles of ecotoxicology[M], 2nd Edition. Taylor & Francis. New York. 2001: ⅩⅢ-ⅩⅥ.
    [19]Kahru A, Dubourguier H C. From ecotoxicology to nanoecotoxicology [J]. Toxicology, 2010, 269(2-3): 105-1 19.
    [20]Spurgeon D J, Morgan A J, Kille P. Current research in soil invertebrate ecotoxicogenomics [J]. Advances in Experimental Biology, 2008. 2: 133-163.
    [21]Lin D, Tian X, Wu F, et al. Fate and transport of engineered nanomaterials in the environment [J]. Journal of Environmental Quality,2010,39(6):1896-1908.
    [22]Linkov I, Steevens J. Nanomaterials:Risks and benefits [M]. Springer Science+ Business Media B.V. 2009:130.
    [23]Darlington T K, Neigh A M, Spencer M T, et al. Nanoparticle characteristics affecting environmental fate and transport through soil [J]. Environmental Toxicology and Chemistry,2009,28(6):1191-1199.
    [24]Baalousha M, Manciulea A, Cumberland S, et al. Aggregation and surface properties of iron oxide nanoparticles:Influence of pH and natural organic matter [J]. Environmental Toxicology and Chemistry,2008,27(9):1875-1882.
    [25]Keller A A, Wang H T, Zhou D X, et al. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices [J]. Environmental Science and Technology,2010,44(6):1962-1967.
    [26]Zhang L, Hou L, Wang L, et al. Transport of fullerene nanoparticles (nC6o) in saturated sand and sandy soil:controlling factors and modeling [J]. Environmental Science and Technology,2012,46(13): 7230-7238.
    [27]Lecoanet H F, Bottero J Y, Wiesner M R. Laboratory assessment of the mobility of nanomaterials in porous media [J]. Environmental Science and Technology,2004,38(19):5164-5169.
    [28]Guzman K A, Finnegan M P, Banfield J F. Influence of surface potential on aggregation and transport of titania nanoparticles [J]. Environmental Science and Technology,2006,40(24):7688-7693.
    [29]Wang Y, Li Y, Fortner J D, et al. Transport and retention of nanoscale C60 aggregates in water-saturated porous media [J]. Environmental Science and Technology,2008,42(10):3588-3594.
    [30]Lowry G V, Gregory K B, Apte S C, et al. Transformations of nanomaterials in the environment [J]. Environmental Science and Technology,2012,46(16):6893-6899.
    [31]Nichols G, Byard S, Bloxham M J, et al. A review of the terms agglomerate and aggregate with a recommendation for nomenclature used in powder and particle characterization [J]. Journal of Pharmaceutical Sciences,2002,91 (10):2103-2109.
    [32]Petosa A R, Jaisi D P, Quevedo I R, et al. Aggregation and deposition of engineered nanomaterials in aquatic environments:Role of physicochemical interactions [J]. Environmental Science and Technology,2010,44(17):6532-6549.
    [33]Liu J Y, Hurt R H. Ion release kinetics and particle persistence in aqueous nano-silver colloids [J]. Environmental Science and Technology,2010,44(6):2169-2175.
    [34]Levard C, Reinsch B C, Michel F M, et al. Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution:Impact on dissolution rate [J]. Environmental Science and Technology,2011,45(12): 5260-5266.
    [35]Lowry G V, Espinasse B P, Badireddy A R, et al. Long-term transformation and fate of manufactured nanoparticles in a simulated large scale freshwater emergent wetland [J]. Environmental Science and Technology,2012,46(13):7027-7036.
    [36]Chen P J, Tan S W, Wu W L. Stabilization or oxidation of nanoscale zerovalent iron at environmentally relevant exposure changes bioavailability and toxicity in medaka fish [J]. Environmental Science and Technology,2012,46(15):8431-8439.
    [37]Murdianti B S. Damron J T, Hilburn M E. C60 oxide as a key component of aqueous C60 colloidal suspensions [J]. Environmental Science and Technology,2012,46(14):7446-7453.
    [38]Navarro E, Baun A, Behra R, et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi [J]. KcoloxicoJogy, 2008, 1 7(5): 372-386.
    [39]Kanel S R, Manning B, Charlet I., et al. Removal of arsenic(Ⅲ) from groundwatcr by nanoscale zero-valent iron [J]. Environmental Science and Technology, 2005, 39(5): 1291-1298.
    [40]Mahmoudi M, Lynch I, Ejtehadi M R, et al. Protein-nanoparticle interactions: Opportunities and challenges [J]. Chemical Review, 2011, 111(9): 5610-5637.
    [41]Jin P, Chen Y, Zhang S B, et al. Interactions between A112X (X = Al, C, N and P) nanoparticles and DNA nucleobases/base pairs: Implications for nanotoxicity [J]. Journal of Molecular Modeling, 2012, 18(2): 559-568.
    [42]Kwon D, Kim M J, Park C, et al. In vivo biodegradation of colloidal quantum dots by a freshwater invertebrate, Daphnia magna [J]. Aquatic Toxicology, 2012, 114-1 15: 217-222.
    [43]Allen B L, Kichambare P D, Gou P, et al. Biodegradation of single-walled carbon nanotubes through enzymatic catalysis [J]. Nano Letters, 2008, 8(11): 3899-3903.
    [44]Allen B L, Kotchey G P, Chen Y, et al. Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes [J]. Journal of the American Chemistry Society, 2009, 131(47): 17194-17205.
    [45]Kiimmerer K, Menz J, Schubert T, et al. Biodegradability of organic nanoparticles in the aqueous environment [J]. Chemosphere, 2011, 82(10): 1387-1392.
    [46]Kirschling T L, Golas P L, Unrine J M, et al. Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials [J]. Environmental Science and Technology, 2011(12), 45:5253-5259.
    [47]Hassellov M, Readman J W, Ranville J F, et al. Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles [J]. Ecotoxicolgoy, 2008, 17(5): 344-361.
    [48]Christian P, Von der Kammer F, Baalousha M, et al. Nanoparticles: Structure, properties, preparation and behaviour in environmental media [J]. Ecotoxicology, 2008, 17(5): 326-343.
    [49]Stebounova L V, Guio E, Grassian V H. Silver nanoparticles in simulated biological media: A study of aggregation, sedimentation, and dissolution [J]. Journal of Nanoparticle Research, 2011, 13(1): 233-244.
    [50]Zhao Y L, Chen Z, Meng H A, et al. Acute toxicological effects of copper nanoparticles in vivo [J]. Toxicology Letters, 2006, 163(2): 109-120.
    [51]Jin X, Li M H, Wang J W, et al. High-throughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media: Influence of specific ions [J]. Environmental Science and Technology, 2010, 44(19): 7321-7328.
    [52]Quik J T K, Lynch I, Van Hloecke K, et al. Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water [J]. Chemosphere, 2010, 81(6): 711-715.
    [53]Poda A R, Bednar A J, Kennedy A J, et al. Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry [J]. Journal of Chromatography A, 2011, 1218(27):4219-4225.
    [54]Oberdorster G, Maynard A, Donaldson K, et al. Principles for characterizing the potential human health effects from exposure to nanomaterials:Elements of a screening strategy [J]. Particle and Fibre Toxicology,2005,2(8):1-35.
    [55]Natarajan A, Gruettner C, Ivkov R, et al. NanoFerrite particle based radioimmunonanoparticles: Binding affinity and in vivo pharmacokinetics [J]. Bioconjugate Chemistry,2008,19(6):1211-1218.
    [56]Powers K W, Brown S C, Krishna V B, et al. Research strategies for safety evaluation of nanomaterials. Part Ⅵ. Characterization of nanoscale particles for toxicological evaluation [J]. Toxicological Sciences,2006,90(2):296-303.
    [57]周启星,孔繁翔,朱琳.生态毒理学[M].北京:利学出版社,2004:39-88.
    [58]Newman M C, Unger M A著,赵园,王太平译.Fundamentals of ecotoxicology [M].化学工业出版社,2007:129-153.
    [59]Navarro E, Piccapietra F, Wagner B, et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii [J]. Environmental Science and Technology,2008,42(23):8959-8964.
    [60]Schwab F, Bucheli T D, Lukhele L P, et al. Are carbon nanotube effects on green algae caused by shading and agglomeration? [J]. Environmental Science and Technology,2011,45(14):6136-6144.
    [61]Calabrese E J. Hormesis:Why it is important to toxicology and toxicologists [J]. Environmental Toxicology and Chemistry,2008,27(7):1451-1474.
    [62]朱小由,朱琳,田胜艳,等.三种金属氧化物纳米颗粒的水生态毒性[J].生态学报.2008,28(8):3507-3516.
    [63]Oberdorster G, Oberdorster E, Oberdorster J. Concepts of nanoparticle dose metric and response metric [J]. Environmental Health Perspectives,2007,115(6):A290.
    [64]Hull M, Kennedy A J, Detzel C, et al. Moving beyond mass:the unmet need to consider dose metrics in environmental nanotoxicology studies [J]. Environmental Science and Technology,2012,46: 10881-10882.
    [65]Crane M, Handy R D, Garrod J, et al. Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles [J]. Ecotoxicology,2008,17(5):421-437.
    [66]Oberdorster E. Manufactured nanomaterials (Fullerenes, C6o) induce oxidative stress in the brain of juvenile largemouth bass [J]. Environmental Health Perspectives,2004,112(10):1058-1062.
    [67]Lovern S B, Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles [J]. Environmental Toxicology and Chemistry,2006,25(4):1132-1137.
    [68]Brant J, Lecoanet H, Hotze M, et al. Comparison of electrokinetic properties of colloidal fullerenes (nC6o) formed using two procedures [J]. Environmental Science and Technology,2005,39(17): 6343-6351.
    [69]Handy R D, van den Brink N, Chappell M, et al. Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials:What have we learnt so far? [J]. Ecotoxicology,2012, 21(4):933-972.
    [70]Barnard A S. Computational strategies for predicting the potential risks associated with nanotechnology [J]. Nanoscale,2009,1(1):89-95.
    [71]Cohen Y, Rallo R, Liu R, et al. In Silico analysis of nanomaterials hazard and risk [J]. Accounts of Chemal Research,2013,46(3):802-812.
    [72]王连生.有机污染化学[M].北京:高等教育出版社,2004:342.
    [73]Frenkel D, Smit B. Understanding molecular simulation: From algorithms to applications [M]. San Diego, 2001.
    [74]杨小震.分子模拟与高分子材料[M].北京:科学出版社,2002:1-11.
    [75]Burello E, Worth A P. QSAR modeling of nanomatcrials [J]. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 201 I, 3(3): 298-306.
    [76]Alimohammadi M, Fichthom K A. Molecular dynamics simulation of the aggregation of titanium dioxide nanocrystals: Preferential alignment [J]. Nano Letters, 2009, 9(12): 4198-4203.
    [77]帅志刚,邵久书,等.理论化学原理与应用[M].北京:科学出版社,2008:16-62.
    [78]Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140(4A): 1133-1138.
    [79]Fagan S B, Souza Filho A G, Lima J O G, et al. 1,2-Dichlorobenzene interacting with carbon nanotubes [J]. Nano Letters, 2004, 4(7): 1285-1288.
    [80]Santos S G, Santana J V, Maia Jr F F, et al. Adsorption of ascorbic acid on the C60 fullcrene [J]. Journal of Physical Chemistry B, 2008, 112(45): 14267-14272.
    [81]Li F, Xie Q, Li X H, et al. Hormone activity of hydroxylated polybrommated diphenyl ethers on human thyroid receptor-beta: In vitro and in silico investigations [J]. Environmental Health Perspectives, 2010, 118(5): 602-606.
    [82]Li F, Li X H, Shao J P, et al. Estrogenic activity of anthraquinone derivatives: In vitro and in Silico studies[J]. Chemical Research in Toxicology, 2010, 23(8): 1349-1355.
    [83]陈景文,全燮.环境化学[M].大近:大连理工大学出版社,2009:281.
    [84]Karelson M, Lobanov V S. Katritzky A R. Quantum-chemical descriptors in QSAR/QSPR studies [J]. Chemical Review, 1996,96(3): 1027-1044.
    [85]Eortner J D, Lyon D Y, Sayes C M, et al. C60 in water: Nanocrystal formation and microbial response [J]. Environmental Science and Technology, 2005, 39(11): 4307-4316.
    [86]Auffan M, Achouak W, Rose J, et al. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli [J]. Environmental Science and Technology, 2008, 42(17): 6730-6735.
    [87]Li Z Q, Greden K, Alvarez P J J, et al. Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli[J]. Environmental Science and Technology, 2010, 44(9): 3462-3467.
    [88]Peng X H, Pal ma S, Fisher N S, et al. Effect of morphology of ZnO nanostructures on their toxicity to marine algae [J]. Aquatic Toxicology, 2011, 102(3-4): 186-196.
    [89]Baun A, Sorensen S N, Rasmussen R F, et al. Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60 [J]. Aquatic Toxicology. 2008. 86(3): 379-387.
    [90]Yang L, Watts D.J. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles [J]. Toxicology Letters, 2005, 158(2): 122-132.
    [91]Murashov V. Comments on "Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles" by Yang, L., Watts. D.J., Toxicology Letters, 2005, 158, 122-132 [J]. Toxicology Letters, 2006. 164(2):185-187.
    [92]Lin D H, Xing B S. Root uptake and phytotoxicity of ZnO nanoparticles [J]. Environmental Science and Technology,2008,42(15):5580-5585.
    [93]Khodakovskaya M, Dervishi E, Mahmood M, et al. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth [J]. ACS Nano,2009,3(10): 3221-3227.
    [94]Gubbins E J, Batty L C, Lead J R. Phytotoxicity of silver nanoparticles to Lemna minor L [J]. Environmental Pollution,2011,159(6):1551-1559.
    [95]Yin L Y, Cheng Y W, Espinasse B, et al. More than the ions:The effects of silver nanoparticles on Lolium multiflorum [J]. Environmental Science and Technology,2011,45(6):2360-2367.
    [96]Lovern S B, Strickler J R, Klaper R. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HXC7oHx) [J]. Environmental Science and Technology,2007,41(12):4465-4470.
    [97]Zhu S Q, Oberdorster E, Haasch M L. Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow [J]. Marine Environmental Research,2006,62:S5-S9.
    [98]Zhu X S, Chang Y, Chen Y S. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna [J]. Chemosphere,2010,78(3):209-215.
    [99]Baun A, Hartmann N B, Grieger K, et al. Ecotoxicity of engineered nanoparticles to aquatic invertebrates:A brief review and recommendations for future toxicity testing [J]. Ecotoxicology, 2008,17(5):387-395.
    [100]Zhu X S, Wang J X, Zhang X Z, et al. Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain [J]. Chemosphere,2010,79(9):928-933.
    [101]Smith C J, Shaw B J, Handy R D. Toxicity of single walled carbon nanotubes to rainbow trout (Oncorhynchus mykiss):Respiratory toxicity, organ pathologies, and other physiological effects [J]. Aquatic Toxicology,2007,82(2):94-109.
    [102]Bilberg K, Malte H, Wang T, et al. Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch(Perca fluviatilis) [J]. Aquatic Toxicology,2010,96(2):159-165.
    [103]Wise J P, Goodale B C, Wise S S, et al. Silver nanospheres are cytotoxic and genotoxic to fish cells [J]. Aquatic Toxicology,2010,97(1):34-41.
    [104]Xiong D W, Fang T, Yu L P, et al. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish:Acute toxicity, oxidative stress and oxidative damage [J]. Science of the Total Environment,2011,409(8):1444-1452.
    [105]Zhao J, Wang Z, Liu X, et al. Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity [J]. Journal of Hazardous Materials,2011,197:304-310.
    [106]Nel A, Xia T, Madler L, et al. Toxic potential of materials at the nanolevel [J]. Science,2006, 311(5761):622-627.
    [107]Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology:An emerging discipline evolving from studies of ultrafine particles [J]. Environmental Health Perspectives,2005, 113(7):823-839.
    [108]Lee K. J, Browning L M, Nallathamby P D, et al. In vivo quantitative study of sized-dependent transport and toxicity of single silver nanoparticles using zebrafish embryos [J]. Chemistry Research in Toxicology,2012,25(5):1029-1046.
    [109]McShane H, Sarrazin M, Whalen J K, et al. Reproductive and behavioral responses of earthworms exposed to nano-sized titanium dioxide in soil [J]. Environmental Toxicology and Chemistry, 2012, 31(1): 184-193.
    [110]Wong S S, Peng X H, Palma S, et al. Effect of morphology of ZnO nanostructures on their toxicity to marine algae [J]. Aquatic Toxicology, 201 I, 102(3-4): 186-196.
    [111]Arnaout C L, Gunsch C K. Impacts of silver nanoparticle coating on the nitrification potential of Nitrosomonas europaea [J]. Environmental Science and Technology, 2012, 46(10): 5387-5395.
    [112]El Badawy A M, Silva R G, Morris B, et al. Surface charge-dependent toxicity of silver nanoparticles [J]. Environmental Science and Technology, 2011, 45(1): 283-287.
    [113]Choi O, Hu Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria [J]. Environmental Science and Technology, 2008, 42(12): 4583-4588.
    [114]Li M, Zhu L, Lin D. Toxicity of ZnO nanoparticles to Escherichia coli: Mechanism and the influence of medium components [J]. Environmental Science and Technology, 2011, 45(5): 1977-1983.
    [115]Young Y, Lee H, Shen Y, et al. Toxicity mechanism of carbon nanotubes on Escherichia coli [J]. Materials Chemistry and Physics, 2012, 134(1): 279-286.
    [116]Pasquini L M, Hashmi S M, Sommer T J, et al. Impact of surface functionalization on bacterial cytotoxicity of single-walled carbon nanotubes [J]. Environmental Science and Technology, 2012. 46(11): 6297-6305.
    [117]Kennedy A J, Hull M S, Bednar A J, et al. Fractionating nanosilver: Importance for determining toxicity to aquatic test organisms [J]. Environmental Science and Technology, 2010, 44(24): 9571-9577.
    [118]Rogers N J, Franklin N M, Apte S C, et al. Physico-chemical behaviour and algal toxicity of nanoparticulatc CeGs in freshwater [J]. Environmental Chemistry, 2010, 7(1): 50-60.
    [119]Griffitt R J, Luo J, Gao J, et al. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms [J]. Environmental Toxicology and Chemistry, 2008, 27(9): 1972-1978.
    [120]Hund-Rinke K, Simon M. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids [J]. Environmental Science Pollution Research International Journal, 2006, 13(4): 225-232.
    [121]Perreault, F, Oukarroum A, Melegari S P, et al. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii[J]. Chemosphcre, 2012, 87(11): 1388-1394.
    [122]Miao A J, Schwehr K A. Xu C, et al. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances [J]. Environmental Pollution. 2009, 157(11): 3034-3041.
    [123]Zhang H, Leung Y, Louden D, et al. The potential intrinsic and extrinsic toxicity of silica nanoparticles and its impact on marine organisms [J]. Nano, 2008, 3(4): 271-278.
    [124]Zhang P, Ma Y, Zhang Z, et al. Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (C'ucumis salivas) [J]. Environmental Science and Technology, 2011, 46(3): 1834-1841.
    [125]Lin C, Fugctsu B, Su Y, et al. Studies on toxicity of multi-walled carbon nanotubes on Aruhidopsis T87 suspension cells [J]. Journal of Hazardous Materials, 2009, 170(2-3): 578-583.
    [126]Glenn J B, White S A, Klaine S J. Interactions of gold nanoparticles with freshwater aquatic macrophytes are size and species dependent [J]. Environmental Toxicology Chemistry,2012,31(1): 194-201.
    [127]Yang X, Gondikas A P, Marinakos S M, et al. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans [J]. Environmental Science and Technology,2011,46(2):1119-1127.
    [128]Petersen E J, Pinto R A, Mai D J, et al. Influence of polyethyleneimine graftings of multi-walled carbon nanotubes on their accumulation and elimination by and toxicity to Daphnia magna [J]. Environmental Science and Technology,2011,45(3),1133-1138.
    [129]Blinova I, Ivask A, Heinlaan M, et al. Ecotoxicity of nanoparticles of CuO and ZnO in natural water [J]. Environmental Pollution,2010,158(1):41-47.
    [130]Tsoi K M, Dai Q, Alman B A, et al. Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies [J]. Accounts of Chemal Research,2013,46(3):662-671.
    [131]Maynard A D, Baron P A, Foley M, et al. Exposure to carbon nanotube material:Aerosol release during the handling of unrefined single-walled carbon nanotube material [J]. Journal of Toxicology and Environmental Health-Part A,2004,67(1):87-107.
    [132]Wakefield G, Lipscomb S, Holland E, et al. The effects of manganese doping on UVA absorption and free radical generation of micronised titanium dioxide and its consequences for the photostability of UVA absorbing organic sunscreen components [J]. Photochemical and Photobiological Sciences, 2004,3(7):648-652.
    [133]Kolosnjaj J, Szwarc H, Moussa F. Toxicity studies of carbon nanotubes [J]. Advances in Experimental Medicine and Biology,2007,620:181-204.
    [134]Werth J H, Linsenbuhler M, Dammer S M, et al. Agglomeration of charged nanopowders in suspensions [J]. Powder Technology,2003,133(1):106-112.
    [135]Tantra R, Jing S, Pichaimuthu S K, et al. Dispersion stability of nanoparticles in ecotoxicological investigations:The need for adequate measurement tools [J]. Journal of Nanoparticle Research,2011, 13(9):3765-3780.
    [136]Adams L K, Lyon D Y, Alvarez P J J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions [J]. Water Research,2006,40(19):3527-3532.
    [137]Franklin N M, Rogers N J, Apte S C, et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata):The importance of particle solubility [J]. Environmental Science and Technology,2007,41(24):8484-8490.
    [138]Lin D H, Xing B S. Phytotoxicity of nanoparticles:Inhibition of seed germination and root growth [J]. Environmental Pollution,2007,150(2):243-250.
    [139]Lin D H, Liu N, Yang K, et al. Different stabilities of multiwalled carbon nanotubes in fresh surface water samples [J]. Environmental Pollution,2010,158(5):1270-1274.
    [140]Brown C S, Kamal M, Nasreen N, et al. Influence of shape, adhesion and simulated lung mechanics on amorphous silica nanoparticle toxicity [J]. Advanced Powder Technology,2007,18(1):69-79.
    [141]Wick P, Manser P, Limbach L K, et al. The degree and kind of agglomeration affect carbon nanotube cytotoxicity [J]. Toxicology Letters,2007,168(2):121-131.
    [142]Fabrega J, Fawcett S R, Renshaw J C, et al. Silver nanoparticle impact on bacterial growth: Effect of pH, concentration, and organic matter [J]. Environmental Science and Technology, 2009, 43(19): 7285-7290.
    [143]Gao J, Youn S, Hovsepyan A, ct al. Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: Effects of water chemical composition [J]. Environmental Science and Technology, 2009, 43(9): 3322-3328.
    [144]Kennedy A J, Chappell M A, Bednar A J, et al. Impact of organic carbon on the stability and toxicity of fresh and stored silver nanoparticles [J]. Environmental Science and Technology, 2012, 46(19): 10772-10780.
    [145]Wang Z Y, Li J, Zhao J, et al. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter [J]. Environmental Science and Technology, 2011, 45(14): 6032-6040.
    [146]Hall S, Bradley T, Moore J T, et al. Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity [J]. Nanotoxicology, 2009, 3(2):91-97.
    [147]王震宇,赵建,李娜,等.人工纳米颗粒对水生生物的毒性效应及其机制研究进展[J].环境科 学.2010, 31(6): 1409-1418.
    [148]Esterbaucr H, Scliaur R J, Zollner H. Chemistry and biochemistry of 4-Hydroxynonenal, malonaldehyde and related aldehydes [J]. Free Radical Biology and Medicine, 1991, 11(1): 81-128.
    [149]Lee J, Fortner J D, Hughes J B, ct al. Photochemical production of reactive oxygen species by C60 in the aqueous phase during UV irradiation [J]. Environmental Science and Technology, 2007, 41(7): 2529-2535.
    [150]Seven A, El-Temsah Y S, Joner E J, et al. Oxidative stress induced in microorganisms by zero-valent iron nanoparticles [J]. Microbes and Environments, 2011, 26(4): 271-281.
    [151]Xia T, Kovochich M, Liong M, et al. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways[J]. ACS Nano, 2008, 2(1): 85-96.
    [152]Lyon D Y, Brunet L, Hinkal G W, et al. Antibacterial activity of fullerenc water suspensions (nC60) is not due to ROS-mediated damage [J]. Nano Letters, 2008, 8(5): 1539-1543.
    [153]Long T C, Tajuba J, Sama P, et al. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro [J]. Environmental Health Perspectives, 2007, 115(11): 1631-1637.
    [154]Puzyn T, Leszczynska D, Leszczynski J. Toward the development of "Nano-QSARs": Advances and challenges [J]. Small. 2009, 5(22): 2494-2509.
    [155]Burello E, Worth A. Computational nanotoxicology predicting toxicity of nanoparticles [J]. Nature Nanotechnology, 2011, 6(3): 138-139.
    [156]Barnard A, Li C M, Zhou R, et al. Modelling of the nanoscale [J]. Nanoscale, 2012, 4(4): 1042-1043.
    [157]Liu H H, Surawanvijit S, Rallo R, et al. Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number Monte Carlo simulation [J]. Environmental Science Technology, 2011, 45(21): 9284-9292.
    [158]Toropov A A, Leszczynska D, Leszczynski J. Predicting water solubility and octanol water partition coefficient for carbon nanotubes based on the chiral vector [J]. Computational Biology and Chemistry,2007,31(2):127-128.
    [159]Martin D, Maran U, Sild S, et al. QSPR modeling of solubility of polyaromatic hydrocarbons and fullerene in 1-octanol and n-heptane [J]. Journal of Physical Chemistry B,2007,111(33):9853-9857.
    [160]Toropov A A, Leszczynski J. A new approach to the characterization of nanomaterials:Predicting Young's modulus by correlation weighting of nanomaterials codes [J]. Chemical Physics Letters, 2006,433(1-3):125-129.
    [161]Toropov A A, Toropova A P, Benfenati E, et al. Additive InChl-based optimal descriptors:QSPR modeling of fullerene C60 solubility in organic solvents [J]. Journal of Mathematical Chemistry,2009, 46(4):1232-1251.
    [162]Toropov A A, Toropova A P, Benfenati E, et al. CORAL:QSPR models for solubility of C60and C70 fullerene derivatives [J]. Molecular Diversity,2011,15(1):249-256.
    [163]Toropov A A, Rasulev B F, Leszczynska D, et al. Additive SMILES based optimal descriptors: QSPR modeling of fullerene C60 solubility in organic solvents [J]. Chemical Physics Letters,2007, 444(1-3):209-214.
    [164]Toropov A A, Leszczynska D, Leszczynski J. QSPR study on solubility of fullerene C60 in organic solvents using optimal descriptors calculated with SMILES [J]. Chemical Physics Letters,2007, 441(1-3):119-122.
    [165]Rasulev B E, Toropov A A, Hamme A T, et al. Multiple linear regression analysis and optimal descriptors:Predicting the cholesteryl ester transfer protein inhibition activity [J]. QSAR and Combinatorial Science,2008,27(5):595-606.
    [166]Puzyn T, Rasulev B, Gajewicz A, et al. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles [J]. Nature Nanotechnology,2011,6(3):175-178.
    [167]Liu R, Rallo R, George S, et al. Classification nano-SAR development for cytotoxicity of metal oxide nanoparticles [J]. Small,2011,7(8):1118-1126.
    [168]Fourches D, Pu D Q Y, Tassa C, et al. Quantitative nanostructure-activity relationship modeling [J]. ACS Nano,2010,4(10):5703-5712.
    [169]Zhang H Y, Ji Z X, Xia T, et al. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation [J]. ACS Nano,2012, 6(5):4349-4368.
    [170]Ge C C, Du J F, Zhao L, et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity [J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(41): 16968-16973.
    [171]Li D, Lyon D Y, Li Q, et al. Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of a fullerene water suspension [J]. Environmental Toxicology and Chemistry, 2008,27(9):1888-1894.
    [172]Hyung H, Fortner J D, Hughes J B, et al. Natural organic matter stabilizes carbon nanotubes in the aqueous phase [J]. Environmental Science and Technology,2007,41(1):179-184.
    [173]Li Q, Xie B, Hwang Y S, et al. Kinetics of C60 fullerene dispersion in water enhanced by natural organic matter and sunlight [J]. Environmental Science and Technology,2009,43(10):3574-3579.
    [174]Yang K, Lin D H, Xing B S. Interactions of humic acid with nanosized inorganic oxides [J]. Langmuir, 2009, 25(6): 3571-3576.
    [175]Chen K L, Flimelech M. Influence of humic acid on the aggregation kinetics of fullerenc (C60) nanoparticles in monovalent and divalent electrolyte solutions [J]. Journal of Colloid and Interface Science, 2007, 309(1): 26-34.
    [176]Alvira E, Mayoral J A, Garcia J I. Molecular modelling study of/i-cyclodextrin inclusion complexes [J]. Physical Review Letters, 1997,271(1-3): 178-184.
    [177]Surnev S, Fortunelli A, Netzer F P. Structure-property relationship and chemical aspects of oxide-metal hybrid nanostructures [J]. Chemical Reviews, 2012, dx.doi.org/10.1021/cr300307n.
    [178]Tagmatarchis N, Shnohara H. Fullerenes in medical chemistry and their biological applications [J]. Mini-Reviews in Medicinal Chemistry, 2001, 1(4): 339-348.
    [179]Osawa E. Perspective of fullerene nanotechnology [M]. Berlin, Germany:Springer, 2002.
    [180]Bosi S, Da Ros T, Spalluto G, et al. Fullerene derivatives: An attractive tool for biological applications [J]. European Journal of Medical Chemistry, 2003, 38(11-12): 913-923.
    [181]Duncan L K, Jinschek J R, Vikesland P J. C60 colloid formation in aqueous systems: Effects of preparation method on size, structure, and surface, charge [J]. Environmental Science and Technology, 2008, 42(1): 173-178.
    [182]Xie B, Xu Z H, Guo W H, et al. Impact of natural organic matter on physicolchemical properties of aqueous C60 nanoparticles [J]. Environmental Science and Technology, 2008, 42(8): 2853-2859.
    [183]Chang X J, Vikesland P J. Effects of carboxylic acids on nC60 aggregate formation [J]. Environmental Pollution, 2009, 157(4): 1072-1080.
    [184]Atalay Y B, Carbonaro R F, Di Toro D M. Distribution of proton dissociation constants for model humic and fulvic acid molecules [J]. Environmental Science and Technology, 2009, 43(10): 3626-3631.
    [185]Solomon D, Lehmann J, Kinyangi J, et al. Carbon (Is) NEXAFS spectroscopy of biogeochemically relevant reference organic compounds [J]. Soil Chemistry, 2009, 73(6): 1817-1830.
    [186]Li N, Lee H K. Tandem-cartridge solid-phase extraction followed by GC/MS analysis for measuring partition coefficients of association of polycyclic aromatic hydrocarbons to humic acid [J]. Analytical Chemistry, 2000, 72(21): 5272-5279.
    [187]Georgi A, Kopinke F-D. Validation of a modified flory-huggins concept for description of hydrophobic organic compound sorption on dissolved humic substances [J]. Environmental Toxicology and Chemistry, 2002, 21 (9): 1766-1774.
    [I88]Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Physical Review B, 1992, 45(23): 13244-13249.
    [189]Lee C T, Yang W T, Parr R G. Development of the colles-alvetti correlation-energy formula into a functional of the electron density [J]. Physical Review B, 1988, 37(2): 785-789.
    [190]Singh U C, Kollman P A. An approach to computing electrostatic charges for molecules [J]. Journal of Computational Chemistry, 1984, 5(2): 129-145.
    [191]Bayly C I, Cieplak P, Cornell W D, et al. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The resp model [J]. Journal of Physical Chemistry, 1993,97(40): 10269-10280.
    [192]Bakalarski G, Grochowski P. Molecular and electrostatic properties of the N-methylated nucleic acid bases by density functional theory [J]. Chemical Physics,1996,204(2-3):301-311.
    [193]Klamt A. Conductor-like screening model for real solvents:A new approach to the quantitative calculation of salvation phenomena [J]. Journal of Physical Chemistry,1995,99:2224-2235.
    [194]Chiou C T, Kile D E, Brinton T I, et al. A comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids [J]. Environmental Science and Technology,1987,21(12):1231-1234.
    [195]Jafvert C T, Kulkarni P P. Buckminsterfullerene's (C60) octanol-water partition coefficient (KOW) and aqueous solubility [J]. Environmental Science and Technology,2008,42(16):5945-5950.
    [196]Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental organic chemistry [M],2nd Edition. Hoboken, New Jork:Wiley,2003:135-175.
    [197]Michalkova A, Gorb L, Hill F, et al. Can the gibbs free energy of adsorption be predicted efficiently and accurately:An M05-2X DFT study [J]. The Journal of Physical Chemistry A,2011,115(11), 2423-2430.
    [198]Shukla M K, Leszczynski J. Fullerene (C60) forms stable complex with nucleic acid base guanine [J]. Chemical Physics Letters,2009,469(1-3):207-209.
    [199]Zhao J, Buldum A, Han J, et al. Gas molecule adsorption in carbon nanotubes and nanotube bundles [J]. Nanotechnology,2002,13(2):195-200.
    [200]Tournus F, Charlier J C. Ab initio study of benzene adsorption on carbon nanotubes [J]. Physical Review B,2005,71 (16):1645211-1645218.
    [201]Brunet L, Lyon D, Hotze E, et al. Comparative photoactivity and antibacterial properties of C6o fullerenes and titanium dioxide nanoparticles [J]. Environmental Science and Technology,2009, 43(12):4355-4360.
    [202]Zhou Z X, Parr R G. Activation hardness:New index for describing the orientation of electrophilic aromatic substitution [J]. Journal of the American Chemical Society,1990,112(15):5720-5724.
    [203]LoPachin R M, Gavin T, Petersen D R, et al. Molecular mechanisms of 4-Hydroxy-2-nonenal and acrolein toxicity:Nucleophilic targets and adduct formation [J]. Chemical Research in Toxicology, 2009,22(9):1499-1508.
    [204]Terashima M, Nagao S. Solubilization of [60]fullerene in water by aquatic humic substances [J]. Chemistry Letters,2007,36(2):302-303.
    [205]Daniel M C, Astruc D. Gold nanoparticles:Assembly, supramolecular chemistry, quantum size related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chemical Reviews,2004,104(1):293-346.
    [206]Fernandez-Garcia M, Martinez-Arias A, Hanson J C, et al. Nanostructured oxides in chemistry: Characterization and properties [J]. Chemical Reviews,2004,104(9):4063-4104.
    [207]Trindade T, O'Brien P, Pickett N L. Nanocrystalline semiconductors:Synthesis, properties, and perspectives [J]. Chemistry of Materials,2001,13(11):3843-3858.
    [208]Horn D, Rieger J. Organic nanoparticles in the aqueous phase-theory, experiment, and use [J]. Angewandte Chemie-International Edition,2001,40(23):4331-4361.
    [209]Kwon S, Fan M, Cooper A T, et al. Photocatalytic applications of micro- and nano-TiO2 in environmental engineering [J]. Critical Reviews in Environmental Science and Technology, 2008. 38(3): 197-226.
    [210]Ma J Y, Zhao H W, Mercer R R, et al. Cerium oxide nanoparticle-induced pulmonary inflammation and alveolar macrophage functional change in rats [J]. Nanotoxicology, 2011, 5(3): 312-325.
    [211]Pan Z, Lee W, Slutsky L, et al. Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells [J]. Small, 2009, 5(4): 511-520.
    [212]Clemente Z, Castro V L, Jonsson C M, et al. Ecotoxicology of nano-TiO2: An evaluation of its toxicity to organisms of aquatic ecosystems [J]. Interantional Journal of Environmental Research, 2012, 6(1): 33-50.
    [213]Zhang H F, He X, Zhang Z Y, et al. Nano-CeO2 exhibits adverse effects at environmental relevant concentrations [J]. Environmental Science and Technology, 2011, 45(8): 3725-3730.
    [214]Toussaint M W, Shedd T R, Vanderschalie W H, et al. A comparison of standard acute toxicity tests with rapid-screening toxicity tests [J]. Environmental Toxicology and Chemistry, 1995, 14(5): 907-915.
    [215]Domingos R F, Simon D F, Mauser C, et al. Bioaccumulation and effects of CdTe/CdS quantum dots on Chlamydomonas reinhurdtiii-nanoparticles or the free ions? [J]. Environmental Science and Technology, 2011,45(18): 7664-7669.
    [216]Hartmann N B, Von der Kammer F, llofmann T, et al. Algal testing of titanium dioxide nanoparticles-Testing considerations, inhibitory effects and modification of cadmium bioavailability [J]. Toxicology, 2010, 269(2-3): 190-197.
    [217]Ji J. Long Z F, Lin D H. Toxicity of oxide nanoparticles to the green algae Chlorellu sp[J]. Chemical Engineering Journal, 2011, 170(2-3): 525-530.
    [218]Van Hoecke K, Quik J T K, Mankiewicz-Boczek J, et al. Fate and effects of CO2 nanoparticles inaquatic ecotoxicity tests [J]. Environmental Science and Technology, 2009, 43(12): 4537-4546.
    [219]Eastman J. Colloid stability. In: Cosgrove T, ed. Colloid science: Principles, methods and applications [M]. Oxford: Blackwell Publishing, 2005: 46-58.
    [220]CJuiot C, Spalla O. Stabilization of TiO2 nanoparticles in complex medium through a pH adjustment protocol [J]. Environmental Science and Technology, 2013. 47(2): 1057-1064.
    [221]Domingos R F, Tufenkji N, Wilkinson K I. Aggregation of titanium dioxide nanoparticles: Role of a fulvic acid [J]. Environmental Science and Technology, 2009, 43(5): 1282-1286.
    [222]OECD (Organization for Economic Cooperation and Development). OECD guideline for testing of chemicals 'Freshwater Alga and Cyanobacteria, Growth Inhibition Test", draft revised guideline 201. Pairs: OECD, 2002.
    [223]Gomez-Merino A 1, Rubio-lleniandez F J. Velazquez-Navano J F, el al. The Hamaker constant of anatase aqueous suspensions[J]. Journal of Colloid and Interface Science, 2007, 3 16(2): 451-456.
    [224]Song J E, Phcnrat T, Marinakos S, et al. Hydrophobic interactions increase attachment of gum arabic-and PVP-coated Ag nanoparticles to hydrophobic surfaces [J]. Environmental Science and Technology, 2011.45(14): 5988-5995.
    [225]Vigneault B, Percot A, Lafleur M, et al. Permeability changes in model and phytoplankton membranes in the presence of aquatic humic substances [J]. Environmental Science and Technology, 2000,34(18):3907-3913.
    [226]Liu W, Chen S, Quan X, et al. Toxic effect of serial perfluorosulfonic and perfluorocarboxylic acids on the membrane system of a freshwater alga measured by flow cytometry [J]. Environmental Toxicology and Chemistry,2008,27(7):1597-1604.
    [227]Louzao M C, Ares I R, Vieytes M R, et al. The cytoskeleton, a structure that is susceptible to the toxic mechanism activated by palytoxins in human excitable cells [J]. Febs Journal,2007,274(8): 1991-2004.
    [228]Cai X Y, Liu W P, Jin M Q, et al. Relation of diclofop-methyl toxicity and degradation in algae cultures [J]. Environmental Toxicology and Chemistry,2007,26(5):970-975.
    [229]Li Y, Zhang W, Niu J, et al. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles [J]. ACS Nano,2012,6(6): 5164-5173.
    [230]Forney M W, Poler J C. Significantly enhanced single-walled carbon nanotube dispersion stability in mixed solvent systems [J]. The Journal of Physical Chemistry C,2011,115(21):10531-10536.
    [231]Ji Z, Jin X, George S, et al. Dispersion and stability optimization of TiO2 nanoparticles in cell culture media [J] Environmental Science and Technology,2010,44(19):7309-7314.
    [232]Kim Y H, Kim K S, Kwak N J, et al. Cytotoxicity of yellow sand in lung epithelial cells [J]. Journal of Biosciences,2003,28(1):77-81.
    [233]Fang X H, Yu R, Li B Q, et al. Stresses exerted by ZnO, CeO2 and anatase TiO2 nanoparticles on the Nitrosomonas europaea [J]. Journal of Colloid and Interface Science.2010,348(2):329-334.
    [234]Nowack B, Krug H F, Height M.120 Years of nanosilver history:Implications for policy makers [J]. Environmental Science and Technology,2011,45(4):1177-1183.
    [235]Farkas J, Peter H, Christian P, et al. Characterization of the effluent from a nanosilver producing washing machine [J]. Environment International,2011,37(6):1057-1062.
    [236]Christensen F M, Johnston H J, Stone V, et al. Nano-silver-feasibility and challenges for human health risk assessment based on open literature [J]. Nanotoxicology,2010,4(3):284-295.
    [237]Wijnhoven S W P, Peijnenburg W J G M, Herberts C A, et al. Nano-silver-A review of available data and knowledge gaps in human and environmental risk assessment [J]. Nanotoxicology,2009,3(2): 109-138.
    [238]Panacek A, Kvitek L, Prucek R, et al. Silver colloid nanoparticles:Synthesis, characterization, and their antibacterial activity [J]. Journal of Physical Chemistry B,2006.110(33):16248-16253.
    [239]Roh J Y, Sim S J, Yi J, et al. Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics [J]. Environmental Science and Technology,2009, 43(10):3933-3940.
    [240]Powers C M, Badircddy A R, Ryde I T, et al. Silver nanoparticles compromise neurodevelopment in PC12 cells:Critical contributions of silver ion, particle size, coating, and composition [J]. Environmental Health Perspectives,2011,119(1):37-44.
    [241]Quik J T K, Vonk J A, Hansen S F. et al. How to assess exposure of aquatic organisms to manufactured nanoparticles? [J]. Environment International,2011.37(6):1068-1077.
    [242]Jefferson W. 2003. Colloidal silver today: The all natural, wide-spectrum germ killer [M]. Healthy Living Publications, USA.
    [243]Sotiriou G A, Pratsinis S E. Antibacterial activity of nanosilver ions and particles [J]. Environmental Science and Technology, 2010, 44(14): 5649-5654.
    [244]Laban G, Nies L F, Turco R F, et al. The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos [J]. Ecotoxicology, 201 1, 19(1): 185-195.
    [245]Fortin C, Campbell P G C. Thiosulfate enhances silver uptake by a green alga: Role of anion transporters in metal uptake [J]. Environmental Science and Technology, 2001, 35(11): 2214-2218.
    [246]Ratte H T. Bioaccumulation and toxicity of silver compounds: A review [J]. Environmental Toxicology and Chemistry, 1999, 18(1): 89-108.
    [247]Wood C M, Playle R C, Hogstrand C. Physiology and modeling of mechanisms of silver uptake and toxicity in fish [J]. Environmental Toxicology and Chemistry, 1999, 18(1): 71-83.
    [248]Bradford A, Handy R D, Readman J W, et al. Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments [J]. Environmental Science and Technology, 2009, 43(12): 4530-4536.
    [249]Taurozzi J S, Hackley V A, Wiesner M R. Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment-issues and recommendations[J]. Nanotoxicology, 2011, 5(4): 711-729.
    [250]Hermsen S A B, van den Brandhof E-J, van der Ven L T M, et al. Relative embryotoxicity of two classes of chemicals in a modified zebrafish embryotoxicity test and comparison with their in vivo potencies[J]. Toxicology in Vitro, 2011, 25(3): 745-753.
    [251 ]Adams N W H, Kramer J R. Potentiometric determination of silver thiolate formation constants using a Ag2S electrode [J]. Aquatic Geochemistry, 1999, 5(1): 1-11.
    [252]Velzeboer I, Hendriks A J, Ragas A M J, el al. Aquatic ecotoxicity tests of some nanomaterials[J]. Environmental Toxicology and Chemistry, 2008, 27(9): 1942-1947.
    [253]Lammer E, Carr G J, Wendler K, et al. Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? [J]. Comparative Biochemistry and Physiology C: Pharmacology Toxicology and Endocrinology, 2009, 149(2): 196-209.
    [254]King-Heiden T C, Wiecinski P N, Mangham A N, et al. Quantum dot nanotoxicity assessment using the zebrafish embryo [J]. Environmental Science and Technology, 2009, 43(5): 1605-1611.
    [255]Vijver M G, Elliott E G, Peijnenburg W J G M, et al. Response predictions for organisms water-exposed to metal mixtures: A meta-analysis [J]. Environmental Toxicology and Chemistry. 201 1,30(6): 1482-1487.
    [256| Henry C J, Higgins K F, Buhl K J. Acute toxicity and hazard assessment of rodeo, X-77 spreader, and chem-trol to aquatic invertebrates [J]. Archives of Environment Contamination and Toxicology, 1994, 27(3): 392-399.
    [257]Thio B J R, Montcs M O, Mahmoud M A, el al. Mobility of capped silver nanoparticles under environmentally relevant conditions [J]. Environmental Science and Technology, 2012. 46(13): 6985-6991.
    [258]McLaughlin J, Bonzongo J C. Effects of natural water chemistry on nanosilver behavior and toxicity to Ceriodaphnia dubia and Pseudokirchneriella subcapitata [J]. Environmental Toxicology and Chemistry, 2012, 31(1): 168-175.
    [259]Zhao C M, Wang W X. Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna [J]. Environmental Science and Technology,2010,44(19):7699-7704.
    [260]Yeo M K, Yoon J W. Comparison of the effects of nano-silver antibacterial coatings and silver ions on zebrafish embryogenesis [J]. Molecular & Cellular Toxicology,2009,5(1):23-31.
    [261]Asharani P V, Wu Y L, Gong Z Y, et al. Toxicity of silver nanoparticles in zebrafish models [J]. Nanotechnology,2008,19(25):255102.
    [262]Lee K J, Nallathamby P D, Browning L M, et al. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos [J]. ACS Nano,2007,1(2): 133-143.
    [263]Sharma V K, Akaighe N, MacCuspie R I, et al. Humic acid-induced silver nanoparticle formation under environmentally relevant conditions [J]. Environmental Science and Technology,2011,45(9): 3895-3901.
    [264]El Badawy A M, Luxton T P, Silva R G, et al. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions [J]. Environmental Science and Technology,2010,44(4):1260-1266.
    [265]Diegoli S, Manciulea A L, Begum S, et al. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules [J]. Science of the Total Environment,2008,402(1): 51-61.
    [266]Sal'nikov D S, Pogorelova A S, Makarov S V, et al. Silver ion reduction with peat fulvic acids [J]. Russian Journal of Applied Chemistry,2009,82(4):545-548.
    [267]Lowry G V, Li Z Q, Greden K, et al. Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli [J]. Environmental Science and Technology,2010,44(9): 3462-3467.
    [268]Liu W, Wu Y A, Wang C, et al. Impact of silver nanoparticles on human cells:Effect of particle size [J]. Nanotoxicology,2010,4(3):319-330.
    [269]Zhao C M, Wang W X. Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna [J]. Environmental Toxicology and Chemistry,2011,30(4):885-892.
    [270]Chae Y J, Pham C H, Lee J, et al. Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes) [J]. Aquatic Toxicology,2009,94(4):320-327.
    [271]Choi O, Deng K K, Kim N J, et al. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth [J]. Water Research,2008,42(12):3066-3074.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700