用户名: 密码: 验证码:
高铁硫化锌精矿和多金属复杂硫化矿加压浸出工艺及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对高铁硫化锌精矿及多金属复杂硫化矿的加压浸出工艺和理论进行了系统研究。
     文中首先总结了我国有色冶金工业的成就与存在问题,介绍了加压湿法冶金的历史沿革,特别强调了加压湿法冶金的优越性及其在有色冶金中的重要作用。介绍了国内外加压湿法冶金的进展,叙述了国内外针对高铁硫化锌精矿及多金属复杂硫化矿采用加压浸出技术的研究成果和工业应用状况,从而明确提出了本论文的研究意义及主要研究内容。
     论文研究内容主要分为两大部分:高铁硫化锌精矿氧压浸出的基础理论研究和多金属复杂硫化矿氧压浸出工艺研究。
     在高铁硫化锌精矿氧压浸出基础理论研究部分:(1)分析了高铁硫化锌精矿氧压浸出过程的热力学规律,并绘制了298K下的(Zn_(0.75)Fe_(0.25)S—H_2O系φ-pH图,从热力学上说明了氧压浸出用于处理高铁硫化锌精矿的优越性;分析了氧压浸出时H_2S的生成并结合试验中所发现的现象阐明了H_2S生成对钛质釜体的腐蚀作用,提出了腐蚀机理,在此基础上提出了一条钛质加压釜安全操作的原则;计算了硫化锌精矿加压浸出的热平衡,计算结果表明,反应热不足以平衡物料升温到温度(150℃)所需的热量,需要从外部补充热量,提出了一个返回浸出的废电解液需要达到的预热温度的方法。(2)从工艺角度研究了矿样粒度、搅拌速度、温度、氧分压、酸度、时间、添加剂、精矿中铁含量和液固比等因素对锌、铁浸出率的影响。结果表明:温度、浸出时间、酸度对浸出影响最为显著。试验获得浸出合理的工艺条件为:矿样粒度-320目、温度140~150℃、总压力1.2~1.4MPa(即氧分压0.9~1.1 MPa)、始酸浓度H_2SO_4 150~170g/L、液固比5~6∶1、浸出时间2~2.5h、搅拌速度600~650r/min、添加剂用量为矿量的0.8~1.0%。在该给予条件下浸出,锌浸出率>97%,铜浸出率>90%,铁浸出率在30~35%之间,硫转化率在70~85%之间。(3)在确定的条件下,进行了高铁硫化锌精矿氧压浸出过程动力学研究,发展了原有的液-固反应“收缩核动力学模型”,使其能适用于一种固相物与多种水溶物种的反应,建立了高铁硫化锌精矿氧压浸出过程的动力学数学模型,并就浸出过程的反应机理进行了探讨分析,对硫化锌精矿加压浸出时铁的作用作出了解释。高铁硫化锌精矿氧压浸出过程动力学研究是本部分的重点研究内容,研究结果表明:高铁硫化锌精矿浸出过程中,对于Zn而言,浸出过程由表面化学反应所控制,遵循“未反应核减缩型”的表面化学反应控制的动力学规律,其反应活化能为55.04kJ/mol,酸度对Zn浸出反应的表观反应级数为-0.3182;对于Fe而言,浸出过程在浸出初期浸出速率受表面化学反应控制,遵循“未反应核减缩型”表面化学反应控制的动力学规律,其化学反应活化能为26.63 kJ/mol。
     建立高铁硫化锌精矿氧压浸出Zn浸出率动力学数学模型为:
     α%=100×{1-[1-exp(2.1704-6606.005×1/T+0.7791nP-0.3121n[C]+142.425[Fe]+27.941[Fe~(2+)])t/r_0]~3}
     在多金属复杂硫化矿氧压浸出工艺研究部分:(1)从理论上分析了多金属复杂硫化矿加压浸出的热力学规律和各种硫化物相对稳定的程度及其溶解顺序。(2)从工艺生产的角度研究了矿样粒度、搅拌速度、温度、氧分压、酸度、时间、添加剂和液固比等因素对多金属复杂硫化矿精矿中各种金属浸出率的影响。试验获得合理的浸出工艺条件为:矿样粒度-320目、温度145~150℃、总压力1.5MPa(即氧分压1.1 MPa)、始酸浓度H_2SO_4 150g/L、液固比8∶1、浸出时间2h、搅拌速度600~650r/min、添加剂用量为矿量的0.5~1.0%。在该条件下浸出,多金属复杂硫化矿精矿中Zn浸出率在99%以上,Cu浸出率在91%以上,浸出渣中含Cu<0.5%,Fe则95%以上进入溶液,金属Pb、金属Ag则98%以上进入浸出渣中,单质硫转化率为70%左右。(3)对低品位多金属复杂混合精矿和多金属复杂硫化矿(原矿)进行了加压浸出研究,从而也确定了该两种矿物的合理浸出工艺条件。(4)进行了多金属复杂硫化矿综合利用回收有价金属的新工艺流程研究。氧压浸出液经预中和除铁后与锌冶炼厂现有的中性浸出工序衔接,浸出渣则与熔池熔炼火法炼铅工序衔接,从而实现多金属复杂硫化矿中Cu、Zn、Pb、Ag、In、Cd、S等的综合回收利用。这一工艺路线比多金属复杂硫化矿分选分冶工艺有选冶总回收率高,投资省,对环境污染小等优越性,查新表明,该工艺路线有新颖性。
In this dissertation the technology and fundamentals of pressure leaching of high iron-zinc sulphide concentrate and polymetallic sulphide ore are studied systematically.
     The achievements and existing problems of non-ferrous metallurgical industry in our country are summarized and historical evolution of pressure hydrometallurgy is presented with an emphasis on its advantages and important role in non-ferrous metallurgy. The advances in pressure hydrometallurgy and the research achievements and industrial application status of pressure leaching of high iron-zinc sulphide concentrate and polymetallic sulphide ore at home and abroad are briefed, thereby significance and main contents of this research are put forward explicitly.
     This dissertation can be divided up into two parts: investigation into the fundamentals of oxygen pressure leaching of high iron- zinc sulphide concentrate and research on the technology of oxygen pressure leaching of polymetallic sulphide ore.
     In the first part, (1)the thermodynamic laws of oxygen pressure leaching of high iron-zinc sulphide concentrate are analysed, theφ-pH diagram of (Zn_(0.75)Fe_(0.25) )S-H_2O system at 298K is constructed, and the superiority of oxygen pressure leaching of high iron-zinc sulphide concentrate is shown from the standpoint of the thermodynamics. The formation of H_2S in the oxygen pressure leaching process is also analysed, the chemical attack of H_2S on titanium-base autoclave is observed and the corrosion mechanism is proposed, and the safe working rules are recommended. And the heat balance of pressure leaching of zinc sulphide concentrate is calculated. The results indicate that reactive heat quantity is not balanced with heat quantity for heating up the slurry to 150°C and require supply exteriorly. The method of preheating temperature of reture spent electrolyte for leaching is proposed. (2)the effects of particle size, agitation rate, temperature, oxygen partial pressure, initial acid concentration, leaching time, additive, iron content in the concentrate and liquid-to-solid ratio on the leaching rates of zinc ,copper and iron are examined from the technological angle. The results show that the effects of temperature, leaching time and acidity are predominant. The reasonable technological conditions obtained by experiment are: the particle size of the sample is -320 mesh, the temperature 140℃to 150℃, the leaching time 2 hours to 2.5 hours, the initial acid concentration 150g/L to 170g/L, the overall pressure 1.2MPa to 1.4MPa, or the oxygen partial pressure 0.9MPa to 1.1Mpa, the liquid-to-solid ratio 5:1 to 6:1, the agitation rate 600r/min to 650 r/min, and the amount of additive 0.8% to 1.0% of the sample amount. Under these experiment conditions, the leaching rate of zinc is greater than 97%, the leaching rate of copper greater than 90%, the leaching rate of iron 30% to 35%, and the output rate of sulphur is 70% to 85%. (3)Under the determined kinetic conditions, the kinetics of oxygen pressure leaching of high iron-zinc sulphide concentrate is studied, the original "kinetic model of shrinking core" for liquid-solid reaction is developed andapplied to the reaction of a solid species with two or more water-soluble species, a mathematical model for this leaching process is obtained, and the reaction mechanism of this leaching process is discussed and analysed. The role of iron in the process of pressure leaching of zinc sulphide concentrate is explained. The kinetic study of oxygen pressure leaching of high iron-zinc sulphide concentrate is emphasis of this part, and the results show that as to zinc the leaching process is controlled by the surface chemical reaction and follows the kinetic law of "shrinking of unreacted core", the reaction activation energy is 55.04kJ/mol, the apparent reaction order with respect to the initial acid concentration is -0.3182; and as to iron, at the initial stage the leaching process is controlled by the chemical reactions and follows the surface chemical reaction-controlled kinetic law of "shrinking of unreacted core", and the reaction activation energy is 26.63kJ/mol.
     The kinetic mathematical model for leaching process is :α%=100×{1-[1-exp(2.1704-6606.005×1/T+0.779lnP-0.312ln[C] + 142.425[Fe]+27.941[Fe~(2+)])t/r_0]~3}
     In the second part, (l)the thermodynamic laws of oxygen pressure leaching of polymetallic sulphide ore, and the relative stability and dissolution order of various sulphides are analysed theoretically. (2)The effects of particle size, agitation rate, temperature, oxygen partial pressure, initial acid concentration, leaching time, additive, and liquid-to-solid ratio on the leaching rates of various metals in the samples are examined from the technological angle. The reasonable technological conditions obtained by experiment are: the particle size of the sample is -320 mesh, the temperature 145℃to 150℃, the overall pressure 1.5MPa, or the oxygen partial pressure 1.1MPa, the initial acid concentration 150g/L, the liquid-to-solid ratio 8:1, the leaching time 2 hours, the agitation rate 600r/min to 650 r/min, and the amount of additive 0.5% to 1.0% of the sample amount. Under these experiment conditions, the leaching rate of zinc is greater than 99%, the leaching rate of copper greater than 91%(the Cu content in the residue is less than 0.5%), the leaching rate of iron greater than 95%, more than 98% of lead and silver are left in the residue, and the output rate of sulphur is about 70%. (3)Reserch on oxygen pressure leaching of low-grade mixed polymetallic sulphide concentrate and polymetallic run-of-mine sulphide ore is conducted, and the reasonable technological conditions are determined. (4)A new technological process of comprehensive utilization of polymetallic sulphide ore and concentrate and recovery of valuable metals is suggested. The leaching liquor is pre-neutralized to precipitate iron and then sent to the neutral leaching section in an existing zinc production plant. The residue is sent to the lead bath smelting section. Thus Zn, Cu, Pb, Ag, In, Cd, and S in the polymetallic sulphide ore can be recovered comprehensively. By comparison with traditional process selective of flotation followed by separate metallurgical treatments, the advantages of the new process are as follows: the overall recovery is higher, the capital costs are lower, and the levels of environmental pollution are abated. The results of up-to-date back-check of literature indicate that the new process is novel one.
引文
[1] 陈家镛等.湿法冶金手册[M].北京:冶金工业出版社,2005
    [2] 柴成栋 摘译,夏德长 校.硫化锌精矿湿法与火法冶金工艺的发展与比较[J].E&MJ,1990(5):52-56
    [3] 蒋继穆.我国铅锌冶炼现状与持续发展[J].中国有色金属学报,2004,14(S1):52-62
    [4] 康义.我国有色金属工业发展报告[R]在中国有色金属学会团体会员单位工作会议上的讲话.2006-4-15
    [5] 陈智.深化改革,加快发展[J].中国经贸导刊,2003(11):54-54
    [6] 中国科学技术信息研究所加工整理.湿法冶金技术对矿产资源有效利用和可持续发展发挥作用[EB/OL].http://www.atk.com.cn/
    [7] 陈志宇,唐志亚,刘梦岐.我国铅锌工业竞争能力分析[J].世界有色金属,2002(12):10-12
    [8] 陈志宇.我国铅锌资源状况及市场形势分析[J].世界有色金属,2002(10):7-10,37
    [9] 马永刚.铅锌精矿短缺制约我国铅锌工业长足发展[J].世界有色金属,2002(2):14-15,9
    [10] 戴自希,张家睿.世界铅锌资源和开发利用现状.世界有色金属,2004,(3): 22-23
    [11] 王京彬.新疆矿产资源与勘查进展[R].北京矿产地质研究院有色金属矿产地质调查中心.2005年11月新疆科技创新大会报告资料
    [12] 汪继武,康殿芬.代表当今世界最高水平锡冶金技术在滇获重大突破[N]云南日报,2004-5-24
    [13] 云南冶金集团总公司供稿.云南冶金集团总公司—技术创新[EB/OL].http://www.cymg.com/scitech.asp
    [14] 昆明理工大学.真空冶金国家工程实验室组建方案[R].(内部资料)昆明, 2005.3
    [15] 史谊峰,杨小琴,李云等.艾萨熔炼技术在云铜的实践[J].中国有色冶金, 2006,2:12-18.
    [16] 杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,1998
    [17] 邱伟之 摘译,范家骏 校.湿法冶金进展述评[J].Metals,1988(4):32-38
    [18] 邱定蕃.加压湿法冶金过程化学与工业实践[J].矿冶,1994,3(4):55-67
    [19] Mike Anthony & Doug Flett. Pressure hydrometallurgy: A riview.[M].England. Mineral Industrial Research Organisation. Septenber 2000
    [20] 王吉坤,周廷熙.硫化锌精矿加压酸浸技术及产业化[M].北京:冶金工业出版社,2005
    [21] 《铅锌冶金学》编委会.铅锌冶金学[M].北京:科学出版社,2003
    [22] 陈家镛等.湿法冶金的研究与发展[M].北京:冶金工业出版社,1998
    [23] Nogueira,E.D. Recent advences in the development of hydrometallurgical processes for the treatment of base-metal sulphides[J]. Council for Mineral Technology, v 2,1985,677-693
    [24] 金作美.国外湿法冶金和铅锌工业[J].不详:111-112
    [25] 宋复伦,宁模功 摘译,张丽霞 校.加压湿法冶金的过去-现在和未来[J] 湿法冶金,2001,20(3):165-166
    [26] 汪镜亮 摘译,黄正生 校.加压湿法冶金的研究和发展前景[J].四川有色金属,1992,(1):19-20
    [27] F.Habashi. The origins of pressure hydrometallury[A]. M.J.Collins and V.G.Papangelakis. Pressure Hydrometallurgy 2004 [C]. Banff, Alberta,Canada: The Canadian Institute of Mining ,Metallurgy and Petroleum.2004. 3-20
    [28] Dreisinger, D.R&D Opportunities for pressure hydrometallurgy. JOM 1991,February.
    [29] Habashi, F. Recent advances in pressure leaching technology. Proc XX IMPC, Aachen, September, 1997,129-139.
    [30] Handbook of extractive metallurgy. Ed F Habashi, New developments in zinc production. Vol Ⅱ, Wiley-VCH, 1997,660-661
    [31] 柯家骏.湿法冶金中加压浸出过程的进展[J].湿法冶金,1996,58(2):1-6
    [32] 邓彤.镍钴的加压氧化浸出[J].湿法冶金,1994,50(2):16-22
    [33] 葛振华.我国铅锌资源现状及未来的供应形势.世界有色金属,2003(9): 4~7
    [34] 王恭敏.解决我国有色金属资源严重短缺的对策.世界有色金属,2004(5): 4—8
    [35] 王吉坤,周廷熙,吴锦梅.高铁闪锌精矿加压酸浸新工艺研究[J].有色金属(冶炼部分),2004,(1):5-8
    [36] 董英.高铁硫化锌精矿冶炼工艺探讨[J].云南冶金,2000,29(4):26-29
    [37] 熊文良,童雄.云南铅锌选矿存在的问题与对策[J].国外金属矿选矿,2003, 8: 9-14
    [38] 华一新.有色多金属复杂硫化矿冶金新工艺研究报告[R].昆明:云南省人才基金资助项目,1999
    [39] 李元坤.某含银高铅复杂多金属硫化矿的分离提取[J].矿产综合利用,2003,(5);3-8
    [40] 曾邦任,张庆祥.某金银多金属硫化矿的综合利用研究[J].矿产综合利用,1995,(3);21-27.
    [41] 曾建富.三江地区多金属矿开发利用途径的研究[J].矿产综合利用,1998,(5); 12-15.
    [42] M.J.Couins 等.锌加压浸出工艺的应用[J].株冶科技, 1990, 18 (3—4): 90—100
    [43] 传华摘译.加压浸出技术在锌及其他有色冶金工业的应用[M].E/MJ, 1981,182(12):76-79
    [44] R.M.G.S.Berezowsky 等.加压浸出的工业现状[J].四川有色金属,1992,(1):21-23
    [45] R.M.G.S.Berezowsky 等.加压浸出的工业现状(续)[J].四川有色金属,1992,(2):27-31
    [46] 陈芳流摘译,刘有昌校.加压浸出技术的工业现状[J].有色金属技术经济研究,1993,97(6):29-36
    [47] Veltman. Sherritt Gordon's pressure leaching technology -it's industrial application[J]. Hyrdometallurgy, 1981:1
    [48] B H Johnston. The applicaytion of Sherritt zinc pressure leach technology at the Kidd Greek zinc plant[C]. The 13th Hydrometallurgy Annual Meeting, Cananda,Mar. 1983
    [49] M J Collins. Staring up the Sherritt zinc pressure leach process at Hudson Bay[J]. JOM, 1994,4:51-57
    [50] Chalkley, M.E. et al. Treatment of bulk concentrates by the Sherritt zinc pressure leach process[J]. Minerals Engineering, v 6,n 8-10,Aug-Oct, 1993,937-948
    [51] John C.Wilmot. Concentrate leaching plant startup,operation and optimization at the Phelps Dodge mine in Arizona[A]. M.J.Collins and V.G.Papangelakis. Pressure Hydrometallurgy 2004 [C]. Banff, Alberta,Canada: The Canadian Institute of Mining,Metallurgy and Petroleum.2004. 77-89
    [52] Ozberk E, Jankola W A,Vecchiarelli,eatl. Commercial applications of the Sherritt Zinc Pressure leach process and iron disposal. Mineral processing and Extractive Metallurgical Review, 1995,15,115-133.
    [53] Ozberk E, Jankola W A, Vecchiarelli M earl. Commercial operations of the Sherritt zinc pressure leach process.Hydrometallurgy, 1995,39,49-52.
    [54] Martin M T and Jankola W A. Cominco's Trail zinc pressure leach operation. CIM Bull. 1985,78(876),77-81.
    [55] Jankola W.A. Zinc pressure leaching at Cominco. Hydrometallurgy, 1995,39,63-70.
    [56] Boissoneault M, Gagnon S, Henning R,eayl. Improvements in pressure leaching at Kidd Creek. Hydrometallurgy, 1995,39,79-90.
    [57] Ozberk E, Collins M J, Makwana M, earl. Zinc pressure leaching at the Ruhr-Zink refinery. Hydrometallurgy, 1995,39,53-61.
    [58] Johnson G, Becker G and Dredge K. New technology for treatment of base metal. The AusIMM Annual Conference,1995,115-119.
    [59] 王玉芳,蒋开喜,王海北.高铁闪锌矿低温低压浸出新工艺研究[J].有色金属(冶炼部分),2004,(4):4-6
    [60] 杨 钢, 王吉坤.高铁硫化锌精矿加压浸出技术应用[J].云南冶金,2006,35(1):83-84
    [61] 董英,王吉坤,杨洪枝,等.硫化锌精矿加压浸出技术工业性试验研究报告[R].(内部资料)昆明:云南冶金集团总公司,2005
    [62] 董英,王吉坤,杨洪枝,等.硫化锌精矿加压浸出技术工业性试验工作总结[R].(内部资料)昆明:云南冶金集团总公司,2005
    [63] 云南省科学技术情报研究所.硫化锌精矿加压浸出技术工业性试验查新报告[R].(内部资料)昆明:云南冶金集团总公司,2005
    [64] 作者不详.硫化锌精矿低温加压浸出研究[D].沈阳:东北大学.
    [65] Ftonam 等.硫化锌精矿氧化酸压浸出期间的除铁[J].国外金属矿选矿,1990,(5):9-18
    [66] Sahoo,P.K.et al. Recovery of lead from complex sulphide leach residue by cementation with iron[J]. Hydrometallurgy, v 20,n 2,May, 1998,169-177
    [67] Berezowsky, R.M.G.S. Commercial status of pressure leaching technology[J]. JOM, V 43, n 2, Fed,1991,9-15
    [68] 曾启安 译,孙德堃,王慧芳校.加拿大哈得逊贝矿冶公司的锌加压浸出技术[J].重有色冶炼,1996,(5):30-33
    [69] 陈智和,何醒民.锌精矿氧压浸出技术[J].湖南有色金属,2002,18(1):26-28
    [70] 蒋开喜,林江顺,王海北,等.一种低温下从含锌硫化矿物中提取锌的方法[P].中国,ZL01140484.1,2003.7.
    [71] 夏光祥,方兆珩,等.高铁硫化锌精矿直接浸出新工艺研究[J].有色金属(冶炼部分),2003,(3):9-10
    [72] George Owusu,David B. Dreisinger, Ernest Peters. Effect of surfactants on zinc and iron dissolution rates during oxidative leaching of sphalerite [J]. Hydrometallury,38(1995):315-324
    [73] B.Verbaan and F.K.Crundwell. A electrochemical model for the leaching a sphalerite concentrate[J]. Hydrometallury, 16(1986):345-359
    [74] P.Balaz,A.Alacova,M.Achimovicova,eatl.Mechanochmistry in hydrometallurgy of sulphide minerals [J]. Hydrometallury,77(2005):9-17
    [75] Jean-Pierre Corriou, Roger Gely and Philippe Viers. Thermodynamic Kinetic Study of the Pressure Leaching of Zinc Sulfide in Aqueous Sulfuric Acid[J]. Hydrometallury,21(1988):85-102
    [76] Y.M.Shneerson, E.M.Vigdorchik, E.E.Zhmarin, eatl. Mathematical modeling of pressure leaching of sulphide zinc concentrate [A]. M.J.Collins and V.G.Papangelakis.Pressure.Hydrometallurgy 2004 [32] Banff, Alberta,Canada: The Canadian Institute of Mining ,Metallurgy and Petroleum.2004.983-997
    [77] T.J.Harvey, W.Tai Yen and J.G.Paterson. A kinetic investagation into the pressure oxidation of sphalerite from a complex concentrate[J]. Minerals Engineering, 1993,6:949-967.
    [78] C.A.D'Odorico. Experience with zinc Pressure Leaching of 100% Red Dog zine concentrate at Teck Cominco's Trail Operations[A].M.J.Collins and V.G. Papan- gelakis.Pressure. Hydrometallurgy 2004 [C]. Banff, Alberta,Canada: The Canadian Institute of Mining,Metallurgy and Petroleum.2004.913-927
    [79] R.J.Jan, M.T.Hepworth, and V.G.Fox. A kinetic study on the pressure leaching of sphalerite[J]. Metallurgical Transactions B,1976,7B:353-361
    [80] 作者不详 摘译, 作者不详 校.闪锌矿的加压浸出速度[J].日本矿业会志,1977,1069(93):69-69
    [81] 张武存, 黄芝林, 王万禄.铁闪锌矿氧压酸浸试验[J].云南冶金,1990,(6):39-42
    [82] R.A.Luis et al. Process for non-ferrous metals production from complex sulphide ores containing coper, lead,zinc,silver and/or gold[P]. 美国专利.US4266972.
    [83] 云南省科学技术情报研究所.多金属复杂硫化矿综合利用新工艺研究查新报告[R].昆明:昆明理工大学,2005
    [84] Mackiw V N, Veltman H. Recovery of zinc and lead from complex low-grade sulphide concentrates by acid pressure leaching[J]. The Canadian Mining and Metallurgical Bulletin, 1976,60(657):80-85.
    [85] Johnson, G; Becker, G and Dredge, K. New technology for the treatment of base metals Adding Value to Our Resource—Our Future, AusIMM Annual Conference, 1995,AusIMM, Publication Series No.1/95,115-119.
    [86] Amer, A M. Investigation of the direct hydrometallurgical processing of mechanically activated complex sulphide ore, Akarem area, Egypt. Hydrometallurgy, 1995,38,(3),225-234.
    [87] Zhou Q, Chen T, Yang J, Ma J and Zhou Z. Oxygen pressure acid leaching of bulk flotation concentrate of copper and zinc: a case study. Min. Metall. Engng. 1997, 17,(1),47-50.
    [88] Harvey T J, Yen W T and Paterson J G. Selective zinc extraction from complex copper/zinc sulphide concentrates by pressure oxidation. Miner. Engng. 1992, 5,(9), 975-992.
    [89] Harvey T J, Yen W T. The influence of chalcopyrite,galena and pyrite on the selective extraction of zinc from base metal sulphide concentrates.Miner. Engng. 1998, 11,(1),1-21.
    [90] 李岩.河北某难选(冶)金银多金属原生矿综合利用研究[J].辽宁地质,1998,(4):303-309
    [91] 董春艳,李碧乐,孙丰月,张渊.难选多金属矿石中提取钴、镍、铜和金 的试验研究[J].矿产综合利用,2003,(2);12—15
    [92] 陈永强,张寅生,尹飞,王飞.铅锌混合精矿加压浸出过程研究[J].有色金属,2003(4);55;57-60
    [93] 王海北,蒋开喜,张邦胜,等.新疆某复杂硫化铜矿低温低压浸出工艺研究[J].有色金属,2004(3);56;52—56
    [94] 中国有色金属工业协会科技部供稿.全湿法冶金新工艺[J].中国有色工业,2004,(1):56-57
    [95] 车小奎,等.某多金属硫化矿选矿工艺及伴生金银的回收[J].矿产综合利用,1995,(1):1—5
    [96] Lesia Harahuc et al. Effect of anions on selective solubilization of zinc and copper in bacterial leaching of sulfide ores[J]. Biotechnology and Bioengineering. 2000,69(2):196-203
    [97] P.Balaz. Mechanochemical processing of complex sulphide ores[J].出处不详.
    [98] 陈启元,等.有色金属基础理论研究—新方法与新进展[M].北京:科学出版社,2005
    [99] 张元福,等.硫化铜矿直接电解制取电解铜[P].中国专利 CN1094460
    [100] Shaohe Wang et al. Directly electrolytic extraction of electrolytic coper by copper sulfide ore[P], 中国专利 CN1094460
    [101] Harvey, T.J. et al. Influence of chalcopyrite, galena and pyrite on the selective eltraction of zinc from base metal sulphide concentrates[J]. Mineral Engineering. 1998,11(1):1-21
    [102] 作者不详.多金属低品位硫化矿综合回收全湿法冶金新工艺[EB/OL]。 http://www.ctiinjl.com.on/中国技术创新网—吉林网
    [103] 刘恒,游贤贵,段朝玉.氯盐浸出硫化矿全湿法工艺的实践[J].四川有色金属,1994,(3):7-12
    [104] 张文阁,等.以CuCl_2-氯盐浸出含砷铜矿,有色金属(冶炼部分),1980,3:8-12
    [105] 陈广绪,等.复杂硫化铜矿精矿的选择性浸出,有色金属(冶炼部分),1982,2:22-25
    [106] 刘希澄,等.复杂硫化矿的综合利用,有色金属(冶炼部分),1987,4:25-28
    [107] 邓化华,等.氯盐浸出法处理含金多金属硫化矿,有色金属(冶炼部分),1988,4:22-24
    [108] J.E.Dutrizac. The leaching of sulphide minerals in chloride media, Hydrometallurgy, 1992,29:1-45
    [109] 李元坤,寇建军.铜铅锌银多金属矿湿法分离新工艺[J].有色金属(冶炼部分),2002,(3):11-15
    [110] 李德良,杨 健,邓 文.复杂金矿的预处理工艺研究[J].矿产保护与利用,1997(4):25-29
    [111] 许绍权.从多金属硫化矿中提取金银的研究[J].黄金,1991(12):34—36
    [112] W.Hayduk, DDS contract NO UP 23440-8-9073/01-55, University of Ottawa, ON,May 1991
    [113] Barner, Herbert E., Scheuerman, Ricard V. Handbook of thermochemical data for compounds and aqueous species[M]. Canada:A Wiley-Interscience Publication, 1978.46-89
    [114] 杨显万, 何蔼平, 袁宝州.高温水溶液热力学数据计算手册[M]北京:冶金工业出版社,1983.
    [115] 杭州大学化学系分析化学教研室编.分析化学手册.第一分册[M].北京:化学工业出版社,1997.8
    [116] 李培哲等.分析化学[M].北京:冶金工业出版社,1979
    [117] 杨显万等.有色金属, (1979)№6,27
    [118] Herrn. Erzmetall, Band 29, Heft 5,(1976), 218
    [119] 梅光贵,王德润,周敬元,王 辉.湿法炼锌学[M].长沙: 中南大学出版社,2001
    [120] 徐鑫坤, 魏 昶.锌冶金学[M].昆明:云南科技出版社,1996
    [121] 魏昶,王吉坤.湿法炼锌理论与应用[M].昆明:云南科技出版社,2003
    [122] 路殿坤,蒋开喜,王春,等.辉铜矿和铜蓝的浸出机理研究[J].有色金属,2002,54(3):31-35
    [123] 夏光祥.湿法冶金[M].北京:科学出版社,1978
    [124] 陈新民.火法冶金过程物理化学[M].北京:冶金工业出版社,1994
    [125] Susan A. Baldwin, George P. Demopoulos, and Vladimiros G. Papangelakis. Mathematical modeling of zinc pressure leaching process[J]. Metallurgical and Materials Transactions B. 1995, Vol26B. P. 1035-1047
    [126] 彭金辉,刘纯鹏.微波场中FeCl_3溶液浸出闪锌矿动力学[J].中国有色金属学报,1992,2(1):46-49
    [127] 邓日章,赵天从,钟竹前,梅光贵.酸性条件下ZnS氧化浸出过程动力学 的研究[J].中南矿冶学院学报,1992,23(1):36-42
    [128] 李军旗.几种因素对硫化锌精矿、软锰矿同时浸出的影响[J].贵州工业大学学报(自然科学版),2000,29(3):10-14
    [129] 王兴尧,康晓红,谢慧琴,卢立柱.FeCl_3-HCl-C_2Cl_4体系浸出硫化锌矿的动力学研究[J]化学反应工程与工艺,2003,(2)19:113—119
    [130] 孙召明,赵中伟.冶金化学动力学研究中应注意的几个问题[J].稀有金属与硬质合金,2001,146(9):27-33
    [131] A.E.Torma. Kinetic evaluation of pressure leaching of a zinc-calcine by SO_2 and sphalerite concentrate by oxygen[J]. Metall, 1985,39(9):824-828
    [132] 薛薇.SPSS统计分析方法及应用[M].北京: 电子工业出版社,2004: 233-301
    [133] 刘振航.数学建模[M].北京:中国人们大学出版社,2004.
    [134] 舒毓璋,宝国峰,张 琦,杨 龙.硫化锌精矿与氧化锌矿联合浸出工艺[P].中国,02133662.8, 2004, 02, 25.
    [135] 陈家镛等.湿法冶金中铁的分离与利用[M].北京: 冶金工业出版社,1991.12
    [136] Buban K, Collins M J, Masters I Mand Stiksma J. Pressure acid leaching of zinc and copper concentrates by Dynatec. Pressure Technology Applications in Hydrometallurgy of Copper, Nickel, Cobalt and Precious Metals, EPD 2000 Congress, ed P R Taylor, The Minerals, Metals & Society, 2000,597-605.
    [137] 李洪桂.浸出过程的理论基础及实践 [J].稀有金属与硬质合金,1991,106(9):32-36
    [138] 李洪桂.浸出过程的理论基础及实践 [J].稀有金属与硬质合金,1991,107(12):31-36
    [139] 高铁锌精矿湿法冶炼获得重大突破[N].有色报,2005-5-9
    [140] 1961,P87
    [141] 杨显万,沈庆峰等.微生物湿法冶金[M].北京:冶金工业出版社,2003
    [142] 赵 宙,李小康.铜锌混合矿加压浸出的试验研究[J].中国有色冶金, 2006(3):28-30
    [143] 钮因建.全面增强自主创新能力是我国有色金属工业科技发展的灵魂[R]在“2006年中国有色金属学会第六界青年学术论坛会”上报告.2006-8-3
    [144] F.Habash. Principles of Extractive Metallurgy, Vol.2. Gordon and Breach, New York, 1970
    [145] 马慧娟等.钛冶金学[M].北京:冶金工业出版社,1982
    [146] 邓国珠,罗方承等.钛冶金[M].北京:冶金工业出版社,1998
    [147] 张平民等.工科大学化学(上)[M].长沙:湖南教育出版社,2002
    [148] F.布雷夏,J.阿伦茨,H.迈斯利希,A.图尔克.化学基础[M].北京:冶金工业出版社,1985
    [149] 魏庆成.冶金热力学[M].重庆:重庆大学出版社,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700