用户名: 密码: 验证码:
青海省肯德可克多金属矿床特征及成因分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肯德可克多金属矿床地处柴达木盆地的西南缘—塔柴板块的祁漫塔格弧后裂陷构造带中部的加里东期火山盆地,是近年来祁漫塔格地区发现的最有价值的矿床之一。
     论文以肯德可克多金属矿床为研究对象,在对区域地质背景和矿床地质特征基础上,运用地球化学、流体包裹体岩相学、温度测试及成分分析等方法,开展了矿区成岩成矿机制、成矿流体特征、矿床成因及成矿作用等方面的研究。
     研究表明,肯德可克多金属矿床主要经历了4个成矿期,分别是:热水喷流—沉积作用期;矽卡岩化热液活动期(包括矽卡岩阶段、氧化物阶段和硫化物阶段);晚期构造热液活动期以及表生氧化作用期。不同阶段的流体包裹体特征各异。流体包裹体大小以4-10μm为主,最大40μm。包裹体的形态以椭圆形为主,少数为负晶形。根据包裹体的特征,将其划分为:液相水溶液包裹体、水溶液-二氧化碳包裹体和稀薄二氧化碳相包裹体3种类型。
     矿床流体包裹体气相成分以H2O和CO2为主,含少量有机气体;液相成分中,阳离子以Ca2+.Na+.K+离子为主,阴离子则以Cl-、N03-.S042-为主。成矿溶液属于CO2-Ca2+(Na+、K+)-Cl--(S042-、F-)-H20体系。
     第一阶段的成矿流体具高盐度(19-25wt%NaCl equiv.)高密度(0.817-1.033g/cm3)特征,来源于岩浆热液,温度较高且变化范围较宽。第二阶段的流体为中低盐度(1-12wt%NaCl equiv.)中低密度(0.632-0.982g/cm3)流体,主要来源于为混合水,特别是岩浆水与地下水混合所形成的热液,或是来源于地下热卤水,温度从高温向低温过渡。该阶段发生了CO2不混溶现象,大量CO2分离出来,对矿床部分金属成矿起到很好的叠加富集作用。
Kendekeke polymetallic deposit, located in the southwestern margin of the Chaidamu Basin-the Caledonian volcanic basin in the middle part of the tectonic fault depression zone of Qimantage back-arc of the Tarim-Chaidamu plate, is one of the most valuable deposit which has been discovered recently in Qimantage area. The geochemistry, fluid-inclusion petrography, micro-thermometry, and component analysis were used to research on rock-forming and metallogenic mechanisms, characteristics of ore-forming fluids, genesis of deposit, mineralization and etc., based on regional geological setting and geological features of the deposit.
     According to study, the deposit mainly has 4 mineralization periods: hydrothermal exhalative sedimentation period, skarnized hydrothermal activity period (include skarn-stage, oxide stage and sulfide-stage), late tectonic hydrothermal activity period and hypergene oxidation period. There are various characteristics of inclusions at different stages. The size of inclusions mainly varied from 4 to lOμm, with maximum size of 40μm. Most of inclusions are ellipse in shape and a few have a negative crystal shape. Three types of fluid inclusions have been recognized according to the different characteristics:aqueous, aqueous-CO2, and rarefied CO2 vapor inclusions.
     The gas phase is mainly composed of H2O and CO2, with minor organic gas; the main anions in the liquid composition are Cl-, NO3- and SO42-, the cations are Ca2+, Na+and K+. The ore-forming solutions belong to the CO2-Ca2+(Na+, K+)-Cl--(SO42-,F-)-H2O type.
     The ore-forming solution of the first stage, which originated from magmatic hydrothermal fluid, is characterized by high salinity (19-25wt% NaCl equiv), high density (0.817-1.033g/cm3), and high temperature with a wide variation range. The ore-forming solution of the second stage is medium-low-salinity (1-12wt% NaCl equiv) and medium-low-density (0.632-0.982g/cm3), mainly originated from mixed water, especially the mixture of groundwater and magmatic water or the underground thermal brine, and the transition of temperature changes from high to low. The immiscibility of CO2 made a large amouts of CO2 separate from the fluid during this stage what played a good role in superposition and enrichment of mineralization of partial metals.
引文
[1]Akinfiev, N.N., Zotov, A.V.2001. Thermodynamic description of chloride, hydrosulfi de, and hydroxo complexes of Ag(I), Cu(I), and Au(I) at temperatures of 25-500℃ and pressures of 1-2000 bar. Geochemistry International,39, 990-1006.
    [2]Baker, T., Van Achterberg, E., Ryan, C.G., et al.2004. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geology,32, 117-120.
    [3]Berry, A.J. and O'Neill, H.St.C.2004. A XANES determination of the oxidation state of chromium in silicate glasses. American Mineralogist,89,790-798
    [4]Berry, A.J., O'Neill, H.St.C., et al.(2003) XANES calibrations for the oxidation state of iron in a silicate glass. American Mineralogist,88,967-977.
    [5]Bodnar R. J., Vityk M O.1994. Interpretation of microthermalmometric data for H2O-NaCl fluid inclusions. In:De ViVo B, Frezzotti M L, eds. Fluid Inclusions in Minerals, Methods and Applications, Blacksburg. Virginia Polytechnic Institute,117-130.
    [6]Bostrom K.1979. Langban-An exhalative sedimentary deposit Econ. Geol,74, 10002-10011
    [7]Boullier A M.1999. Fluid inclusions:tectonic indicators[J].Joural of structural geology,21,1229-2235.
    [8]Brown P. E., Hagemann S G.1994.MacFlinC:A computer program for fluid inclusion data.In:De ViVo B, Frezzotti M L, eds.Fluid inclusions in materials, Methods and applications. Blacksburg. Virginia Polytechnic Institute,231-250.
    [9]Celik, M., Karakaya, N., Temel, A.1999.Clay minerals in hydrothermally altered volcanic rocks, Eastern Pontides, Turkey. Clays Clay Minerals,47,708-717.
    [10]Changkakoti A, Gray J, Krstie D, et al.1988. Determination of radiogenic isotope (Rb/Sr, Sm/Nd, and Pb/Pb) in fluid inclusion waters:An example from the Bluebell Pb-Zn deposit, British Columbia, Canada. Geochim.Cosmo.Acta, 52,961-967.
    [11]Einaudi M T.1981.Skans deposits. Economic Geology Seventy-Fifth Anniversary Volume.
    [12]Farges, F.2005. Ab initio and experimental pre-edge investigations of the Mn K-edge XANES in oxide-type materials. Physical Review B,71,155109.
    [13]Ghazi A M, Roedder E, Vanko D A.1994b. Rare earth elements (REE) in fluid inclusions from the Butte Cu-Mo deposit:an applacation of flow injection ICP-MS:PACROFL pan American conference on research of fluid inclusions. V. Symposium Abstracts, Cuernavaca, Morelos, Mexco, May,19-23.
    [14]Ghazi A M, Vanko D A, Ruiz J, et al.1994a. Trace and rare element analysis in single fluid inclusions:an application of laser ablation ICP-MS. EQS,75(44), 695.
    [15]Gibert F, Guillaume D, Laporte D.1998.Importance of fluid immiscibility in the H20-NaCl-CO2 system and selective CO2 entrapment in granulites: Experimental phase diagram at 5-7kbar,900 ℃ and wetting textures. Euro J Mineral,10,1109-1123
    [16]Hayashi K., Iida, A.2001. Preliminary study on the chemical mapping of individual fluid inclusion by synchrotron X-ray fluorescence microprobe. Res. Geol.,51,259-262.
    [17]Heinrich C.A. Pettke, T.Halter, W.E.et al.2003.Quantitative multi-element analysis of minerals, fluid and melt inclusionsby laser-ablation inductively-coupled-plasma mass-spectrometry. Geochimica et Cosmochimica Acta,67(18),3473-3496
    [18]Heinrich C.A., Ryan, C.G., Mernagh, T.P., et al.1992.Segregation of ore metals between magmatic brine and vapor-a fluid inclusion study using PIXE microanalysis. Econ. Geol.,87,1566-1583.
    [19]Kesler S E.1990. Nature and composition of mineralizing solutions. In:Robert F.et al., eds. Greenstone Gold and Crustal Evolu-tion. Proceedings of a workshop.
    [20]Kurosawa, M., Shimano, S., Ishii, S., et al.2003. Quantitative trace element analysis of single fluid inclusions by proton-induced X-ray emission (PIXE): application to fluid inclusions in hydrothermal quartz. Geochim. Cosmochim. Acta,67,4337-4352.
    [21]Linnen, R.L. Keppler, H. Sterner,.2004. In Situ Measurements of the H2O: CO2 ratio in fluid inclusions by Infrared Spectroscopy. The Canadian Mineralogist.42,1275-1282
    [22]Lispinasse M.1999.Are fluid inclusion planes useful in structural geology.Joural of structural geology,21,1237-1243.
    [23]Marching V.1982.Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments. Marine Geology,50, 241-256.
    [24]Pasteris, J.D., Wopenka, B., Seitz, J.C.,1988. Practical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions. Geochim. Cosmochim.52(5),979-998.
    [25]Pettke T, Diamond L. W, Frei R.1995a. He, Ar, U-Pb and Pb-Sr isotope systematics of fluid inclusions in quartz and associated vein minerals and native gold from epigenetic late Alpine Au-veins in NW Italy. Schweitz. Mined. Petrogr. Mitt.,75,308-309.
    [26]Pettke T, Diamond L. W.1995b.Rb-Sr isotopic analysis of fluid inclusions in quartz:Evaluation of bulk extraction procedures and geochronometer systematics using synthetic fluid inclusions. Geochim.Cosmochim.Acta,59(19), 4009.
    [27]Philippot, P., Menez, B., Simionovici, A.et al.2000. X-ray imaging of uranium in individual fluid inclusions. Terra Nova,12,84-89.
    [28]Rickers, K., Thomas, R., Heinrich, W.2004:Trace-element analysis of individual synthetic and natural fluid inclusions with synchrotron radiation XRF using Monte Carlo simulations for quantification. Eur. J. Mineral.,16,23-35.
    [29]Ryan, C.G., Jamieson, D.N., Griffin, W.L., et al. (2001):The new CSIRO-GEMOC nuclear microprobe:first results, performance and recent applications. Nucl. Instrum. Methods Phys. Res., Sect. B,181,12-19.
    [30]Shepherd T. J.1981.Fluod inclusion Rb-Sr isochrones for dating mineral deposits. Nature,290:578-579
    [31]S. Morales Ruano.et al.2002.A fluid inclusion and stable isotope study of the Moonta copper-gold deposits, South Australia:evidence for fluid immiscibility in a magmatic hydrothermal system. Chemical Geology,192,211 -226
    [32]Stanton R L.1986.Constitutional features and some exploration implications of three zinc-bearing stratiform skarns of eastern Australia[C].Trans. Instn. Min. Metall. (Sect. B:Appl. earth Sci.),96, B37-B57
    [33]Thiery R, Dubessy J.1997. Modelling of high-pressure vapour-liquid equilibria in the H2O-NaCl system from 100℃ to 700℃ based on the ion-dipole MSA model. In:XIV ECROFI, European Current Research on Fluid Inclusions. Nancy, France, July,1-4.
    [34]Thomas A V., Spooner E T C.1990. Distinguishing between Archaean fluids of different origins; an example using volatile analyses of fluid inclusions from the Tanco pegmatite, SE Manitoba. In; Robert F, et al., eds. Greenstone Gold and Crustal Evolution. Proceedings of a workshop, Vold'Or, Quebec, May,217.
    [35]Vanko, D.A, Mavrogenes, J.A.1998. Applications of microanalytical techniques to understanding mineralizing processes. Rev. Econ. Geol.,7,251-263.
    [36]Volfinger, M.,2002. Quantitative analysis of the fluid inclusions by particle-induced gamma-ray emission. J. Radioanal. Nucl. Chem.,253,413-419.
    [37]Wang, Q. Zhao, Z.H, Bao, Z.W., Xu, et al.2004. Geochemistry and petrogenesis of the Tongshankou and Yinzu Adakitic Intrusive Rocks and the associated porphyry copper-molybdenum mineralization in Southeast Hubei, East China. Res. Geol.,54,137-152.
    [38]Williams, P.J., Dong, G.Y., Ryan, C.G., et al.2001. Geochemistry of hypersaline fluid inclusions from the Starra (Fe Oxide)-Au-Cu Deposit, Cloncurry District, Queensland. Econ. Geol.,96,875-883.
    [39]Zartman R E, Haines S M.1988.The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs-A case for bidirectional transport [J].Geochim Cosmochim Acta,52(6),1327-1339
    [40]曹永清,邓晋福.东昆仑-柴达木盆地北缘岩浆活动、构造演化、深部过程与成矿[J].现代地质——中国地质大学研究生院学报.2000,(1):8-14
    [41]陈柏林,董法先,李中坚,等.韧性剪切带型金矿成矿模式[J].地质论评,1999,45(2):186-192.
    [42]程裕淇.中国区域地质概况[M].北京:地质出版社,1994
    [43]池国祥,卢焕章.流体包裹体组合对测温数据有效性的制约及数据表达方法[J].岩石学报,2008,24(9):1945-1953
    [44]党兴彦,范桂忠,李智明,等.东昆仑成矿带典型矿床分析[J].西北地质,2006,39(2):143-155
    [45]丁清峰,东昆仑造山带区域成矿作用与矿产资源评价:[博士学位论文].长春:吉林大学,2004
    [46]丰成友,张德全,李大新,等.青海东昆仑造山型金矿硫、铅同位素地球化学[J].地球学报,2003,24(6):593-598
    [47]丰成友,张德全,王富春,等.青海东昆仑造山型金(锑)矿床成矿流体地球化学研究[J].岩石学报,2004,20(04):949-960
    [48]高章鉴,罗才让,井继锋.青海省肯德可克金矿热水沉积层矽卡岩特征及成矿意义[J].西北地质,2001,34(2):50-53
    [49]古凤宝,吴向农,姜常义.东昆仑华力西—印支期花岗岩组合及构造环境[J].青海地质,1996,(1):18-30.
    [50]郭正府,邓晋福,许志琴,等.青藏东昆仑晚古生代末—中生代中酸性火成岩与陆内造山过程[J].现代地质,1998,12(3):344-352
    [51]何书跃,祁兰英,舒树兰,等.青海祁漫塔格地区斑岩铜矿的成矿条件和远景[J].地质与勘探,2008,44(2):14-22
    [52]黄继春,张克信,朱艳明,等.东昆仑造山带海西—印支期构造古地理演化的古地磁证据[J].地球科学—中国地质大学学报,1999,24(2):155-160
    [53]姜春发,冯秉贵,杨经绥,等.昆仑地质构造轮廓[J].中国地质科学院地质研究所所刊,1986,15:70-79.
    [54]姜春发,王宗起,李锦轶,等.中央造山带开合构造[M].北京:地质出版社,2000
    [55]姜春发,杨经绥,冯秉贵,等.昆仑开合构造[M].北京:地质出版社,1992.125-143.
    [56]姜春发,杨经绥,冯秉贵,等.昆仑开合构造[M].北京:地质出版社,1992
    [57]姜春发.中央造山带主要地质构造特征[J].地学研究,1993,(27):103-108
    [58]匡俊,东昆仑成矿带钴矿床特征及形成作用探讨:[硕士学位论文].长春:吉林大学,2002
    [59]匡俊,孙丰月,阵国华,等.青海肯德可克钴铋金矿床地质特征及其地质意义[J].吉林大学学报(地球科学版),2003,33(增刊):47-52
    [60]李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社,1992,108
    [61]李光明,沈远超,刘铁兵,等.东昆仑祁漫塔格地区华力西期花岗岩地质地球化学特征[J].地质与勘探,2001,37(1):73-78
    [62]李宏录,刘养杰,卫岗,等.青海肯德可克铁、金多金属矿床地球化学特征及成因[J].矿物岩石地球化学通报,2008,27(4):378-383
    [63]李华芹,刘家齐,魏林.1993.热液矿床流体包裹体年代学研究及其地质应用[M].北京:地质出版社.1-126
    [64]李龙,郑永飞,周建波.中国大陆地壳铅同位素演化的动力学模型[J].岩石学报,2001,17(1):61-68
    [65]李绍强,潘成泽.东昆仑—阿尔金构造地球化学特征[J].新疆地质,2001,19(3):189-193
    [66]李世金,孙丰月,王力,等.青海东昆仑卡尔却卡多金属矿区斑岩型铜矿的 流体包裹体研究[J].矿床地质,2008,27(3):399-407
    [67]刘斌,沈昆,朱思林.2000.流体包裹体热力学参数计算软件及算例.北京:地质出版社.1-252
    [68]刘斌,沈昆.1999.流体包裹体热力学.北京:地质出版社.1-290
    [69]刘成东,莫宣学,罗照华,等.东昆仑壳—幔岩浆混合作用:来自锆石SHRIMP年代学的证据[J].科学通报,2004,49(6):596-602
    [70]刘成东,莫宣学,罗照华,等.东昆仑造山带花岗岩类Pb-Sr-Nd-O同位素特征[J].地球学报,2003,24(6):584-588
    [71]刘继庆,胡正国,钱壮志.东昆仑NW向线性构造带地质特征及找矿意义[J].西安工程学院学报,2000,22(6):18-21
    [72]卢焕章,Guy Arcambault,李院生,等.山东玲珑—焦家地区形变类型与金矿的关系[J].地质学报,1999,73(2):174-188.
    [73]卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社.2004:1-487
    [74]卢焕章,郭迪江.流体包裹体的研究进展和方向[J].地质评论.2000,46(4):386-392
    [75]罗照华,邓晋福,曹永清,等.青海省东昆仑地区晚古生代—早中生代火山活动与区域构造演化[J].现代地质,1999,13(1):51-56
    [76]罗照华,柯珊,曹永清,等.东昆仑印支晚期幔源岩浆活动[J].地质通报,2002,21(6):292-297
    [77]莫宣学,罗照华,邓晋福,等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报,2007,13(3):403-414
    [78]倪培,蒋少涌,凌洪飞,等.流体包裹体面的研究背景、现状及发展前景[J].地质评论,2001,47(4):398-404
    [79]潘彤,马梅生,康祥瑞,等.东昆仑肯德可克及外围钴多金属找矿突破的启示[J].中国地质,2001,28(2):17-20
    [80]潘彤.青海东昆仑肯德可克钴金矿床硅质岩特征及成因[J].地质与勘探.2008,44(2):51-54
    [81]祁漫塔格地区成矿条件研究与找矿靶区优选项目总体设计书.2008(内部资料)
    [82]钱壮志,胡正国,刘继庆,等.古特提斯东昆仑活动陆缘及其区域成矿[J].大地构造与成矿学,2000,24(2):134-139
    [83]青海省地质矿产局.青海省区域地质志[M].北京:地质出版社,1991.
    [84]青海省地质矿产局.青海省区域矿产总结[M].1990.
    [85]青海省地质矿产局.青海省岩石地层[M].北京:中国地质大学出版社,1997
    [86]青海省地质调查院.东昆仑东段成矿区(带)矿产资源调查评价“十五”工作部署方案.2002a(内部资料)
    [87]青海省有色地质矿产勘查局矿勘院.青海省格尔木市肯德可克铁金多金属矿产资源估算报告[R].2004
    [88]尚俊,卢静文,彭晓蕾等.矿相学[M].北京:地质出版社,2007,126—127
    [89]沈能平,彭建堂,袁顺达等.湖北徐家山锑矿床铅同位素组成与成矿物质来源探讨[J].矿物学报.2008,28(2):169-176
    [90]孙丰月,陈国华,迟效国,等.中国地质调查局“新疆—青海东昆仑成矿带成矿规律和找矿方向综合研究”科研报告.2003
    [91]孙贺.方城玄武岩地幔捕虏体和捕虏晶中流体包裹体研究:[学士学位论文].合肥:中国科学技术大学,2008
    [92]涂光炽.中国层控矿床地球化学(第三卷)[M].北京:科学出版社,1989,11—16.
    [93]王鸿祯,莫宣学.中国地质构造述要[J].中国地质,1996(8):4—9
    [94]王鸿祯,杨森南,刘本培,等.中国及邻区构造古地理和生物古地理[M].武汉:中国地质大学出版社,1990,1—17
    [95]王力,孙丰月,陈国华,等.青海东昆仑肯德可克金—有色金属矿床矿物特征研究[J].世界地质,2003,(1):50-56
    [96]王中刚,于学元,赵振华,等.稀土元素地球化学[M].北京:科学出版社,1989,198、219—223、254
    [97]许志琴,李海兵,杨经绥,等.东昆仑山南缘大型转换挤压构造带和斜向俯冲作用[J].地质学报,2001,75(2):156—164
    [98]许志琴,杨经绥,陈方远.阿尼玛卿缝合带及“俯冲-碰撞”动力学.见:张旗主编.蛇绿岩与地球动力学研究.北京:地质出版社,1996,185—189
    [99]伊有昌,焦革军,张芬英.青海东昆仑肯德可克铁钴多金属矿床特征[J].地质与勘探,2006,42(3):30—35
    [100]殷鸿福,张克信.东昆仑造山带的一些特点[J].地球科学—中国地质大学学报,1997,22(4):339—342
    [101]殷鸿福,张克信.中央造山带的演化及其特点[J].地球科学,1998,23(5):438-442
    [102]有色金属矿产地质调查中心等,祁漫塔格地区成矿条件研究与找矿靶区优选项目总体设计书,2008(内部资料)
    [103]袁万明,莫宣学,王世成,等.东昆仑金成矿作用与区域构造演化的关系[J].地质与勘探,2003,39(3):5—8
    [104]翟裕生,邓军,李小波,等.区域成矿学[M].北京:地质出版社,1999.
    [105]张德全,党兴彦,佘宏全,等.柴北缘—东昆仑地区造山型金矿床的Ar—Ar测年及其地质意义[J].矿床地质,2005,24(2):87—98
    [106]张德全,张慧,丰成友,等.青海滩间山金矿的复合金成矿作用—来自流体包裹体方面的证据[J].矿床地质,2007,26(5):519—516
    [107]张绍宁,青海省肯德可克铁金多金属矿床特征、成因及找矿预测研究:[硕士学位论文].长沙:中南大学,2005
    [108]张以弗,郑健康.青海可可西里及邻区地质概论[M].北京:地震出版社,1994
    [109]郑明华,周渝峰,刘建明,等.喷流型与浊流型层控金矿床[M].成都:四川科学科技出版社,1994,273
    [110]朱炳泉.地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化[M].北京:科学出版社,1998
    [111]朱云海,张克信,等.东昆仑造山带东段晋宁期岩浆活动及其演化[J].地球科学—中国地质大学学报,2000,25(3):231、261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700