用户名: 密码: 验证码:
田间土壤表面微形貌加工滚动触土部件与土壤相互作用及仿生几何结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过改变田间微观地貌以实现集雨目的的整地方式称为土壤表面微形貌加工,该整地方式可增加表层土壤的蓄水能力、有效的控制地表径流和土壤流失。在众多实现土壤表面微形貌加工作业的机具中,凸齿镇压器由于在加工地表微坑的同时能对微坑周边土壤起到压实的效果,提高了土壤表面微形貌加工的作业质量,所以被广泛使用。
     凸齿镇压器作为一种新型的特殊整地机具,在研究该机具与土壤相互作用的过程中,难以直接借鉴现有滚动触土部件与土壤相互作用的研究经验。本研究工作首先从基础理论推导入手,建立了凸齿镇压器工作的运动学及动力学模型;其次将有限元方法与土槽试验相结合,建立了凸齿镇压器与土壤相互作用的三维动态有限元模型,分析了凸齿镇压器与土壤相互作用的机理,并搭建了基于室内土槽的凸齿镇压器牵引试验平台,通过土槽试验对有限元分析结果的有效性进行验证,在验证了有限元模型准确性的基础上,利用有限元方法继续探索不同作业参数对凸齿镇压器作业效果的影响。根据所参加的国家自然科学基金项目(编号:51075185),针对提高凸齿镇压器的作业效率的需要,为降低凸齿镇压器作业过程中所需的牵引力和提高土壤表面微形貌加工的作业质量,本研究工作将几何结构仿生的技术方法应用于凸齿镇压器的设计。通过向自然界中具有高效掘土能力的不同土壤洞穴动物学习,借鉴其挖掘肢体的几何结构特征,将其提取并抽象为不同的锯齿状结构,用于对凸齿的几何结构进行优化,加工出具有仿生几何结构特征的凸齿镇压器,最后通过土槽牵引试验评价凸齿镇压器的作业效率和质量。
     自然界中存在一些体型较小且具有较强掘土能力的土壤洞穴动物,其用于土壤挖掘的肢体的几何特征尺寸微小且属于介观尺度(0.1mm-1mm),在工程仿生领域传统方法难以对其进行量化分析。本研究工作以几何特征为介观尺度的臭蜣螂前足胫节端齿为例,提出了一种量化分析方法,使用计算机视觉技术代替人的视觉鉴别过程,识别了蜣螂前足胫节端齿外缘轮廓二维点云,并量化分析了其几何结构特征,为微小动物肢体的量化分析提供了技术基础。
     凸齿镇压器为非圆工作轮,在土壤表面滚动的过程中对土壤产生冲击作用,本研究工作采用基础理论推导的方法建立了凸齿镇压器作业过程中的运动学和动力学模型。根据运动学中刚体做平面运动的瞬心定理和牵连运动为平动时质点的加速度合成定理,推导出了凸齿镇压器在不同工作阶段的运动参数计算公式;根据动力学中的动量定理、动能定理和冲量定理,推导出了凸齿镇压器工作状态中所需牵引力、凸齿与地面作用瞬间产生的冲击力和冲击能的计算公式。通过本研究工作,可揭示凸齿镇压器结构参数与运动、动力参数间的相互联系,分析凸齿镇压器作业时冲击土壤的运动规律和特征。
     使用有限元软件Abaqus建立了凸齿镇压器与土壤相互作用的三维动态模型。为了解决模型运行过程中在土体内部产生的单元畸变而导致模型无法运行的问题,将ALE自适应网格划分方法应用于土体模型运行中的实时网格划分,有效避免了网格单元严重扭曲的情况发生。在模型能顺利运行的基础上,考察了土体模型边界距离、网格密度对有限元分析结果的影响。分析结果表明,只要将网格密度增大到一定程度,有限元分析的结果将趋于稳定并且不依赖于网格尺寸的变化。为了描述凸齿镇压器的运动方式,求解了凸齿镇压器轮缘上一点的旋轮线,结果表明,凸齿镇压器的旋轮线并非光滑曲线,而是呈波动状态,并在接地位置与前进距离方向有一定相反的相对滑动。分析了凸齿镇压器和土壤相互作用的过程中下方土壤的流动变形格式,分析结果表明,在平行于速度方向的纵截面和垂直于速度方向的横截面,凸齿镇压器下方的土壤内部均出现了两个流动方向相反的变形区。所建立的有限元模型为进一步探索不同作业参数对凸齿镇压器作业效果的影响提供了方法基础。
     为了在室内土槽完成凸齿镇压器的牵引试验,搭建了牵引力测试及数据采集平台,选取牵引力作为有限元预测结果的验证参数,将利用有限元方法所分析出的结果与土槽试验所记录的结果相比较,得出二者牵引力曲线随时间变化的规律基本一致,并且牵引力平均值的相对误差为3.40%,说明有限元求解的结果满足了反映凸齿镇压器实际工作过程中动态特性的要求,同时到了所需要的精度。将有限元方法输出的微坑形貌与土槽实际试验所获得的微坑形貌对比,微坑形貌特征能较好吻合,说明有限元模型能准确反映土壤流动变形特征。
     在验证了有限元模型有效性和准确性的基础上,利用有限元方法分析不同作业参数对凸齿镇压器作业效果的影响。发现当速度增加到一定程度,凸齿镇压器作业过程中出现了滑移现象,随后计算了凸齿镇压器在不同作业速度下的实时滑移率和总滑移率,结果表明,随着凸齿镇压器作业速度的提高,实时滑移率和总滑移率都明显增加。该项研究工作所得到的结论可以为恰当选择凸齿镇压器的作业参数提供参考。
     考虑到UHMWPE具有诸多优异性能而逐渐广泛应用于农机具触土部件的制造,为了探索采用UHMWPE材质的凸齿镇压器提高作业效果的潜在优势,使用模态分析的方法对传统铸铁材料和UHMWPE—铸铁组合材料凸齿镇压器前8阶模态的分析,并比较不同模态阶数下最大振幅、固有频率和不同位置点的振幅;设置不同的摩擦因数,分析采用不同材质凸齿镇压器的作业效果。结果表明UHMPWE—铸铁组合材料凸齿镇压器具有更优异的潜在脱土性能,所加工的土壤表面微形貌可具有更高的强度,被牵引时有更好的稳定性。在凸齿镇压器的触土部位使用UHMPWE,只需要较小的载荷就能达到所需的作业深度,另外作业过程中所需牵引力更小。为凸齿镇压器材质的选择提供了设计参考依据。
     使用几何结构仿生的技术方法对凸齿镇压器进行优化,通过土槽牵引试验评价优化的效果。综合学习了不同土壤洞穴动物挖掘肢体的几何结构特征,将这些几何结构特征提取并简化为不同尺度的仿生锯齿状结构,以应用于仿生凸齿的设计。加工制造出3种不同仿生凸齿镇压器,并在室内土槽完成凸齿镇压器的牵引试验,将仿生凸齿镇压器的试验结果与普通凸齿镇压器相比较,评价不同凸齿镇压器在不同载荷下的作业效率和质量。将不同凸齿镇压器作业过程中的所需牵引力、所加工微坑的深度和所加工微坑的蓄水容积作为考察指标,试验结果表明,仿生凸齿作业过程中所需牵引力比普通凸齿最多可减小6.52%,所加工微坑的深度比普通凸齿最多可增加13.25%,所加工微坑的蓄水容积比普通凸齿最多可增加37.59%。仿生凸齿在作业时充分发挥了类似于土壤洞穴动物掘土时爪趾对土壤的锯切作用,所以能以较小的牵引力加工出深度更深、蓄水容积更大的微坑。
     上述研究工作为滚动触土工作部件与土壤相互作用的研究,以及通过几何结构仿生的方法对牵引式整地机具关键部件的改进和优化提供了参考。
Micro-topographical preparation is an operation that numerous geometrically orderedsurface depressions are formed by modifying soil surface micro-topography to collect andhold water during rainfall. Consequently, water runoff is reduced, erosion is mitigated andwater infiltration is increased. Compared with other working tool for micro-topographicalpreparation, toothed wheel not only can prepare micro-topographical structure surface, butalso consolidate soil, improving soil preparation quality, hence it was widely employed.
     Predicting and investigating the interaction behavior between soil and toothed wheel isone of prime import factors in enhancing the workability and efficiency ofmicro-topographical preparation. However, toothed wheel is a novel apparatus in landpreparation and has special shape, so research experience from other rolling soil-engagingcomponent can hardly be referenced directly for it. In this study, starting from the basictheoretical derivation, toothed wheel kinematic and dynamic operating models wereestablished. The finite element method (FEM) and soil bin test were applied and integrated.The FEM was used to provide a three-dimensional (3-D) finite element model to simulatesoil and toothed wheel interaction dynamically, and predict the interaction behavior betweensoil and toothed wheel. Indoor soil bin based toothed wheel traction test platform was built.Through soil bin test, the FEM model was calibrated. Based on the verified FEM model,effects of different operating parameters on the toothed wheel operating results wereexplored.
     Involved in the project sponsored by the National Natural Science Foundation of China(No:51075185), which aims at the requirement of improving working efficiency of thetoothed wheel, and the necessity of reducing draft force of the toothed wheel as well asimproving the quality of micro-topographical preparation, this study applied bionic approach,specifically bionic geometry, to optimize the design of toothed wheel. Through learningfrom diverse burrowing animals with highly efficient ability of soil digging, their variousgeometric structures of digging organs were used for reference. The essences and principlesof those geometric structures were captured and extracted, then simplified them with serratedstructures. The bionic serrated structure was used to optimize the design of toothed wheel. Finally, the working efficiency and quality of both bionic and normal toothed wheel wereevaluated through soil bin test.
     Some soil burrowing animals existing in nature with strong burrowing ability haverelatively small body shape. The geometrical feature size of their organs used for digging aretiny and in the meso-scale. In the research area of bionic engineering, it was difficult andinefficient to analyze those geometrical structures quantitatively by using traditional methods.In this study, the end tooth of dung beetle foreleg was taken as a case study, proposed anovel method of quantitative analysis. Using computer vision technology to take place of thehuman visual identification process, recognize the outer contour of two-dimensional pointcloud of the end tooth of dung beetle foreleg, and quantitatively analyze its geometricalstructure. This study provides the technological base for quantitative analysis of structuralcharacteristics of meso-scale animal organs.
     Toothed wheel is a non-circular working wheel, having impact effect on soil whenrolling over the soil surface. In this study, adopted basic theoretical derivation approach,established kinematics and dynamics model of operating toothed wheel. At different workingphases of toothed wheel, formulas of toothed wheel motion parameters were derivedaccording to rigid body plane motion’s instantaneous velocity center theorem in kinematics,along with acceleration composition theorem of translational motion. According to thetheorem of impulse and theorem of kinetic momentum in dynamics, along with the kineticenergy theorem, deduced the equation of toothed wheel required operational draft force,instaneous impact force and impact energy. Through this study, the relation betweenstructural parameters and motion parameters of toothed wheel can be revealed. Moreover,the behavior of toothed wheel movement and dynamics of impact operation characteristicscan be investigated.
     Using commercial finite code ABAQUS, a3-D finite element analysis (FEA) of soiland toothed wheel interaction was carried out to investigate the behavior of the soil andtoothed wheel interface. In order to mitigate solution convergence problems caused byelement distortion, an Arbitrary Langrangian–Eulerian (ALE) scheme was adopted topreserve the quality of mesh throughout the numerical simulation. The results reveal that theALE technique prevents convergence problems cause by mesh over distortion and allows thesimulation to run continuously. The effects of boundary distance and mesh density of soilbin model on FEA results were evaluated. The results show that as the mesh density increaseto a certain degree, FEA results will tend to stabilize and do not depend on the mesh sizevariances. To describe the movement pattern of toothed wheel, the cycloid of outer edgepoint of toothed wheel was calculated. Results show that, the cycloid of toothed wheel fluctuates along coordinates rather than a smooth curve. In addition, at the ground contactposition, the cycloid show certain backward sliding relative to the ground. Furthermore, itwas found that both longitudinal and cross section in soil under toothed wheel showed twodeformed zone that had opposite flow direction. In this study, finite element model wasestablished and provided a methodological base for further exploration of the effects ofdifferent operating parameters on the toothed wheel workability.
     In order to perform toothed wheel traction test, test rig and force measurement systemwere designed and developed based on indoor soil bin. In order to calibrate FEM model,draft force recorded by FEM model and soil bin test were compared. The results show bothof the draft force versus time had the same variation pattern, and the mean relative error ofaveraged draft force of FEA compared to soil bin test was3.40%. This indicate the results ofthe FEA solution can meet the requirement of reflecting the dynamic behavior in toothedwheel working process and achieve the desired accuracy. Comparing the topographiccharacteristics of micro-basin, results show micro-basin topographic characteristics from theFEA solution were in good agreement with that form soil bin test result. This indicate theFEM model can effectively reflect soil flow and deform characteristics.
     Based on the calibrated FEM model, the effects of different working parameters ontoothed operating results were predicted and analyzed by reusing FEM. It was found that asthe toothed wheel operating speed increased to a certain value, slip phenomenon wasobserved. Real time slip ratio and total slip ratio under different operational speeds werecalculated. Results show that both real time slip ratio and total slip ratio increases with theincrease of the increase of the operational speed. This study can provide reference for theselection of toothed wheel working parameters.
     Considering that UHMWPE has many excellent material properties and has beenwidely used in soil-engaging tools to improve tillage effectiveness, UHMWPE was selectedin to evaluate its potential advantages as manufacturing material of the toothed wheel. Modalanalysis was performed to compare vibration characteristics of toothed wheel both madefrom cast iron material and UHMWPE-cast iron combinatorial material. Using the anterior8ranks of modals, the natural frequency and maximum amplitude of the two types of toothedwheel were compared. The results show that compared with cast iron material toothed wheel,UHMWPE-cast iron combinatorial material toothed wheel can acquire better adhesionreduction ability on the convex teeth, which ensure the structural strength of themicro-basins on soil surface and have enhanced the stability at the center of the wheel disk.With different friction factors, the effects of different materials on toothed wheel operationalresults were analyzed. It was found UHMWPE toothed wheel can prepare micro-basin to the desired depth at lower vertical load and require less draft force. This study providesreference for toothed wheel material selection.
     The technical approach of bionic geometrical structure was used to optimize toothedwheel. Subsequently, the working quality and efficiency of different toothed wheels wereevaluated through soil bin test. Unique characteristics of geometrical structure existing insoil burrowing animals’ digging organs were comprehensively studied, and their essence andcommonality were abstracted. These characteristics were extracted, simplified, and thenrepresented by bionic serrated structure. The bionic serrated structures were used for thedesign to optimize toothed wheel. Three types of bionic toothed wheel were manufacturedand traction tests in soil bin were conducted. Taking required draft force, depth, and volumeof prepared micro-basin as the indexes, different toothed wheel working efficiency andquality were evaluated. Results show that compared with traditionally used toothed wheel,bionic toothed wheel can reduce required draft force up to6.52%, increase depth of preparedmicro-basin up to13.25%, and expand volume of prepared micro-basin up to37.59%. It wasfound that the cutting mechanism of bionic toothed wheel behaved as saw cutting thatsimilar to the digging action of soil burrowing animals when performingmicro-topographical preparation. Thus, bionic toothed wheel required less draft force foroperating compared with normal toothed wheel, and prepared micro-basin with increaseddepth and water harvesting volume.
     This study provides reference for investigating the interaction between soil and rollingcomponent. Appling the approach of bionic geometrical structure for further innovativedesign of geometrically optimized land preparing implement of agricultural machinery,energy consumption can be reduced and working quality can be improved.
引文
[1]阴妍.机械化旱作农业中有关机械土壤动力学的研究与展望[J].当代农机,2008,(12):57-58.
    [2] Rosegrant M W, Cai X, Cline S, Nakagawa N. The role of rainfed agriculture in thefuture of global food production [M]. Washington, DC: International Food PolicyResearch Institute,2002.
    [3] Foley J A, DeFries R, Asner G P, Barford C, Bonan G, Carpenter S R, Chapin F S,Coe M T, Daily G C, Gibbs H K. Global consequences of land use [J]. science,2005,309(5734):570-574.
    [4] Pimentel D, Harvey C, Resosudarmo P, Sinclair K, Kurz D, McNair M, Crist S,Shpritz L, Fitton L, Saffouri R. Environmental and economic costs of soil erosionand conservation benefits [J]. Science-AAAS-Weekly Paper Edition,1995,267(5201):1117-1122.
    [5]高焕文,李问盈,李洪文.中国特色保护性耕作技术[J].农业工程学报,2003,(03):1-4.
    [6]黄占斌,程积民,赵世伟,辛小桂,刘学军.半干旱地区集雨利用模式及其评价[J].农业工程学报,2004,(02):301-304.
    [7] University Corporation for Atmospheric Research. Basic Hydrologic Science CourseRunoff Processes: Overview of Runoff [OL].[2013-10-30].http://wegc203116.uni-graz.at/meted/hydro/basic/Runoff/print_version/01-overview.htm.
    [8] U.S. Department of Agriculture, Natural Resources Conservation Service. Runoff ofsoil&fertilizer [OL].[2013-10-30].http://en.wikipedia.org/wiki/File:Runoff_of_soil_%26_fertilizer.jpg#file.
    [9] Zhang F, Chen X, Vitousek P. Chinese agriculture: An experiment for the world [J].Nature,2013,497(7447):33-35.
    [10] Al-Durrah M, Bradford J. New methods of studying soil detachment due towaterdrop impact [J]. Soil Science Society of America Journal,1981,45(5):949-953.
    [11] Boers T M, Ben-Asher J. A review of rainwater harvesting [J]. Agricultural WaterManagement,1982,5(2):145-158.
    [12] Tao Z, Sui P, Chen Y, Li C, Nie Z, Yuan S, Shi J, Gao W. Subsoiling and RidgeTillage Alleviate the High Temperature Stress in Spring Maize in the North ChinaPlain [J]. Journal of Integrative Agriculture,2013,12(12):2179-2188.
    [13] Liu G, Gao M, Zhu B. The characteristics of overland flow under varied tillage andcropping systems in Sichuan Basin, China [J]. Soil and Tillage Research,2000,54(3–4):139-143.
    [14] Li X, Su D, Yuan Q. Ridge-furrow planting of alfalfa (Medicago sativa L.) forimproved rainwater harvest in rainfed semiarid areas in Northwest China [J]. Soil andTillage Research,2007,93(1):117-125.
    [15] Liu B Y, Yan B X, Shen B, Wang Z Q, Wei X. Current status and comprehensivecontrol strategies of soil erosion for cultivated land in the Northeastern black soilarea of China [J]. Science of Soil and Water Conservation,2008,6(1):1-8.
    [16] Wang X, Wu H, Dai K, Zhang D, Feng Z, Zhao Q, Wu X, Jin K, Cai D, Oenema O,Hoogmoed W B. Tillage and crop residue effects on rainfed wheat and maizeproduction in northern China [J]. Field Crops Research,2012,132(0):106-116.
    [17] Matin M A, Fielke J M, Desbiolles J M A. Furrow parameters in rotary strip-tillage:Effect of blade geometry and rotary speed [J]. Biosystems Engineering,2014,118(0):7-15.
    [18] Hatibu N, Mahoo H. Rainwater harvesting technologies for agricultural production:A case for Dodoma, Tanzania [J]. Conservation tillage with animal traction,1999,161-171.
    [19] Liu X B, Zhang S L, Zhang X Y, Ding G W, Cruse R M. Soil erosion controlpractices in Northeast China: A mini-review [J]. Soil and Tillage Research,2011,117(0):44-48.
    [20] Africa Rural Connect. Cushioning Climate Change with Farm Water Catchments[OL].[2013-10-30]. http://arc.peacecorpsconnect.org/view/1217.
    [21] Ventura Jr E, Domínguez M, Norton L, Ward K, López-Bautista M, Tapia-Naranjo A.A new reservoir tillage system for crop production in semiarid areas [C]. Proceedingsof the2003ASAE Annual Meeting American Society of Agricultural Engineershttp://asae frymulti com/request asp,2003.
    [22] Hansen H, Trimmer W. Irrigation runoff control strategies [J]. PNW-PacificNorthwest Cooperative Extension Publication-Oregon State University, ExtensionService,1986,
    [23]曾德超.机械土壤动力学[M].北京:北京科学技术出版社,1995.
    [24] Aarstad J S, Miller D E. Soil management to reduce runoff under center-pivotsprinkler systems [J]. Journal of soil and water conservation,1973,
    [25] Brhane G, Wortmann C S, Mamo M, Gebrekidan H, Belay A. Micro-Basin Tillagefor Grain Sorghum Production in Semiarid Areas of Northern Ethiopia Contributionof the Univ. of Nebraska Agric. Res. Div., Lincoln, NE, as Journal Series no.14534[J]. Agron J,2006,98(1):124-128.
    [26] Nuti R C, Lamb M C, Sorensen R B, Truman C C. Agronomic and economicresponse to furrow diking tillage in irrigated and non-irrigated cotton (Gossypiumhirsutum L.)[J]. Agricultural Water Management,2009,96(7):1078-1084.
    [27] Truman C C, Nuti R C. Improved water capture and erosion reduction throughfurrow diking [J]. Agricultural Water Management,2009,96(7):1071-1077.
    [28] Truman C C, Nuti R C. Furrow diking in conservation tillage [J]. Agricultural WaterManagement,2010,97(6):835-840.
    [29]沈昌蒲,尹嘉峰.国内外研究垄作区田的情况[J].水土保持科技情报,1995,(02):62-65.
    [30]杨爱民,沈昌蒲,刘福,尹嘉峰,邓玉江.坡耕地垄作区田水土保持效益的研究[J].水土保持学报,1994,(03):52-58.
    [31]杨爱民,孙彦坤,沈波.坡耕地垄作区田保水增产效益研究[J].水土保持科技情报,1997,(04):10-11+14.
    [32]杨爱民,孙彦坤,孟莉,沈波.坡耕地垄作区田保水增产效益的研究[J].干旱地区农业研究,1997,(04):8-11.
    [33] Washington State University. Dammer-diker [OL].[2013-10-30].http://potatoes.wsu.edu/research/equip_gallery/14-dammer_diker.htm.
    [34] Ag-Vantage Inc. Culti-Diker Grain Drill Attachment [OL].[2014-01-24].http://www.ag-vantage.com/culti-diker.html.
    [35]张影微,刘立意,冯江,尹大庆,王秋华,沈昌蒲,温锦涛.1QD型垄向区田筑垱机的原理与应用[J].农业科技与装备,2009,(03):49-51.
    [36]尹大庆,冯江,温锦涛,刘立意.1QD型垄向区田筑垱机控制机构的研究[J].农机化研究,2009,(01):240-242.
    [37]冯江,冯进成.垄向区田筑垱机关键部件—四叶板的有限元分析[J].农机化研究,2011,(09):85-88.
    [38] Hackwell S, Rochester E, Yoo K, Burt E, Monroe G. Impact of reservoir tillage onwater intake and soil erosion [J]. Transactions of the ASAE,1991,34
    [39] WARD K, CARR C. Soil conditioning device. US,, WO2,010,078,327[P].2010.
    [40] Kranz W L, Eisenhauer D E. Sprinkler irrigation runoff and erosion control usinginterrow tillage techniques [J]. Applied Engineering in Agriculture,1990,6(6):739-744.
    [41] Patrick C, Kechavarzi C, James I T, O'Dogherty M, Godwin R J. Developingreservoir tillage technology for semi-arid environments [J]. Soil Use andManagement,2007,23(2):185-191.
    [42] Great Plains International. SIMBA AQUEEL II [OL].[2013-10-30].http://www.greatplainsint.com/en-gb/products/736/simba-aqueel-ii.
    [43] CREYKE C H. Land management. US,, WO2,010,018,400[P].2010.
    [44] SIMBA International. Aqueel II [OL].[2013-10-30].http://www.simba.co.uk/assets/download_library/Brochures/Aqueel_II.pdf.
    [45] TerraManus Technologies. TerraStar Technology [OL].[2013-10-30].http://www.terramanustech.com/terrastar-technologies/.
    [46] Hernánz J L, Girón V S, Cerisola C. Long-term energy use and economic evaluationof three tillage systems for cereal and legume production in central Spain [J]. Soiland Tillage Research,1995,35(4):183-198.
    [47] Zentner R P, Lafond G P, Derksen D A, Nagy C N, Wall D D, May W E. Effects oftillage method and crop rotation on non-renewable energy use efficiency for a thinBlack Chernozem in the Canadian Prairies [J]. Soil and Tillage Research,2004,77(2):125-136.
    [48] Bertocco M, Basso B, Sartori L, Martin E C. Evaluating energy efficiency ofsite-specific tillage in maize in NE Italy [J]. Bioresource Technology,2008,99(15):6957-6965.
    [49] Tabatabaeefar A, Emamzadeh H, Varnamkhasti M G, Rahimizadeh R, Karimi M.Comparison of energy of tillage systems in wheat production [J]. Energy,2009,34(1):41-45.
    [50] Arvidsson J. Energy use efficiency in different tillage systems for winter wheat on aclay and silt loam in Sweden [J]. European Journal of Agronomy,2010,33(3):250-256.
    [51] Barut Z B, Ertekin C, Karaagac H A. Tillage effects on energy use for corn silage inMediterranean Coastal of Turkey [J]. Energy,2011,36(9):5466-5475.
    [52] Kumar V, Saharawat Y S, Gathala M K, Jat A S, Singh S K, Chaudhary N, Jat M L.Effect of different tillage and seeding methods on energy use efficiency andproductivity of wheat in the Indo-Gangetic Plains [J]. Field Crops Research,2013,142(0):1-8.
    [53] Salokhe V M, Chuenpakaranant W, Niyampa T. Effect of enamel coating on theperformance of a tractor drawn rotavator [J]. Journal of Terramechanics,1999,36(3):127-138.
    [54] Salokhe V M, Gee-Clough D. Technology showcase applications of enamel coatingin agriculture [J]. Journal of Terramechanics,1989,26(3–4):275-286.
    [55] Salokhe V M, Suharno, Gee-Clough D. Effect of enamel coating on the fieldperformance of a mouldboard plough [J]. Soil and Tillage Research,1992,24(3):285-297.
    [56]刘朝宗,任露泉,佟金,冯玉军.超高分子量聚乙稀(UHMWPE)及其复合材料的土壤粘附[J].农业工程学报,1998,(04):43-47.
    [57]佟金,任露泉,陈秉聪.聚合物及其复合材料的磨料磨损[J].机械工程材料,1991,(02):24-26+23.
    [58]佟金,任露泉,陈永潭,陈秉聪.聚四氟乙烯和超高分子量聚乙烯的磨粒磨损性能与机理研究[J].摩擦学学报,1994,(01):65-72.
    [59]丛茜,任露泉,陈秉聪.土壤电渗试验的均匀设计研究[J].吉林工业大学学报,1989,(02):47-52.
    [60]丛茜,任露泉,陈秉聪.土方机械电渗脱土的应用研究[J].工程机械,1990,(02):22-26+52.
    [61]丛茜,吴连奎,任露泉,陈秉聪.非光滑表面电渗减粘脱土原理的试验研究[J].农业工程学报,1995,(03):19-23.
    [62]任露泉,丛茜,吴连奎,陈德兴.非光滑表面电渗减粘降阻应用研究[J].农业工程学报,1995,(03):24-28.
    [63] Niyamapa T, Salokhe V M. Laboratory investigations into soil failure undervibratory tillage tools [J]. Journal of Terramechanics,1993,30(6):395-403.
    [64] Bandalan E P, Salokhe V M, Gupta C P, Niyamapa T. Performance of an oscillatingsubsoiler in breaking a hardpan [J]. Journal of Terramechanics,1999,36(2):117-125.
    [65] Niyamapa T, Salokhe V M. Force and pressure distribution under vibratory tillagetool [J]. Journal of Terramechanics,2000,37(3):139-150.
    [66] Niyamapa T, Salokhe V M. Soil disturbance and force mechanics of vibrating tillagetool [J]. Journal of Terramechanics,2000,37(3):151-166.
    [67]朱凤武,佟金.土壤深松技术及高效节能仿生研究的发展[J].吉林大学学报(工学版),2003,(02):95-99.
    [68]王隆基,张玉福.用压缩气体强化土壤的挖掘[J].粮油加工与食品机械,1980,(06):62-64.
    [69]王隆基,张玉福.气体润滑的双壁式开沟犁[J].粮油加工与食品机械,1982,(09):41-42.
    [70]刘国敏.蚯蚓体表减粘降阻功能耦合仿生研究[D].长春:吉林大学,2009.
    [71]寇冰雪.仿蚯蚓润滑功能耦合表面减阻特性[D].长春:吉林大学,2011.
    [72]范克明,于孟传.磁化犁的试验与分析[J].农机化研究,1991,(04):22-27.
    [73]韩国政,张鹰.磁化犁犁耕阻力的试验研究[J].农业机械学报,1991,(03):25-28.
    [74]国培光,刘进锁.犁铧磁化对耕作性能影响初探[J].干旱地区农业研究,1995,(02):103-109.
    [75] Darwin C. On the origin of species by means of natural selection [M]. South CarolinaBiblioLife,1968.
    [76]陈东辉.典型生物摩擦学结构及仿生[D].长春:吉林大学,2007.
    [77] Tong J, Sun J Y, Chen D H, Zhang S J. Geometrical features and wettability of dungbeetles and potential biomimetic engineering applications in tillage implements [J].Soil and Tillage Research,2005,80(1-2):1-12.
    [78] Tong J, Moayad B Z, Ren L Q, Chen B C. Biomimetics in soft terrain machines: areview [J]. International Agricultural Engineering,2004,1471–86.
    [79] Tong J, Moayad B Z, Ma Y H, Sun J Y, Chen D H, Jia H L, Ren L Q. Effects ofBiomimetic Surface Designs on Furrow Opener Performance [J]. Journal Of BionicEngineering,2009,6(3):280-289.
    [80]巴勒尔·赛义德·毛亚德.土壤机具系统仿生减摩表面设计与试验研究[D].长春:吉林大学,2005.
    [81] Soni P, Salokhe V M. Influence of Dimensions of UHMW-PE Protuberances onSliding Resistance and Normal Adhesion of Bangkok Clay Soil to Biomimetic Plates[J]. Journal of Bionic Engineering,2006,3(2):63-71.
    [82] Soni P, Salokhe V M, Nakashima H. Modification of a mouldboard plough surfaceusing arrays of polyethylene protuberances [J]. Journal Of Terramechanics,2007,44(6):411-422.
    [83]车仁特.基于圆盘犁仿生设计对犁耕阻力影响的研究[D].长春:吉林大学,2009.
    [84] Ren L Q, Han Z W, Li J Q, Tong J. Effects of non-smooth characteristics on bionicbulldozer blades in resistance reduction against soil [J]. Journal of Terramechanics,2002,39(4):221-230.
    [85]贺俊林.低损伤玉米摘穗部件表面仿生技术和不分行喂入机构仿真[D].长春:吉林大学,2007.
    [86]曾百功.玉米根茬收集装置研制及关键机构机理分析[D].长春:吉林大学,2013.
    [87]冯猛.仿生起垄铲降阻特性研究[D].长春:吉林大学,2013.
    [88]佟金,张清珠,常原,李默,张磊磊,刘昕.仿生镇压辊减粘降阻的有限元分析与试验验证[J].农业机械学报,2014,(07):
    [89]佟金,张清珠,常原,陈东辉,董文华,张磊磊.肋条型仿生镇压辊减粘降阻试验[J].农业机械学报,2014,(04):135-140.
    [90]荣宝军.耐磨仿生几何结构表面及其土壤磨料磨损[D].长春:吉林大学,2008.
    [91]佟金,荣宝军,马云海,张金波.仿生棱纹几何结构表面的土壤磨料磨损[J].摩擦学学报,2008,(03):193-197.
    [92] Tong J, Almobarak M A M, Ma Y, Ye W, Zheng S. Biomimetic Anti-AbrasionSurfaces of a Cone Form Component Against Soil [J]. Journal of Bionic Engineering,2010,7, Supplement(0): S36-S42.
    [93] Tong J, Mohammad M A, Zhang J, Ma Y, Rong B, Chen D, Menon C. DEMNumerical Simulation of Abrasive Wear Characteristics of a Bioinspired RidgedSurface [J]. Journal of Bionic Engineering,2010,7(2):175-181.
    [94]刘财勇,佟金,汲文峰.基于逆向工程技术的鼹鼠前爪趾甲几何模型[J].农机化研究,2008,(11):12-14.
    [95]汲文峰.旋耕—碎茬仿生刀片[D].长春:吉林大学,2010.
    [96] Ji W, Chen D, Jia H, Tong J. Experimental Investigation into Soil-CuttingPerformance of the Claws of Mole Rat (Scaptochirus moschatus)[J]. Journal ofBionic Engineering,2010,7, Supplement(0): S166-S171.
    [97]汲文峰,贾洪雷,佟金.旋耕-碎茬仿生刀片田间旋耕作业功耗的试验研究[M].创新农业工程科技推进现代农业发展——中国农业工程学会2011年学术年会.中国重庆.2011:6.
    [98]汲文峰,贾洪雷,佟金.旋耕-碎茬仿生刀片田间作业性能的试验研究[J].农业工程学报,2012,(12):24-30.
    [99]高吭.东方蝼蛄(Gryllotalpa orientalis Burmeister):特征、功能、力学及其仿生分析[D].长春:吉林大学,2009.
    [100]高吭,李玉柱,佟金.东方蝼蛄前胸背板外轮廓数据采集与量化分析[J].农业工程学报,2011,(08):201-205.
    [101]佟金,高吭,孙霁宇.东方蝼蛄前足爪趾结构与表皮纳米力学性能[J].农业机械学报,2009,(05):190-193.
    [102]佟金,吴娜.金龟子头部截面拟合曲线数学建模[J].华中农业大学学报,2005,(S1):1-5.
    [103]佟金,吴娜.臭蜣螂唇基表面轮廓曲线数学模型建立及分析[J].农业机械学报,2006,(05):113-116.
    [104]吴娜.面向仿生应用的金龟子外型测量及量化分析[D].长春:吉林大学,2006.
    [105]吴娜,佟金,陈东辉,张书军,陈秉聪.基于逆向工程技术的蜣螂外形数据采集与处理[J].农业机械学报,2006,(05):117-121.
    [106]吴娜,张伏,佟金.臭蜣螂(Copris ochus Motschulsky)唇基减阻的力学分析[M].中国农业机械学会2008年学术年会.中国山东济南.2008:4.
    [107]吴娜,张伏,佟金.臭蜣螂唇基切土减阻的力学分析[J].农业机械学报,2009,(10):207-210+222.
    [108] Xu L, Lin M X, Li J Q, Wang Z L, Chirende B. Three-Dimensional GeometricalModelling of Wild Boar Head by Reverse Engineering Technology [J]. Journal ofBionic Engineering,2008,5(1):85-90.
    [109] Zhang Z, Li J, Sun J. Study of biomimetic designing ridging plough tine based onhead of wild boar [C]. Proceedings of the Mechatronics and Automation,2009ICMA2009International Conference on, IEEE,2009:3354-3358.
    [110] Zhang Z J, Li J Q, Sun J Y. Study of Biomimetic Designing Ridging Plough TineBased on Head of Wild Boar [C]. Proceedings of the2009Ieee InternationalConference on Mechatronics And Automation, Vols1-7, Conference Proceedings,New York, Ieee,2009:3354-3358.
    [111] Li M, Chen D H, Zhang S J, Tong J. Biomimeitc Design of a Stubble-Cutting DiscUsing Finite Element Analysis [J]. Journal of Bionic Engineering,2013,10(1):118-127.
    [112]张琰,黄河,任露泉.仿生挖掘机斗齿减阻试验[J].吉林大学学报(工学版),2012,(S1):126-130.
    [113]张琰,黄河,任露泉.挖掘机仿生斗齿土壤切削试验与减阻机理研究[J].农业机械学报,2013,(01):258-261+229.
    [114]张琰,任露泉,周长海.蝼蛄胸背板轮廓曲线的数学分析[M].中国农业机械学会2008年学术年会.中国山东济南.2008:4.
    [115]张琰.东方蝼蛄耦合特性、运动学建模及其功能仿生研究[D].长春:吉林大学,2011.
    [116]文立阁.灭茬刀辊仿生减阻研究[D].长春:吉林大学,2009.
    [117]李世武,佟金,张书军,陈秉聪.逆向工程技术与工程仿生[J].农业机械学报,2004,(03):109-112.
    [118]金涛,陈建良,童水光.逆向工程技术研究进展[J].中国机械工程,2002,(16):86-92.
    [119]李世武,佟金,张书军,陈秉聪.牛蹄三维几何模型逆向工程研究[J].农业工程学报,2004,(02):156-160.
    [120]汲文峰,佟金,贾洪雷,陈东辉,刘财勇.鼹鼠爪趾几何结构量化特征分析[J].农业机械学报,2010,(04):193-198.
    [121]许亮.野猪头部三维几何模型逆向工程研究[D].长春:吉林大学,2006.
    [122] Gonzalez R C, Woods R E. Digital image processing [M].3rd ed. New Jersey:Prentice Hall,2008.
    [123] Wan P B, Jia H C, Peng W L. Bitmap Vectorization and Realization of Shoes Style
    [C]. Proceedings of the Proceedings of the2009International Symposium onInformation Processing,2009:418-421.
    [124]朱凤武.金龟子形态分析及深松耕作部件仿生设计[D].长春:吉林大学,2005.
    [125] Shah S A, Santago P, Rubin B K. Quantification of biopolymer filament structure [J].Ultramicroscopy,2005,104(3-4):244-254.
    [126] Yuan C, Lin E, Millard J, Hwang J N. Closed contour edge detection of blood vessellumen and outer wall boundaries in black-blood MR images [J]. Magnetic ResonanceImaging,1999,17(2):257-266.
    [127] Anoraganingrum D. Cell segmentation with median filter and mathematicalmorphology operation [C]. Proceedings of the Image Analysis and Processing,1999Proceedings International Conference on, IEEE,1999:1043-1046.
    [128]李宝筏.农业机械学[M].北京:中国农业出版社,2003.
    [129]中国农业机械化科学研究院.农业机械设计手册[M].北京:机械工业出版社,1988.
    [130]曾德超.农业工程学科的对象、领域、发展现状及趋向[J].农业工程学报,1992,(01):1-8.
    [131] Wong J-Y, Reece A. Prediction of rigid wheel performance based on the analysis ofsoil-wheel stresses part I. Performance of driven rigid wheels [J]. Journal ofTerramechanics,1967,4(1):81-98.
    [132] Quansah C. The effect of soil type, slope, rain intensity and their interactions onsplash detachment and transport [J]. Journal of Soil Science,1981,32(2):215-224.
    [133]张永刚.有限元法发展及其应用[J].科技情报开发与经济,2007,17(11):178-179.
    [134]李汝莘,宋洪波,高焕文.小型拖拉机土壤压实的有限元预测[J].农业工程学报,2001,(04):66-69.
    [135]夏俊芳,贺小伟,余水生,周勇.基于ANSYS/LS-DYNA的螺旋刀辊土壤切削有限元模拟[J].农业工程学报,2013,(10):34-41+293.
    [136]蒋建东,高洁,赵颖娣, Hoogmoed W,张立彬.基于ALE有限元仿真的土壤切削振动减阻[J].农业工程学报,2012,(S1):33-38.
    [137]郭志军,佟金,任露泉,周志立.耕作部件-土壤接触问题研究方法分析[J].农业机械学报,2001,(04):102-104+112.
    [138]韩志武,任露泉,李建桥,佟金.大型推土机推土工作装置运动分析[J].农业机械学报,2001,(01):9-11.
    [139]徐中华,王建华.有限元法分析土壤切削问题的研究进展[J].农业机械学报,2005,(01):134-137.
    [140]张强,张璐,于海业,肖英奎.复合形态深松铲耕作阻力有限元分析与试验[J].农业机械学报,2012,(8):61-65.
    [141] Hambleton J P, Drescher A. Modeling wheel-induced rutting in soils: Indentation [J].Journal of Terramechanics,2008,45(6):201-211.
    [142] Bentaher H, Ibrahmi A, Hamza E, Hbaieb M, Kantchev G, Maalej A, Arnold W.Finite element simulation of moldboard–soil interaction [J]. Soil and TillageResearch,2013,134(0):11-16.
    [143] Abo-Elnor M, Hamilton R, Boyle J T.3D Dynamic analysis of soil–tool interactionusing the finite element method [J]. Journal of Terramechanics,2003,40(1):51-62.
    [144] Tong J, Moayad B Z. Effects of rake angle of chisel plough on soil cutting factorsand power requirements: A computer simulation [J]. Soil and Tillage Research,2006,88(1–2):55-64.
    [145] Hambleton J P, Drescher A. Modeling wheel-induced rutting in soils: Rolling [J].Journal of Terramechanics,2009,46(2):35-47.
    [146] Abo-Elnor M, Hamilton R, Boyle J T. Simulation of soil–blade interaction for sandysoil using advanced3D finite element analysis [J]. Soil and Tillage Research,2004,75(1):61-73.
    [147] Shinde G U, Kajale S R. Computer aided engineering analysis and designoptimization of rotary tillage tool components [J]. International Journal ofAgricultural and Biological Engineering,2011,4(3):1-6.
    [148] Abu-Hamdeh N H, Reeder R C. A nonlinear3D finite element analysis of the soilforces acting on a disk plow [J]. Soil and Tillage Research,2003,74(2):115-124.
    [149] Mouazen A M, Neményi M. Finite element analysis of subsoiler cutting innon-homogeneous sandy loam soil [J]. Soil and Tillage Research,1999,51(1–2):1-15.
    [150] Fielke J M. Finite Element Modelling of the Interaction of the Cutting Edge ofTillage Implements with Soil [J]. Journal of Agricultural Engineering Research,1999,74(1):91-101.
    [151] Gonzalez R C, Woods R E, Eddins S L. Digital Image processing using MATLAB[M].2nd ed. New Jersey: Pearson Prentice Hall2009.
    [152] Ahmad R, Tichadou S, Hascoet J Y. New computer vision based Snakes and Laddersalgorithm for the safe trajectory of two axis CNC machines [J]. Computer-AidedDesign,2012,44(5):355-366.
    [153] Gonzalez R C, Woods R E. Digital image processing [M].2nd ed. New Jersey:Prentice Hall,2002.
    [154]董文晓.基于CCD相机测量的LED显示屏亮度和色度均匀性算法研究[D].西安:西安电子科技大学,2012.
    [155]高雷.交会对接逼近阶段飞行器空中位置和姿态的视觉测量[D].长沙:国防科学技术大学,2010.
    [156]钱基业.图像处理算法及其在板形识别中的应用[D].重庆:重庆大学,2007.
    [157]谢小亮.基于图像处理技术的自动报靶系统[D].重庆:重庆大学,2012.
    [158] Larkins D B, Harvey W. Introductory computational science using MATLAB andimage processing [J]. Procedia Computer Science,2010,1(1):913-919.
    [159] Cui F Y, Zou L J, Song B. Edge Feature Extraction Based on Digital ImageProcessing Techniques [C]. Proceedings of the2008Ieee International Conferenceon Automation And Logistics,2008:2320-2324.
    [160] Ren L Q, Tong J, Li J Q, Chen B C. SW-Soil and Water: Soil Adhesion andBiomimetics of Soil-engaging Components: a Review [J]. Journal of AgriculturalEngineering Research,2001,79(3):239-263.
    [161] Tong J, Zhang Z H, Chen D H, Wang H C, Ma Y H. A method for quantitativeanalysis of geometrical structure of animal organs in meso-scale: The dung beetleforeleg end tooth as a case example [C]. Proceedings of the4th InternationalConference of Bionic Engineering, ICBE2013, August13,2013-August16,2013,Nanjing, China, Trans Tech Publications Ltd,2014:3-16.
    [162]治景良.数值计算方法[M].北京:清华大学出版社,1990.
    [163]胡书杰.五边形冲击压实机工作机理研究及工作过程仿真[D].郑州:郑州大学,2009.
    [164]胡书杰,王栋,李大磊.五边形冲击压实机所需牵引力的计算及数值仿真[J].河南科学,2009,(01):67-69.
    [165]李继光,常永英.三边形冲击压实机所需牵引力的计算[J].黄河水利职业技术学院学报,2005,(04):40-42.
    [166]胡书杰,王栋,李大磊.五边形冲击压实机冲击力与冲击能量的分析[J].机械设计与制造,2010,(01):154-155.
    [167]太沙基.理论土力学[M].北京:地质出版社,1960.
    [168] Hibbitt H, Karlsson B, Sorensen P. Abaqus Analysis Users Manual Version6.10[M].Providence, RI, USA: Dassault Systèmes Simulia Corp,2010.
    [169] Benson D J. An efficient, accurate, simple ALE method for nonlinear finite elementprograms [J]. Computer methods in applied mechanics and engineering,1989,72(3):305-350.
    [170] Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P. Meshless methods: anoverview and recent developments [J]. Computer methods in applied mechanics andengineering,1996,139(1):3-47.
    [171] Hughes T J, Liu W K, Zimmermann T K. Lagrangian-Eulerian finite elementformulation for incompressible viscous flows [J]. Computer methods in appliedmechanics and engineering,1981,29(3):329-349.
    [172]汤建明.基于ANSYS/LS-DYNA进行EFP成形及切割仿真研究[D].南京:南京理工大学,2006.
    [173]王曰启.盾构刀盘三维数值模拟研究[D].天津:天津大学,2008.
    [174]钟江.基于LS-DYNA的高轧件轧制过程仿真分析与实证研究[D].杭州:浙江工业大学,2007.
    [175]汤华,金先龙,丁峻宏,沈建奇.基于任意拉格朗日-欧拉法的盾构刀盘土体切削仿真[J].上海交通大学学报,2006,(12):2177-2181.
    [176] Liyanapathirana D S. Arbitrary Lagrangian Eulerian based finite element analysis ofcone penetration in soft clay [J]. Computers and Geotechnics,2009,36(5):851-860.
    [177] Nazem M, Carter J P, Airey D W. Arbitrary Lagrangian–Eulerian method fordynamic analysis of geotechnical problems [J]. Computers and Geotechnics,2009,36(4):549-557.
    [178] Tolooiyan A, Gavin K. Modelling the Cone Penetration Test in sand using CavityExpansion and Arbitrary Lagrangian Eulerian Finite Element Methods [J].Computers and Geotechnics,2011,38(4):482-490.
    [179] Donea J, Huerta A, Ponthot J P, Rodríguez‐Ferran A. Arbitrary lagrangian–eulerian methods [J]. Encyclopedia of computational mechanics,2004,
    [180] Khoei A R, Anahid M, Shahim K. An extended arbitrary Lagrangian–Eulerian finiteelement method for large deformation of solid mechanics [J]. Finite Elements inAnalysis and Design,2008,44(6–7):401-416.
    [181] Souli M, Shahrour I. Arbitrary Lagrangian Eulerian formulation for soil structureinteraction problems [J]. Soil Dynamics and Earthquake Engineering,2012,35(0):72-79.
    [182]庄茁. ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005.
    [183] Shen J, Kushwaha R L. Soil-machine interactions: a finite element perspective [M].New York: Marcel Dekker Inc.,1998.
    [184] Hettiaratchi D, Witney B, Reece A. The calculation of passive pressure intwo-dimensional soil failure [J]. Journal of Agricultural Engineering Research,1966,11(2):89-107.
    [185] Vanden Berg G. Analysis of forces on tillage tools [J]. Journal of AgriculturalEngineering Research,1966,11(3):201-205.
    [186]付清胜.空腔解耦条件下岩土体动力响应研究[D].兰州:兰州大学,2008.
    [187] Nyquist H. Certain topics in telegraph transmission theory [J]. American Institute ofElectrical Engineers, Transactions of the,1928,47(2):617-644.
    [188] Ren L, Cong Q, Tong J, Chen B. Reducing adhesion of soil against loading shovelusing bionic electro-osmosis method [J]. Journal of Terramechanics,2001,38(4):211-219.
    [189] Gill W R, Berg G E V. Soil dynamics in tillage and traction [M]. AgriculturalResearch Service, US Department of Agriculture,1967.
    [190] Tong J, Ren L, Chen B, Qaisrani A. Characteristics of adhesion between soil andsolid surfaces [J]. Journal of Terramechanics,1994,31(2):93-105.
    [191] Ma Y H, Tong J, Yang Y S. Statistical analysis of experimental condition effects onfree abrasive wear of UHMWPE [J]. Journal of materials science,2004,39(10):3453-3456.
    [192] Tong J, Ren L, Yan J, Ma Y, Chen B. Adhesion and abrasion of several materialsagainst soil [J]. International Agricultural Engineering Journal,1999,8(1):1.
    [193]马云海,马圣胜,贾洪雷,刘玉成,彭杰,高知辉.仿生波纹形开沟器减黏降阻性能测试与分析[J].农业工程学报,2014,(5):36-41.
    [194]杜卫刚.开沟器仿生设计及其试验分析[D].长春:吉林大学,2004.
    [195] Goshtasb A, Fielke J, Desbiolles J. A Review of Soil/Tool Adhesion Principles andApproaches to Reducing Limitations of Disc Seeders [C]. Proceedings of theAgricultural Technologies In a Changing Climate: The2009CIGR InternationalSymposium of the Australian Society for Engineering in Agriculture, EngineersAustralia,2009:208.
    [196] Khosravani A, Desbiolles J, Fielke J. Opportunities for improving the performance ofsingle disc seeders in sticky soil conditions [C]. Proceedings of the2011Society forEngineering in Agriculture Conference: Diverse Challenges, Innovative Solutions,Engineers Australia,2011:256.
    [197]吴鸿云,陈新明,刘少军,高宇清,陈秉正.履带板,齿间黏附底质对集矿机附着性能的影响[J].农业工程学报,2010,26(10):140-145.
    [198] Shahgoli G, Fielke J, Desbiolles J, Saunders C. Optimising oscillation frequency inoscillatory tillage [J]. Soil and Tillage Research,2010,106(2):202-210.
    [199]李霞,付俊峰,张东兴,崔涛,张瑞.基于振动减阻原理的深松机牵引阻力试验[J].农业工程学报,2012,28(1):32-36.
    [200]张智泓,佟金,陈东辉,孙霁宇,马云海.不同材质仿生凸齿镇压器滚动件的模态分析[J].农业工程学报,2012,28(13):8-15.
    [201]管迪华.模态分析与技术[M].北京:清华大学出版社,1996.
    [202]韩志武,吕尤,董立春,张俊秋,牛士超,马荣峰,任露泉.仿生表面形态齿轮的模态分析[J].吉林大学学报(工学版),2010,40(6):
    [203]权龙哲,佟金,曾百功,陈东辉.玉米根茬收获系统的有限元模态分析与试验[J].农业工程学报,2011,27(11):15-20.
    [204]马学良.振荡压路机压实动力学及压实过程控制关键技术的研究[D].西安:长安大学,2009.
    [205]谢欣然.振动加速度与土壤压实状况关系分析[D].重庆:重庆交通大学2009.
    [206] Bandalan E, Salokhe V, Gupta C, Niyamapa T. Performance of an oscillatingsubsoiler in breaking a hardpan [J]. Journal of Terramechanics,1999,36(2):117-125.
    [207] Wang X, Ito N, Kito K, Garcia P. Study on use of vibration to reduce soil adhesion[J]. Journal of terramechanics,1998,35(2):87-101.
    [208]张海鹰,廖建勇.改进的模糊化神经网络的土壤振动掘削阻力软测量模型[J].农业工程学报,2010,(6):188-192.
    [209]蒋建东,高洁,赵颖娣, Hoogmoed W,张宪.土壤旋切振动减阻的有限元分析[J].农业机械学报,2012,43(001):58-62.
    [210]张志峰,郝飞,冯忠绪.振动轮下土壤的动态响应分析[J].武汉理工大学学报,2010,32(7):94-97.
    [211] López M, Arrúe J. Growth, yield and water use efficiency of winter barley inresponse to conservation tillage in a semi-arid region of Spain [J]. Soil and tillageresearch,1997,44(1):35-54.
    [212] Jafari R, TAVAKOLI T, Minaee S, Raoufat M. Large deformation modeling insoil-tillage tool interaction using advanced3D nonlinear finite element approach [C].Proceedings of the Proceedings of the6th WSEAS International Conference onSimulation, Modelling and Optimization, World Scientific and EngineeringAcademy and Society (WSEAS),2006:6.
    [213]刘财勇.鼹鼠(Scaptochirus moschatus)爪趾切削机理研究[D].长春:吉林大学,2008.
    [214]任露泉,徐晓波,陈秉聪,崔相旭,王煜明,张伯兰,葛辽海,金桂萍.典型土壤动物爪趾形态的初步分析[J].农业机械学报,1990,(02):44-49.
    [215] Tong J, Sun J, Chen D, Zhang S. Geometrical features and wettability of dungbeetles and potential biomimetic engineering applications in tillage implements [J].Soil and Tillage Research,2005,80(1–2):1-12.
    [216]任露泉,丛茜,佟金.界面粘附中非光滑表面基本特性的研究[J].农业工程学报,1992,(01):16-22.
    [217]张金波.自由式磨料磨损下棱纹形仿生结构表面摩擦学行为[D].长春:吉林大学,2009.
    [218]张金波,佟金,马云海.仿生肋条结构表面深松铲刃的磨料磨损特性[J].吉林大学学报(工学版),2014,优先出版
    [219]佟金,任露泉,孙世元,陈秉聪.土壤/橡胶粘附界面土壤表层微形态SEM研究[J].电子显微学报,1993,(04):348-351.
    [220]刘鸿文,林建兴,曹曼玲.高等材料力学[M].北京:高等教育出版社,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700