用户名: 密码: 验证码:
水相酶解法提取饲用菜籽蛋白新技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国畜牧业发展的最大问题是蛋白质资源不足,为充分开发菜籽蛋白资源,本文进行了水相酶解法提取菜籽蛋白的研究,具体内容包括酶的筛选及处理参数研究、酶解后水浸提工艺研究、菜籽蛋白提取液超滤工艺研究。
     在酶的筛选及处理参数研究中,选取纤维素酶、半纤维素酶、果胶酶、蛋白酶,以及复合酶Ⅰ(纤维素酶、蛋白酶、果胶酶按活力比5:3:2组成)、复合酶Ⅱ(纤维素酶、果胶酶按活力比3:1)进行水相酶解法提取菜籽蛋白与油脂的单因素实验,并以不加酶传统水剂法做对照,结果表明:复合酶作用明显,单独的纤维素酶、果胶酶、半纤维素酶作用不明显。以复合酶Ⅱ对菜籽进行处理,采用响应曲面分析(RSA)方法研究,得出较优工艺参数为固液比1:5、加酶量30U/g、酶处理时间100 min。
     在酶解后水浸提工艺研究中,以采用较优工艺参数酶处理后的菜籽乳液为研究对象,研究酶解后水浸提条件对菜籽油与菜籽蛋白得率的影响,得出pH、温度对油脂与蛋白质得率影响较大;浸提时间影响不显著。采用响应曲面分析(RSA)方法进行优化实验,得出酶解后水浸提的最适条件为固液比1:6.5,pH 9.6,温度52℃,浸提时间取98min。
     对菜籽蛋白提取液采用超滤分离,进行超滤工艺参数研究,结果表明超滤过程操作压力、温度、料液的pH、料液蛋白质浓度对超滤效果有较大影响。试验结果表明,控制操作压力0.20-0.30 MPa,温度50℃,料液pH 9-10左右,并在超滤过程中采用稀碱液及Alcalase蛋白酶间断循环清洗就能确保超滤在相对高的膜透过速率下运行。
     在以上最佳工艺条件下采用水相酶解法提取菜籽中的油脂与蛋白质,以超滤技术分离菜籽蛋白,菜籽油得率可达92.7%,蛋白质得率达82.3%,产品中菜籽蛋白含量达90%以上,明显高于传统水剂法,产品中异硫氰酸酯、恶唑烷硫酮均未检出。但在降低酶的使用成本及该工艺产业化方面有待进一步研究。
The key problem in stockbreeding of our country is short of protein resource. In order to fully explore the rapeseed protein resource, we carried out aqueous enzymatic extraction which included the study on selecting enzyme and its treatment parameter, aqueous extraction technology after zymohydrolysis, the research on aqueous enzymic hydrolysis for rapeseed protein after ultrafiltration..
    During the study on the selection of enzyme and treatment parameter, we selected cellulose, hemicellulose, pectinase, protease, complex-enzyme I (protease, cellulose, pectinase were mixed in line with their activity ratio of 5:3:2), and complex-enzyme II (cellulose, pectinase in line with their activity ratio of 3:1). we calculated the output rate of rapeseed oil and rapeseed protein and made a contrast between this method and the traditional aqueous extraction without enzyme. It proved that the function of complex-enzyme was obvious, single cellulose, hemicellulose and pectinase were not so effective. To treat the rapeseed with complex-enzyme II, RSA was adopted to study the effect of the enzyme reaction parameter to the output rate of rapeseed oil and rapeseed protein, the results showed that the proper technology parameter were supposed to be as follows: the ratio of solid and liquid was 1:5, the enzyme quantity was 30u/g, and the enzyme treating time was 100 min.
    During the studying on water-extraction technology after enzymatic extraction we studied the effect of water-extraction condition after enzymatic extraction on the output rate of rapeseed oil and rapeseed protein, adopting the rapeseed emulsion which was treated by optimized technology parameter . The result showed that pH and temperature had important effect on the output rate of fats and protein, but the extracting time had no obvious effect.The RSA being adopted to the optimization experiment, we got the most proper conditions of water-extraction after enzymatic extraction: the ratio of solid to liquid was 1:6.5, pH was 9.6, temperature was 52C, extraction time was 98 min.
    During the research on the ultrafiltration technique of the rapeseed protein extraction liquid, we used ultrafiltration to treat the rapeseed protein extraction liquid made by the aqueous enzymatic extraction and undertook the parameter research of the rapeseed
    
    
    protein ultrafiltration. We found that the ultrafiltration could be operated at a comparatively high Jv with the operation pressure of 0.20-0.30 Mpa, temperature of 50C, the liquid pH of 9-10 and the discontinuous and circulatory cleaning of the rapeseed protein extraction liquid with weak lye and Alcalase during the ultrafileration process.
    Extracting the oil and fat and protein of the rapeseeds with aqueous enzymatic extraction under optimal conditions, separating the rapeseed protein from the liquid with ultrafiltration technique, the rapeseed oil extraction rate should be 92.7% and the protein extraction rate 82.3% and the content of rapeseed protein in the product exceeded 90%.It was easy to prove that this method was better than conditional aqueous extraction. At the same time, the content of ITC and the OZT could not be found . But how to reduce the using cost and how to make this technology on an industrial scale need further study.
引文
1.傅廷栋,杨光圣,涂金星,马朝芝.中国油菜生产的现状与展望[J].中国油脂,2003,28(1):11-13
    2.厉秋岳.油菜籽的综合利用[M].北京.中国农业科学技术出版社,1987:83-88
    3. Hill D C. Evaluation of protein conlentrateprepared from rapeseed meal[J]. J.Sci.food Agric, 1971,(22): 128
    4.刘艳芬,马龙.用脱毒菜粕代替豆粕饲喂肉猪试验[J].湛江海洋大学学报1998,18(2):78-80
    5.席鹏彬,李德发.中国不同品种菜粕猪回肠氨基酸消化率研究[J].中国畜牧杂志,2002,38(4):5-7
    6. Sarwar G, Blair R, Friedman M. Inter and inter-laboratory variability in rat growth Assays for Estimating Protein Quality of Foods[J]. J.Assoc.off.Analyt.Chem, 1984,67:97
    7.解蕊.一种潜在的植物蛋白资源—菜籽蛋白的开发[J].农产品加工,2003,(1):26-28
    8.慕运动,郭兴凤.菜籽粕中硫代葡萄糖甙在芥子酶作用下分解条件研究[J].中国油脂 1999,24(5):51-52
    9.刘玉兰,董秀云.菜籽饼粕的生物化学法脱毒研究[J].中国粮油学报,1994,9(3):49-56
    10.金邦荃,易培智.菜粕中硫代葡萄糖甙对猪血液常规指标,血清转氨酶和甲状腺素的影响[J].江苏农业学报,1995,11(1):33-35
    11.包承玉,徐福南.不同菜粕比例对肉鸡肝,肾及甲状腺组织的影响[J].江苏农业学报,1995,11(3):23-28
    12.吴谋成,袁俊华.加快我国油菜籽加工及综合利用的研究与产业化[J].粮食与油脂,2001,(1):11-13
    13.赵锁劳.现代生物技术在油菜育种中的应用[J].西北农业学报,
    
    2000,9(4):103-106
    14.郭志鹏,陆英刚,孙宝权.双低甘蓝型春油菜名星及栽培技术[J].现代化农业,2003,(8):22-23
    15.高玉鹏.产蛋鸡日粮内低芥酸、低硫甙菜籽粕营养价值的研究[J].动物营养学报,2000,12(2):57-61
    16.李绍章,陈远华,薛永丰.双低油菜粕高比例配合饲粮饲养生长肥育猪试验[J].湖北畜牧兽区,1999,(1):1-5
    17.郁建平.菜籽饼粕脱毒植酸的提取和浓缩蛋白分离蛋白的制备[J].中国油料,1997,19(2):64-68
    18.韦平英,马光庭.限定性固体混合发酵菜籽饼脱毒的研究[J].应用与环境生物学报,1995,5(suppl):186-190
    19.胡弘.三种工厂化菜籽饼脱毒方法比较[J].西部粮油科技,1994,19(3):48-50
    20.韩峰,高雪,周淑平.菜籽饼粕脱毒新技术研究[J].贵州科学,1995,13(5):40-43
    21.陆骑凤,倪培德.菜籽热喷去毒研讨[J].中国油脂,1994,19(1):40-43
    22.胡志和,庞广昌,王凤玲.萃取超滤技术制备食用菜籽蛋白[J].食品科学,1999,(8):34-37
    23.曾晓波,吴谋成,王海英.丙酮浸提法制取菜籽浓缩蛋白[J].中国粮油学报,2001,16(4):10-13
    24.张寒俊,刘大川,王兴国,李永明.双低油菜籽蛋白质及其他成分溶解曲线研究[J].中国油脂,2001,28(1):27-29
    25. Ranalli A, Mattia G D. Characterization of olive oil produced with a new enzyme processing aid[J]. J Am Oil Chem Soc, 1997,74(9):1105-1113
    26.钱和,雕鸿荪,沈培英.现行油菜籽加工过程中各种成分的变化[J].无锡轻工大学学报,1995,14(2):129-135
    27. Rosenthal A, Pyle D L, Niranjan K. Mechanisms in the simultaneous aqueous extraction of oil and protein from soybean. Transactions of The Institute of Chemical Engineers [J]. Part C. Food and Bioproducts, 1998,76:224-30
    
    
    28. Rhee K C. Simultaneous Recovery of Protein and Oil from Raw Peanuts in an Aqueous System [J]. J Food Sci, 1972,37:141-145
    29. Eapen K E, Kalbag S S, Subrahmanyan V. Operations in the Wetrendering of peanut for the separation of protein,oil and starch [J]. J Am Oil Chem Soc, 1966,43: 585
    30. Toyama N. Applications of cellulases in Japen[M]. advances in Chemistry Series 95, ACS, Washington, DC. 1969:Chapter22
    31. Mcglone O C, Canales A M, Carter J V. Coconut oil extraction by a new enzymatic processing[J]. J. Food Sci, 1986,51:695-697
    32. Toyama N. Cellulases and their applications[M], advances in Chemistry Series, American Chemical Soeciety Publications, 1984, 391
    33. Sosulski K, Sosulski F W, Coxworth E. Carbohydrase hydrolysis of canola to enhance oil extraction with hexane [J]. J Am Oil Chem Soc, 1988,65: 357-361
    34. Sosulski K, Sosulski F W. Enzyme-aided vs two-stage processing of canola: technology, product quality and cost evaluation [J]. J Am Oil Chem Soc, 1993, 70: 825-829
    35.李浪,柳琴.酶解麻渣二次提油新工艺探讨[J].中国油脂,1998,(2):43
    36.唐年初,罗彩鸿等.玉米胚芽的水酶法提油新工艺[J].西部粮油科技,1997(4):18
    37.刘志强,何昭青.水酶法花生蛋白质提取及制油研究[J].中国粮油学报,1999,14(1):36-39
    38.刘志强,易平贵,吴苏喜.酶法有限水解对花生蛋白含油率影响[J].中国粮油学报,2003,18(3):73-77
    39. Bocevsk A M. Quuality of combining aqueous enzymatic extraction[J]. JAOCS 1993,70(12): 1273-1277
    40. Kwaku T D. Application of enzyme assisited aqueous fat extraction to cocoa fat[J] JAOCS,1995,72(10):1409-1411
    41. Cheman Y B, Asbi A B. Aqueous enzymatic Extraction of coconut
    
    oil[J].JAOCS,1996,73(5):683-686
    42. Rosenthal A, Pyle D L, Niranjan K, Gilmour S, Trinca L. Combined effect of operational variables and enzyme activity on aqueous enzymatic extraction of oil and protein from soybean [J]. Enzyme and Microbial Technology, 2001,28(6):224-228
    43. Alder-Nissen J. Enzymatic Hydrolysis of food Proteins[M]. Elsevier Applied Science Publishers, London and New York,1986,427
    44. Alder-Nissen J. Enzymatic Hydrolysis of Proteins for Increased solubility[J].Agric Food Chem, 1976,24:1090
    45.钱俊青,何国庆.水相酶解大豆蛋白的条件对其油脂分布的影响[J].浙江大学学报[工学版],2001,35(6):684-688
    46. Mansour E H et al. Preparation and Functional Properties of Rapeseed Protein[J]. Products Actaal imentarial, 1992,21 (3/4):293~305
    47.钱俊青.膜表面特性影响蛋白质超滤分离的研究[J].浙江大不学报(农业与生命科学版),2000,26(2):187-190
    48.刘大川,张维农,胡小泓.超滤膜法花生分离蛋白的制备及功能特性研究[J].中国油脂,2002,27(4):5-9
    49. Zbieta Dtuzewska, Stanistaw Gwiazda, Krzysztof Leszczynski. Influence of membrane processing on functional properties of rapeseed protein preparations[J]. Polish journal of food and nutrition sciences, 2000,50(2):35-39
    50. Jonsson G, Johomsen P L. Selectivity of ultrafiltration membranes influence of fouling and cleaning conditions[J] .Filtration and Separation, 1991,1:21-23
    51.王学松.膜分离技术及应用[M].北京:科学出版社,1994,22-56
    52.李巍青,吴苏喜.大豆蛋白对超滤膜的污染机理及反冲法控制污染的研究[J].长沙电力学院学报(自然科学版),2000,15(2):91-93
    53.刘昌胜,邬行彦,潘德维等.膜的污染及其清洗[J].膜科学与技术,1996,16(2):25-27
    
    
    54.刘福岭,戴行钧.食品物理与化学分析方法[M],北京:轻工业出版社,1987.41-60
    55.陈如梅译.用硫脲紫外法测定菜籽饼中硫代葡萄糖甙的含量[J].国外粮油科技,1982,(4):44
    56.何照范.粮油籽粒品质及其分析[M].北京:农业出版社,1983.67-90
    57.张树政.酶制剂工业(下)[M].北京:科学技术出版社,1984.595-653
    58.邬显章.酶的工业生产技术[M].吉林科学技术出版社,1983
    59. Box G E P, Draper N R. Empirical model-building and response surface[M]. Canada: John wiley & Sons Inc, 1987
    60.褚以文.微生物培养基优化方法及其OPTI优化软件[J].国外医药抗生素分册,1999,20(2):58-61
    61.高惠璇.SAS/STAT软件使用手册[M],北京:中国统计出版社,1997.225
    62.钱俊青,陈铭,李燕.食品工业用的超滤膜的再生[J].食品科学,1999,16(6):38-41
    63.孙培松,Kim K J,吴惠珍,Fane A G.蛋白质在超滤过程中的膜污染和膜清洗[J].水处理技术,1994,20(2):81-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700