用户名: 密码: 验证码:
碳四烃催化裂解分子筛内的吸附及扩散:实验测定与分子模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国石油化工集团上海石油化工研究院所开发的烯烃催化裂解技术(Olefins Catalytic Cracking Technology,OCC)是以碳四烃资源为原料增产丙烯和乙烯的新工艺,对解决国内碳四烃富集问题和提高石化企业的效益均具有极其重要的意义。因而,对碳四烃在催化裂解分子筛上的吸附和扩散研究就成为一个极具工业意义的课题。
     本论文针对中石化上海石油化工研究院所开发的OCC烯烃催化裂解工艺,以上海石油化工研究院所制备的用于烯烃催化裂解反应中的具有独特择形性和酸性的不同硅铝比ZSM-5分子筛催化剂为研究对象,采用实验测定、理论模型和分子模拟相结合的研究手段对碳四烃(以正丁烷和丁烯-1为代表)在ZSM-5分子筛催化剂上的吸附和扩散行为进行了广泛研究,建立了碳四烃在ZSM-5分子筛催化剂上的吸附和扩散模型。全文的主要内容和创新点如下:
     1.首先,通过XRD、SEM和BET测试等手段的表征,确认了上海石油化工研究院所制备提供的5种催化剂样品具有典型的ZSM-5分子筛结构;其样品晶粒晶型规整,大小均匀,晶粒分布范围较窄,晶粒尺寸在0.1~0.3μm之间,而且由于加入较大量的粘结剂导致分子筛晶粒之间形成了一部分大孔且具有较低的BET表面积。进而在上海石油化工研究院所推荐的裂解反应条件下,利用本实验室高精度的IGA-003智能重力分析仪测定了不同温度不同压力下碳四烃纯组分和不同配比混合物在具有不同硅铝比及改性组分的ZSM-5分子筛上的吸附平衡及动力学数据。
     2.通过对碳四烃纯组分在ZSM-5分子筛上吸附数据的关联,建立了适合于ZSM-5分子筛上碳四烃纯组分吸附的双朗格缪尔(Double Langmuir,DL)模型,以及计算得到了碳四烃在ZSM-5分子筛上的吸附热、吸附熵变和亨利常数等热力学性质,并探讨了样品硅铝比对吸附热力学性质的影响。进而将理想吸附溶液理论(Ideal Adsorbed Solution Theory,IAST)与双朗格缪尔(Double Langmuir,DL)模型相结合,提出了适用于丁烯-1(1)/正丁烷(2)混合物在ZSM-5分子筛上吸附的IAST-DL模型;并运用IAST-DL模型对丁烯-1(1)/正丁烷(2)混合物在ZSM-5分子筛上的吸附进行了广泛的研究;得到了混合物吸附选择性与样品硅铝比之间的关联方程。
     3.采用联合原子模型,以实验吸附热、亨利常数和吸附等温线为基础,运用与构型偏倚技术(Configurational-bias Monte Carlo,CBMC)相结合的NVT正则系统和巨正则系综模拟方法拟合得到了烃分子中联合原子与分子筛氧之间的相互作用势能参数,提出了适用于真实工业催化剂的力场参数。采用同样的模型和势能参数模拟而得到的混合物吸附等温线以及吸附选择性均与IAST-DL模型得到的计算结果相吻合。同时,对碳四烃在ZSM-5分子筛上的吸附位选择进行了研究。发现工业催化剂中大量粘结剂的加入对碳四烃分子在ZSM-5分子筛中的吸附位选择具有重大的影响作用。
     4.运用Fick扩散模型对碳四烃在ZSM-5分子筛上吸附动力学数据进行关联,得到了275、288及300 K下正丁烷及丁烯-1在具有不同硅铝比ZSM-5分子筛催化剂内的扩散系数,同时探讨了温度、压力以及样品硅铝比等因素对扩散系数的影响。
With the C_4 olefin-rich hydrocarbons as the feed to produce ethylene andpropylene on special shape-selectivity and acidic ZSM-5 zeolite catalysts, theolefins catalytic cracking (OCC) technology developed by Shanghai ResearchInstitute of Petrochemical Technology of SINOPEC is a novel technology, andthis technology is of great importance in the utilization of C_4 olefin-richhydrocarbons and increase of benefit for petrochemical industry. Therefore, itis necessary to investigate adsorption and diffusion of C_4 hydrocarbons onZSM-5 zeolites with different Si/Al ratios, used in the catalytic crackingprocess.
     In this work, aimed at the OCC technology, the combine method "experiment measurement、theory model and molecular simulation" was used to study the adsorption and diffusion of C_4 hydrocarbons (n-butane and butene-1) on special shape-selectivity and acidic ZSM-5 zeolites with different Si/Al ratios used as catalysts in OCC technology, which were prepared by Shanghai Research Institute of Petrochemical Technology. The adsorption and diffusion model of C_4 hydrocarbons on ZSM-5 zeolite catalysts were proposed here. The main contents and finding are summarized as follows:
     1.First, five ZSM-5 zeolite samples are characterized by XRD, SEM and the nitrogen adsorption isotherm at 77 K. It is found from the XRD results that the positions of the characteristic peaks for five zeolite samples are the same with those of the standard ZSM-5 zeolite samples, indicating that the samples are all ZSM-5 zeolites. The SEM photograph shows that the ZSM-5 zeolite particulates have the regular crystal morphology and a narrow crystal size, which about is 0.1~0.3μm. As the addition of a large amount of binder, the BET surface area of five samples are all lower than that of the literature values and some macropores are formed in the ZSM-5 zeolite sample crystal particulates. Furthermore, based on the catalytic cracking conditions recommended by Shanghai Research Institute of Petrochemical Technology, the adsorption equilibrium and kinetic data of C_4 hydrocarbons on ZSM-5 zeolite with different Si/Al ratios and modified components are measured by the intelligent gravimetric analyzer (IGA-003, Hiden) at different temperatures and pressures.
     2.The double Langmuir (DL) model is used to correlate the equilibrium data of pure C_4 hydrocarbons on ZSM-5 zeolite samples, and the heat of adsorption, entropy change of adsorption and Henry coefficient are calculated and the affection of Si/Al ratio to adsorption thermodynamic character are discussed. Then, by combining the ideal adsorbed solution theory (IAST) with the double Langmuir (DL) model, the IAST-DL model which is capable to model the butene-1(1) /n-butane(2) mixture adsorption on different ZSM-5 zeolite samples is proposed and is used to predict the selectivities and adsorption of butene-1(1) /n-butane(2) mixture on different ZSM-5 zeolite samples covering a wide range of compositions, temperatures and pressures. The correlation between the selectivity and Si/Al ratio of sample is proposed here.
     3.The united-atoms (UA) representation is employed, and the interaction parameters between UA model are obtained by fitting the NVT and GCMC, which are combined with CBMC (Configurational-bias Monte Carlo) technique, simulation results with the experimental data (heat of adsorption, Henry coefficient and adsorption isotherm). The force field parameters used for industrial catalysts are proposed here. Then, the model and force field parameters are used to simulate the mixture adsorption isotherm and selectivity. The simulated results are good agreement with the experiment data and the calculated results of IAST-DL model. The adsorption localization of C_4 hydrocarbons on ZSM-5 zeolite samples are simulated, and the simulated results show that the addition of a large amount of binder has a distinctly affection for the adsorption localization of C_4 hydrocarbons on ZSM-5 zeolites.
     4.The adsorption kinetic data of C_4 hydrocarbons on ZSM-5 zeolites are correlated in terms of the Fick diffusion model, and the diffusion coefficients of n-butane and butene-1 on ZSM-5 zeolites with different Si/Al ratios at 275, 288 and 300 K are obtained. In addition, the affection of temperature, pressure and Si/Al ratio to diffusion coefficients are discussed.
引文
[1] 黄汉生.面临21世纪的碳四烃工业[J].石油化工设计,1999,16(3):54-60
    [2] 言敏达,胡云光,白尔铮.碳四烃利用现状及发展前景[A].见:中国化工学会石油化工专业委员会.碳四资源利用途径及技术开发学术交流会论文集[C].呼和浩特:中国化工学会石油化工专业委员会,2002,1-13
    [3] 钱伯章.增产丙烯技术及其进展[J].石油炼制与化工,2001,32(11):19-23
    [4] 王瀚舟,钱伯章.增产丙烯的技术进展[J].石油化工,2000,29(9):705-711
    [5] 李小明,宋芙蓉.催化裂解制烯烃的技术进展[J].石油化工,2002,31(7):569-573
    [6] 朱向学,刘盛林,牛雄雷,等.ZSM-5分子筛上C_4烯烃催化裂解制丙烯和乙烯[J].石油化工,2004,33(4):320-324
    [7] [J]. Eur Chem News, 1998, 69(1808): 39
    [8] [J]. Eur Chem News, 2000, 72(1902): 46-48
    [9] 滕加伟,赵国良,宋庆英,等.C_4及C_4~+烯烃催化裂解生产丙烯/乙烯新工艺[A].见:中国化学会催化专业委员会.第十一届全国催化学术会议论文集[C].浙江大学出版社,2002,297-298
    [10] 滕加伟,赵国良,谢在库,等.烯烃催化裂解增产丙烯催化剂[J].石油化工,2004,(33)2:100-103
    [11] 宋茂莹,王喜才,龙英才.新结构沸石分子筛[J].上海化工,2000,9:24-27
    [12] Ch Baerlocher, Meier W M, Olson D H. Atlas of zeolite framework types, Amsterdam, Elsevier, 2001
    [13] Argauer, R J, Landolt, G R. U. S. Pat., 3702886, 1972
    [14] Kokotailo, G.. T., Lawton, S. L., Olson, D. H., et al. Nature, 1978, 272: 437-438
    [15] Olson, D H, Kokotailo, G. F, Lawton, S L, J. Phys. Chem., 1981, 85: 2238-2243
    [16] van Koningsveld, H, van Bekkum, H, Jansen, J C. Acta Crystallogr., 1987, B43: 127-132
    [17] 于勤,李旺荣,张婉静.石油学报,1982,3,83
    [18] 徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出版社,2004.13-14,73-74
    [19] Abdul-Rehamn H B, Hasanain M A, Loughlin K F. Quaternary, Ternary, Binary, and Pure Component Sorption on Zeolites. Light Alkanes on Linde S-115 Silicalite at Moderate to High Pressures [J]. Ind. Eng. Chem. Res., 1990, 29: 1525-1535
    [20] Loughlin K F, Hasanain M A, Abdul-Rehamn H B. Quaternary, Ternary, Binary, and Pure Component Sorption on Zeolites. 2. Light Alkanes on Linde 5A and 13X Zeolites at Moderate to High Pressures [J]. Ind. Eng. Chem. Res., 1990, 29: 1535-1546
    [21] Cavalcante Celio, Ruthven Douglas M. Adsorption of Branched and Cyclic Paraffins in Silicalite. 1. Equilibrium [J]. Ind. Eng. Chem. Res., 1995, 34: 177-184
    [22] Sun M S, Talu O, Shah D B. Adsorption Equilibrium of C5-C10 Normal Alkanes in Silicalite Crystals [J]. J. Phys. Chem., 1996, 100: 17276-17280
    [23] Sun M S, Shah D B, Xu H H, et al. Adsorption Equilibrium of C1-C4 Alkanes, CO2 and SF6 on Silicalite [J]. J. Phys. Chem. B, 1998, 102: 1466-1473
    [24] Millot Benoit, Methivier Alain, Jobic Herve, et al. Adsorption of Branched Alkanes in Silicalite-1: A Temperature-Programmed-Equilibration Study [J]. Langmuir, 1999, 15: 2534-2539
    [25] Zhu W, van de Graaf J W, van den Broeke L J P, et al. TEOM: A Unique Technique for Measuring Adsorption Properties. Light Alkanes in Silicalite-1 [J]. Ind. Eng. Chem. Res., 1998, 37: 1934-1942
    [26] Zhu W, Kapteijn F, Moulijn J A. Adsorpttion of light alkanes on Silicalite-1: Reconciliation of experimental data and molecular simulations [J]. Phys. Chem. Chem. Phys., 2002, 2: 1989-1995
    [27] Peng Jun, Ban Hongyan, Zhang Xiaotong, et al. Binary adsorption equilibrium of propylene and ethylene on silicalite-1: prediction and experiment [J]. Chemical Physics Letters, 2005, 401: 94-98
    [28] Harlick P J E, Tezel F H. Adsorption of carbon dioxide, methane and nitrogen: pure and binary mixture adsorption for ZSM-5 with SiO_2/Al_2O_3 ratio of 280[J]. Seperation and Purification Technology, 2003, 33: 199-210
    [29] Macedonia M D, Maginn E J. Pure and binary component sorption equilibria of light hydrocarbons in the zeolite silicalite from grand canonical Monte Carlo simulations [J]. Fluid Phase Equilibra., 1999, 19: 158-160
    [30] Ivanov A V, Graham G W, Shelef M. Adsorption of hydrocarbons by ZSM-5 zeolites with different SiO_2/Al_2O_3 ratios: a combined FTIR and gravimetric study [J]. Applied Catalysis B: Environmental, 1999, 21: 243-258
    [31] Arik Ilbige C, Denayer Joeri F, Baron Gino V. High-temperature adsorption of n-alkanes on ZSM-5 zeolites: influence of the Si/Al ratio and the synthesis method on the low-coverage adsorption properties [J]. Mcroporous and Mesoporous Materials, 2003, 60: 111-124
    [32] Yoda Eisuke, Kondo Junko, Domen Kazunari. Detailed Process of Adsorption of Alkanes and Alkenes on Zeolites [J]. J. Phys. Chem., 2005, 109: 1464-1472
    [33] Long Yingcai, Jiang Huiwen, Zeng Hong. Sorbate/Framework and Sorbate/Sorbate Interaction of Organics on Siliceous MFI Type Zeolite [J]. Langmuir, 1997, 13: 4094-4101
    [34] June R Larry, Bell Alexis T, Theodorou Doros N. Prediction of low Occupancy Sorption of Alkanes in Silicalite [J]. J. Phys. Chem., 1990, 94: 1508-1516
    [35] Smit Berend, Siepman J Iija. Simulatting the Adsorption of Alkanes in Zeolites [J]. Scienc, 1994, 264(20): 1118-1120
    [36] Smit Berend, Siepman J Iija. Computer Simulations of the Energetics and Siting of n-Alkanes in Zeolites [J]. J. Phys. Chem., 1994, 98: 8442-8452
    [37] Smit Berend. Simulating the Adsorption Isotherms of Methane, Ethane, and Propane in the Zeolite silicalite [J]. J. Phys. Chem., 1995, 99: 5597-5603
    [38] Smit Berend, Karaborni Sami, Siepman J Iija. Computer simulations of vapor-liquid phase equilibria of n-alkanes [J]. J. Chem. Phys., 1995, 102(5): 2126-2140
    [39] Smit Berend, Loyens L Daniel J C, Verbist Guy L M M. Simulation of adsorption and diffusion of hydrocarbons in zeolites [J]. Faraday Discuss., 1997, 106: 93-104
    [40] Vlugt T J H, Krishna R, Smit B. Molecular Simulations of Adsorption Isotherms for Linear and Branched Alkanes and Their Mixtures in Silicalite [J]. J. Phys. Chem. B, 1999, 103: 1102-1118
    [41] Vlugt T J H, Zhu, W, Kapteijn, F, et al. Adsorption of Linear and Brached Alkanes in the Zeolites Silicalite-1 [J]. J. AM. Chem. Soc, 1998, 120: 5599-5600
    [42] Heuchel Matthias, Snurr Randall, Buss Eckhard. Adsorption of CH4-CF4 Mixtures in Silicalite: Simulation, Experiment, and Theory [J]. Langmuir, 1997, 13: 6795-6804
    [43] Du Zhimei, Manos George, Vlugt Thijs J H, et al. Molecular Simulation of Adsorption of Short Linear Alkanes and Their Mixtures in Silicalites [J]. AIChE journal, 1998, 44(8): 1756-1764
    [44] Nascimento, M A C. J. Mol. Structure(Theochem), 1999, 464, 239
    [45] Lu Linghong, Wang Qi, Liu Yingchun. Adsorption and Separation of Ternary and Quaternary Mixtures of Short Linear Alkanes in Zeolites by Molecular Simulation [J]. Langmuir, 2003, 19: 10617-10623
    [46] Lu Linghong, Wang Qi, Liu Yingchun. The Adsorption and Localization of Mixtures of C4-C7 Alkanes Isomers in Zeolites by Computer Simulation [J]. J. Phys. Chem. B, 2005, 109: 8845-8851
    [47] 吕玲红,王琦,刘迎春.短链烷烃二元混合物在分子筛上吸附分离的分子模拟[J].化学学报,2003,61(8):1232
    [48] Benco Lubomir, Demuth Thomas, Hafner Jurgen. Adsorption of linear hydrocarbons in zeolites: A density functional investigation [J]. Journal of Chemical Physics, 2001, 14(14): 6327-6334
    [49] Beerdsen Edith, Smit Berend, Calero Sofia. The Influences of Non-framework Sodium Cations on the Adsorption of Alkanes in MFI- and MOR- Zeolites [J]. J. Phys. Chem. B, 2002, 106: 10659-10667
    [50] Beerdsen, Edith, Dubbeldam, David, Smit, Berend, et al. Simulating the effect of nonframework cations on the adsorption of alkanes in MFI- type zeolites [J]. J. Phys. Chem. B, 2003, 107: 12088-12096
    [51] Dubbedam, D, Calero, S, Vlugt, T J H, et al. Force Field Parametrization through Fitting on Inflection Points in Isotherms [J]. Physical Review Letters, 2004, 93, 8
    [52] Dubbedam, D, Calero, S, Vlugt, T J H, et al. United Atom Force for Alkanes in Nanoporous Materials [J]. J. Phys. Chem. B, 2004, 108: 12301-12313
    [53] 高滋,何鸣元,戴逸云.沸石催化与分离技术[M].北京:中国石化出版社,1999.24-26
    [54] June R Larry, Bell Alexis T, Theodorou Doros N. Molecular Dynamics Study of Methane and Xenon in Silicalite [J]. J. Phys. Chem. B, 1990, 94: 8232-8240
    [55] June R Larry, Bell Alexis T, Theodorou Doros N. Molecular Dynamics Study of Butane and Hexane in Silicalite [J]. J. Phys. Chem. B, 1992, 96: 1051-1060
    [56] Choudary Vasant R, Nayak Vikram S, Mamman Ajit. Diffusion of Straight- and Branched- Chain Liquid Compounds in H-ZSM-5 Zeolite [J]. Ind. Eng. Chem. Res., 1992, 31: 624-628
    [57] Hufton Jeffrey R, Ruthven Douglas M, Diffusion of Light Alkanes in Silicalite Studied by the Zero Length Column Method [J]. Ind. Eng. Chem. Res., 1993, 32: 2379-2386
    [58] Runnebaum Ron C, Maginn Edward J. Molecular Dynamics Simulations of Alkanes in the Zeolite Silicalite: Evidence for Resonant Diffusion Effects [J]. J. Phys. Chem. B, 1997, 101: 6394-6408
    [59] Liang Wugeng, Chen Songying, Peng Shaoyi. Difference of Diffusivities in Zeolites Measured by the Non-Steady-State and the Steady-State Methods [J]. Ind. Eng. Chem. Res., 1997, 36: 1882-1886
    [60] Keipert Olaf P, Baerns Manfred. Determination of the intracrystalline diffusion coefficients of alkanes in H-ZSM-5 zeolite by a transient technique using the temporal-analysis-of-products(TAP) reactor [J]. Chemical Engineering Science, 1998, 53(20): 3623-3634
    [61] Schuring D, Jansen A P J, Santen R A van. Concentration and Chainlength Dependence of the Diffusivity of Alkanes in Zeolites Studied with MD Simulations [J]. J. Phys. Chem. B, 2000, 104: 941-948
    [62] Furukawa Shin Ichi, Shigeta Takeshiro, Nitta Tomoshige. Non-Equilibrium Molecular Dynamics for Simulating Permeation of Gas Mixtures Through Nanoporous Carbon Membranes [J]. Journal of Chemical Engineering of Japan, 1996, 29(4): 725-727
    [63] Furukawa Shin Ichi, Nitta Tomoshige. Computer Simulation Studies on Gas Permeation Through Nanoporous Carbon Membranes by Non-Equilibrium Molecular Dynamics [J]. Journal of Chemical Engineering of Japan, 1996,30(1): 116-122
    [64] Furukawa Shin Ichi, Sugahara Takeshi, Nitta Tomoshige. Non-Equilibrium MD Studies on Gas Permeation of Mixtures Through Carbon Membranes with Belt-like Heterogeneous Surfaces [J]. Journal of Chemical Engineering of Japan, 1999, 32(2): 223-228
    [65] Furukawa Shin Ichi, Nitta Tomoshige. Non-equilibrium molecular dynamics simulations studies on gas permeation across carbon membranes with different pore shape composed of micro-graphite crystallites [J]. Journal of Membrane Science, 2000, 178: 107-119
    [66] Furukawa S, McCabe C, Nitta T, et al. Non-Equilibrium molecular dynamics simulation study of the behavior of hydrocarbon-isomers in silicalite [J]. Fluid Phase Equilibria, 2002, 194-197: 309-317
    [67] Furukawa Shin Ichi, Nitta Tomoshige. A Study of Permeation of n-Butane through ZSM-5 Membrane by using Monte Carlo and Equilibrium/Non-Equilibrium Molecular Dynamics Simulations [J]. Journal of Chemical Engineering of Japan, 2003, 36(3): 313-321
    [68] Furukawa Shin Ichi, Nitta Tomoshige. A New Algorithm of Boundary-Driven Type Non-Equilibrium Molecular Dynamics for Simulating Membrane Permeation of Gas Mixtures [J]. Journal of Chemical Engineering of Japan, 2005, 38(4): 278-282
    [69] Gergidis Leonidas N, Theodorous Doros. Molecular Dynamics Simulation of n-Butane-Methane Mixtures in Silicalite [J]. J. Phys. Chem. B, 1999, 103: 3380-3390
    [70] Millot Benoit, Methivier Alain, Jobic Herve, et al. Diffusion of Isobutane in ZSM-5 Zeolite: A Comparison of Quasi-Elastic Neutron Scattering and Supported Membrane Results [J]. J. Phys. Chem. B, 1999, 103: 1096-1101
    [71] Millot Benoit, Methivier Alain, Jobic Herve, et al. Permeation of linear and branched alkanes in ZSM-5 supported membranes [J]. Mcroporous and Mesoporous Materials, 2000, 38: 85-95
    [72] Jolimaitre E, Tayakout Fayolle M, Jallut C, et al. Determination of Mass Transfer and Thermodynamic Properties of Branched Paraffins in Silicalite Chromatography Technique [J]. Ind. Eng. Chem. Res., 2001, 40: 914-926
    [73] Song Lijuan, Rees Lovat V C. Adsorption and diffusion of cyclic hydrocarbon in MFI-type zeolites studied by gravimetric and frequency response techniques [J]. Mcroporous and Mesoporous Materials, 2000, 35-36: 301-314
    [74] Fan Jianfen, Wang Qiuxia, Gong Xuedong, et al. Concentration dependence of ethane diffusion in H[Al]ZSM-5 studied by molecular dynamics [J]. Journal of Molecular Structure(Theochem), 2003,638: 129-134
    [75] Gardner Tracy Q, Lee Justin B, Noble Richard D, et al. Adsorption and Diffusion Properties of Butanes in ZSM-5 Zeolite Membranes [J]. Ind. Eng. Chem. Res., 2002, 41: 4094-4105
    [76] Metropolis, N, Rosenbluth, A W, Rosenbluth, M N, et al. Equation of State Calculations by Fast Computing Machines [J]. J. Chem. Phys., 1953, 21: 1087-1091
    [77] Adams D J. A Grand Canonical of Gases at High Pressure I. The Critical Region [J]. Mol. Phys., 1975,29:307-311
    [78] Megen W V, I K Snook. Physical Adsorption of Gases at High Pressure II. Adsorption in Slit-like Pores [J]. Mol. Phys., 1982, 45: 629-636
    [79] Megen W V, I K Snook. Physical Adsorption of Gases at High Pressure III. Adsorption in Slit-like Pores [J]. Mol. Phys., 1985, 54(3): 741-755
    [80] Frenkel D, Smit B. Understanding Molecule Simulation [M]. Academic Press: Amsterdam, 1996
    [81] Allen M P, Tilderley D J. Computer Simulation of Liquids [M]. Oxford US, Clarendon Press: 1987
    [82] Qin C C. Computer Simulation Methods in Theoretical Physics [M]. Peking University Press: 1996
    [1] Gregg S J, Sing K S W. Adsorption, Surface Area and Porosity [M]. Academic press INC, 1999
    [2] Yang Cheol-Min, El Merraoui M, Seki Hiroko, et al. Characterization of Nitrogen-Alloyed Activated Carbon Fiber [J]. Langmuir, 2001, 17: 675-680
    [3] Kruk Michal, Jaroniec Mietek. Determination of Mesopore Size Distributions from Argon Adsorption Data at 77 K [J]. J. Phys. Chem., 2002, 106: 4732-4739
    [4] Szekeres Marta, Toth Jozsef, Dekany Imre. Specific Surface Area of Stoeber Silica Determined by Various Experimental Methods [J]. Langmuir, 2002, 18: 2678-2685
    [5] Shao Xiaohong, Wang Wenchuan, Xue Ruisheng, et al. Adsorption of Methane and Hydrogen on Mesocarbon Microbeads by Experiment and Molecular Simulation [J]. J. Phys. Chem., 2004, 108: 2970-2978
    [6] 陈诵英,孙予罕,丁云杰,等.吸附与催化[M].郑州,河南科学技术出版社:2001,8-20
    [7] Liu GuiYun, Xi DanLi, Jiang PeiHua. Study on the Measurement of Specific Surface Area of Ceramisite Made of River Sediment [J]. Journal of Dong Hua University, 2002, 28(5): 90-93
    [8] Treacy M M J, Higgins J B, Ballmoos von. Collection of Simulated XRD powder patterns for Zeolites [J]. Zeolite, 1996, 16(5-6): 330-802
    [9] Sang Shiyun, Chang Fuxiang, Liu Zhongmin, et al. Difference of ZSM-5 zeolites synthesized with various templates [J]. Catalysis Today, 2004, 93-95: 729-734
    [10] 滕加伟,赵国良,谢在库,等.ZSM-5分子筛晶粒尺寸对C_4烯烃催化裂解制丙烯的影响[J].催化学报,2004,8:602-606
    [11] Kim W J, Lee M C, Hayhurst D T. Synthesis of ZSM-5 at low temperature and atmospheric pressure in a pilot-scale batch reactor [J]. Microporous and Mesoporous Materials, 1998, 26: 133-141
    [12] Ke Jun-An, Wang Ikai. Elucidation of the role of potassium fluoride in the chemical and physical nature of ZSM-5 zeolite [J]. Materials Chemical and Physics, 2001, 68: 157-165
    [13] Benham M J, Ross D K. Experimental Determination of Sorption-Desorption Isotherms by Computer-Controlled Gravimetric Analysis [J]. Z. Phys. Chem. NF, 1989, 163: 25-28
    [14] Ross D K, Stonadge P R. Towards the Elucidation of Hydrogen Diffusion in a Homogeneous Medium [J]. Adv. Mats. B Shape Memory Materials & Hydrides, 1993
    [15] Gingl F, Yvon K, Fischer P. Yb_4Mg_3H_(14) with Ca_4Mg_3H_(14)-Type Structure [J]. Journal of Alloys & Compounds, 1993, 201: 105-107
    [16] Huang B, Yvon K, Fischer P. Synthesis, Structure and Thermal Stability of Yb_4Mg_3H_(14)[J]. Journal of Alloys & Compounds, 1993, 197: 65-68
    [17] Stonadge P R, Benham M J, Ross D K. The Measurement of Concentration-Dependent Hydrogen Diffusion Coefficients in the Solid-Solution Alloy Pd-Y [J]. Separation Technology, Ed. E. F. Vansant, 1994, 129
    [18] Mercer M, Cambell S I, Benningtona S M, et al. A Study of the Tetragonal to Ortho 1 Phase transition in YBa_2Cu_3O_x [J]. Physica B, 1997, 234-236: 925-927
    [19] O'koye I P, Benham M J, Thomas K M. Adsorption of Gases and Vapours on Carbon Molecular Sieves [J]. Langmuir, 1997, 13: 4054-4059
    [20] Shepherd P D, Kagunya W W, Campbell S I, et al. Water Dynamics in Na Zeolite P [J]. Physica B, 1997: 234-236, 914-916
    [21] Cartarus R, Vogel H, Dembowski J. Investigation of Sorption and Intracrystalline Diffusion of Benzene and Toluene on Silicalite-1, Ber. Bunsenges [J]. Phys. Chem., 1997, 101: 193-199
    [22] Poyser P A, Kemali M, Ross D K. Deterium Adsorption in Pd0.9Y0.1 Alloy, J. Alloys & Compounds, 1997: 253-254, 175-180
    [23] Foley N J, Thomas K M, Forshaw P R, et al. Kinetics of Water Vapor Adsorption on Active Carbons [J]. Langmuir, 1997, 13(7): 2083-2089
    [24] Harding A W, Foley N J, Norman P R, et al. Diffusion Barriers in the Kinetics of Water Vapor Adsorption/Desorption on Activated Carbons [J]. Langmuir, 1998, 14: 3858-3864
    [25] Fuller E L, Benham M J, Mercer M. Microgravimetric Evaluation of Adsorption Properties of Activated Cocount Shell Charcoal: Carbon Dioxide Thermodynamics and Kinetics [J]. Preprints of Symposia - Division of Fuel Chemistry American Chemical Society, 1998, 43(4): 770-774
    [26] Varhegyi Gabor, Szabo Piroska, Till Ferenc, et al. TG, TG-MS, and FTIR Characterization of High-Yield Biomass Charcoals [J]. Energy & Fuels, 1998, 12: 969-974
    [27] Reid C R, O'koye I P, Thomas K M. Adsorption of Gases on Carbon Molecular Sieves used for Air Separation, Spherical Adsorptives as Probes for Kinetic Selectivity [J]. Langmuir, 1998, 14: 2415-2425
    [28] M O' Connor Aising, R H Ross Julian. The Effect of Oxygen Addition on the Carbon Dioxide Reforming of Methane over Pt/ZrO_2 Catalysts [J]. Catalysis Today, 1998, 46: 203-210
    [29] Varhegyi Gabor, Till Ferenc. Comparison of Temperature-Programmed Char Combustion in CO_2-O_2 and Ar-O_2 Mixtures of Elevated Pressure [J]. Energy & Fuels, 1999, 13: 539-543
    [30] Reid C R, Thomas K M. Adsorption of Gases on a Carbon Molecular Sieve Used for Air Separation: Linear Adsorptives as Probes for Kinetic Selectivity [J]. Langmuir, 1999, 15: 3206-3218
    [31] Turner J A, Thomas K M. Temperature-Programmed Desorption of Oxigen Surface Complexes on Acenaphthylene-Derived Chars: Comparision with Oxygen K-Edge XANES Spectroscopy [J]. Langmuir, 1999, 15: 6416-6422
    [32] Fletcher Ashleigh J, Thomas K Mark. Compensation Effect for the Kinetics of Adsorption/Desorption of Gases/Vapors on Microporous Carbon Materials [J]. Langmuir, 2000, 16: 6253-6266
    [33] Macedonia D Michael, Moore D Darrin, Maginn Edward J, et al. Adsorption Studies of Methane, Ethane, and Argon in the Zeolite Mordenite: Molecular Simulations and Experiments [J]. Langmuir, 2000, 16: 3823-3834
    [34] Reid C R, Thomas K M. Adsorption Kinetics and Size Exclusion Properties of Probe Molecules for the Selective Porosity in a Carbon Molecular Sieve used for Air Separation [J]. J. Phys. Chem., 2001, 105: 10619-10629
    [35] Zimny Thierry. Transport and Sorption of Water in Activated Carbon [J]. Carbon, 2001, 39: 2339-2346
    [36] Detallante Virgine, Langevin Dominique, Chappey Corinne, et al. Water Vapor Sorption in Naphthalenic Sulfonated Polyimide Membranes [J]. Journal of Membrane Science, 2001, 190: 227-241
    [37] Anthony Jennifer L, Maginn Edward J, Brennecke Joan F. Solubilities and Thermodynamic Properties of Gases in the Ionic Liquid [J]. J. Phys. Chem., 2002, 106: 7315-7320
    [38] Fletcher A J, Benham M J, Thomas K M. Multicomponent Vapor Sorption on Active Carbon by Combined Microgravimetry and Dynamic Sampling Mass Spectrometry [J]. J. Phys. Chem., 2002, 106: 7474-7482
    [39] Chen Ping, Xiong Zhitao, Luo Jizhong, et al. Interaction of Hydrogen with Metal Nitrides and Imides [J]. Nature, 2002,420: 302-304
    [40] Janot R, Aymard L, Rougier A, et al. Enhanced Hydrogen Sorption Capacities and Kinetics of Mg2Ni Alloys by Ball-Milling with Carbon and Pd Coating [J]. J. Alloys and Compounds, 2003, 356: 438-441
    [41] Dubey Vinita, Kuthe Sandeep, Saxena Chhaya, et al. Study of Sorption/Desorption of Water and Organic Vapors on Poly(ethylene Maleate)-Based Sensor Coating Materials using an Automated Gravimetric Analyzer [J]. J. Alloys Polymer Sci., 2003, 88(7): 1760-1767
    [42] Fletcher Ashleigh J, Cussen Edmund J, Bradshaw Darren, et al. Adsorption of Gases and Vapors on Nanoporous Ni_2(4,4'-Bipyridine)_3(NO_3)_4 Metal-Organic Framework Materials Templated with Methanol and Ethanol: Structural Effects in Adsorption Kinetics [J]. J. Am. Chem. Soc, 2004, 126: 9750-9759
    [43] Shao Xiaohong, Wang Wenchuan, Xue Ruisheng, et al. Adsorption of Methane and Hydrogen on Mesocarbon Microbeads by Experiments and Molecular Simulation [J]. J. Phys. Chem., 2004, 108:2970-2978
    [44] Corma Avelino, Rey Fernando, Rius Jordi, et al. Supramolecular Self-Assembled Molecules as Organic Directing Agent for Synthesis of Zeolites [J]. Nature, 2004, 43: 287-290
    [45] Doumenc Frederic, Guerrier Beatrice, Allain Catherine. Mutual Diffusion Coefficient and Vapor-Liquid Equilibrium Data for the Syatem Polyisobutylene + Toluene [J]. J. Chem. Eng. Data, 2005, 50(3): 983-988
    [46] Schiflett Mark B, Yokozeki A. Solubilities and Diffusivities of Carbon Dioxide in Ionic Liquids: [bmim][PF_6] and [bmim][BF_4] [J]. Ind. Eng. Chem. Res., 2005, 44: 4453-4464
    [47] Ivanov A V, Graham G W, Shelef M. Adsorption of hydrocarbons by ZSM-5 zeolites with different SiO_2/Al_2O_3 ratios: a combined FTIR and gravimetric study [J]. Applied Catalysis B: Environmental, 1999, 21: 243-258
    [1] 黄汉生.面临21世纪的碳四烃工业[J].石油化工设计,1999,16(3):54-60
    [2] 言敏达,胡云光,白尔铮.碳四烃利用现状及发展前景[A].见:中国化工学会石油化工专业委员会.碳四资源利用途径及技术开发学术交流会论文集[c].呼和浩特:中国化工学会石油化工专业委员会,2002,1-13
    [3] 滕加伟,赵国良,宋庆英,等.C_4及C_4~+烯烃催化裂解生产丙烯/乙烯新工艺[A].见:中国化学会催化专业委员会.第十一届全国催化学术会议论文集[C].浙江大学出版社,2002,297-298
    [4] 滕加伟,赵国良,谢在库,等.烯烃催化裂解增产丙烯催化剂[J].石油化上,2004,(33)2:100-103
    [5] 滕加伟,赵国良,谢在库,等.ZSM-5分子筛晶粒尺寸对C_4烯烃催化裂解制丙烯的影响[J].催化学报,2004,8:602-606
    [6] Jiang, J W, Stanley I S. Nitrogen and Oxygen Mixture Adsorption on Carbon Nanotube Bundles from Molecular Simulation [J]. Langmuir, 2004, 20: 10910-10918
    [7] He, Y F, Seaton, N A. Experimental and Computer Simulation Studies of the Adsorption of Ethane, Carbon Dioxide, and Their Binary Mixtures in MCM-41 [J]. Langmuir, 2003, 19: 10132-10138
    [8] Do, D D, Do, D H. Adsorption of Ethylene on Graphitized Thermal Carbon Black and in Slit Pores: A Computer Simulation Study [J]. Langmuir, 2004, 20: 7103-7116
    [9] Libby, B, Monson, P A. Adsorption/Desorption Hysteresis in Inkbottle Pores: A Density Functional Theory and Monte Carlo Simulation Study [J]. Langmuir, 2004, 120: 4289-4294
    [10] Yah, B, Yang, X N. Binary Adsorption of Benzene and Supercritical Carbon Dioxide on Carbon: Density Functional Theory Study [J]. Ind. Eng. Chem. Res., 2004, 43: 6577-6586
    [11] Sweatman, M B, Quirke, N. Predicting the Adsorption of Gas Mixtures: Adsorbed Solution Theory versus Classical Density Functional Theory [J]. Langmuir, 2002, 18: 10443-10454
    [12] Ustinov, E A, Do, D D. High-Pressure Adsorption of Supercritical Gases on Activated Carbons: An Improved Approach Based on the Density Functional Theory and the Bender Equation of State [J]. Langmuir, 2003, 19: 8349-8357
    [13] Cavenati, S, Grande, C A. Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures [J]. J. Chem. Eng. Data., 2004, 49: 1095-1101
    [14] Ustinov, E A, Do, D D. High-Pressure Adsorption of Supercritical Gases on Activated Carbons: An Improved Approach Based on the Density Functional Theory and the Bender Equation of State [J]. Langmuir, 2003, 19: 8349-8357
    [15] Yun, J H, Tina, D, Frerich, J K, et al. Adsorption of Methane, Ethane, and Their Binary Mixtures on MCM-41: Experimental Evaluation of Methods for the Prediction of Adsorption Equilibrium[J]. Langmuir, 2002, 18: 2693-2701
    [16] Choi, B U, Choi, D K, Lee, Y W, et al. Adsorption Equilibria of Methane, Ethane, Ethylene, Nitrogen, and Hydrogen onto Activated Carbon [J]. J. Chem. Eng. Data., 2003, 48: 603-607
    [17] Soule, A D, Smith, C A, Yang, X N, et al. Adsorption Modeling with the ESD Equation of State[J]. Langmuir, 2001, 17: 2950-2957
    [18] Markham, E D, Benton, A F. The adsorption of gas mixtures by silica [J]. J. Am. Chem. Soc., 1931, 53: 497-506
    [19] Suwanayuen, S, Danner, R P. A Gas Adsorption Isotherm Equation Based on Vacancy Solution Theory [J]. AIChE J., 1980, 26: 68-75
    [20] Suwanayuen, S, Danner, R P. Vacancy Solution theory of adsorption from gas mixtures [J]. AIChE J., 1980, 26: 76-83
    [21] Cochran, T W, Knaebel, R L, Danner, R P. Vacancy Solution Theory of Adsorption Using Flory-Huggins Activity Coefficient Equations [J]. AIChE J., 1985, 31: 268-277
    [22] Ruthven, D M, Wong, F. Generalized Statistical Model for the Prediction of Binary Adsorption Equilibria on Zeolithes [J]. Ind. Eng. Chem. Fundam., 1985, 24: 27-32
    [23] Myers, A L, Prausnitz, J M. Thermodynamics of Mixed-Gas Adsorption [J]. AIChE J., 1965, 11: 121-127
    [24] Malek, A, Farooq, S. Comparison of Isotherm Models for Hydrocarbon Adsorption on Activated Carbon [J]. AIChE J., 1996,42: 3191-3201
    [25] Peng Xuan, Wang Wenchuan, Xue Ruisheng, et al. Adsorption Separation of CH4/CO2 on Mesocarbon Microbeads: Experiment and Modeling [J]. AIChE Journal, 2006, 52: 994-1003
    [26] Abdul-Rehamn H B, Hasanain M A, Loughlin K F. Quaternary, Ternary, Binary, and Pure Component Sorption on Zeolites. Light Alkanes on Linde S-115 Silicalite at Moderate to High Pressures [J]. Ind. Eng. Chem. Res., 1990, 29: 1525-1535
    [27] Loughlin K F, Hasanain M A, Abdul-Rehamn H B. Quaternary, Ternary, Binary, and Pure Component Sorption on Zeolites. 2. Light Alkanes on Linde 5A and 13X Zeolites at Moderate to High Pressures [J]. Ind. Eng. Chem. Res., 1990, 29: 1535-1546
    [28] Cavalcante Celio, Ruthven Douglas M. Adsorption of Branched and Cyclic Paraffins in Silicalite. 1. Equilibrium [J]. Ind. Eng. Chem. Res., 1995, 34: 177-184
    [29] Sun M S, Talu O, Shah D B. Adsorption Equilibrium of C_5-C_(10) Normal Alkanes in Silicalite Crystals [J]. J. Phys. Chem., 1996, 100: 17276-17280
    [30] Sun M S, Shah D B, Xu H H, et al. Adsorption Equilibrium of C_1-C_4 Alkanes, CO_2 and SF_6 onSilicalite [J]. J. Phys. Chem. B, 1998, 102: 1466-1473
    [31] Millot Benoit, Methivier Alain, Jobic Herve, et al. Adsorption of Branched Alkanes in Silicalite-1: A Temperature-Programmed-Equilibration Study [J]. Langmuir, 1999, 15: 2534-2539
    [32] Zhu W, van de Graaf J W, van den Broeke L J P, et al. TEOM: A Unique Technique for Measuring Adsorption Properties. Light Alkanes in Silicalite-1 [J]. Ind. Eng. Chem. Res., 1998, 37: 1934-1942
    [33] Zhu W, Kapteijn F, Moulijn J A. Adsorpttion of light alkanes on Silicalite-1: Reconciliation of experimental data and molecular simulations [J]. Phys. Chem. Chem. Phys., 2002, 2: 1989-1995
    [34] Peng Jun, Ban Hongyan, Zhang Xiaotong, et al. Binary adsorption equilibrium of propylene and ethylene on silicalite-1: prediction and experiment [J]. Chemical Physics Letters, 2005, 401: 94-98
    [35] Harlick P J E, Tezel F H. Adsorption of carbon dioxide, methane and nitrogen: pure and binary mixture adsorption for ZSM-5 with SiO_2/Al_2O_3 ratio of 280[J]. Seperation and Purification Technology, 2003, 33: 199-210
    [36] Macedonia M D, Maginn E J. Pure and binary component sorption equilibria of light hydrocarbons in the zeolite silicalite from grand canonical Monte Carlo simulations [J]. Fluid Phase Equilibra., 1999, 19: 158-160
    [37] Myers A L, Prausnitz J M. Thermodynamics of mixed-gas adsorption [J]. AIChE J., 1965, 11: 121
    [1] June R Larry, Bell Alexis T, Theodorou Doros N. Prediction of low Occupancy Sorption of Alkanes in Silicalite [J]. J. Phys. Chem., 1990, 94: 1508-1516
    [2] Smit Berend, Siepman J lija. Simulatting the Adsorption of Alkanes in Zeolites [J]. Scienc., 1994, 264(20): 1118-1120
    [3] Smit Berend, Siepman J lija. Computer Simulations of the Energetics and Siting of n-Aikanes in Zeolites [J]. J. Phys. Chem., 1994, 98: 8442-8452
    [4] Smit Berend. Simulating the Adsorption Isotherms of Methane, Ethane, and Propane in the Zeolite silicalite [J]. J. Phys. Chem., 1995, 99: 5597-5603
    [5] Smit Berend, Karaborni Sami, Siepman J lija. Computer simulations of vapor-liquid phase equilibria of n-alkanes[J]. J. Chem. Phys., 1995, 102(5): 2126-2140
    [6] Smit Berend, Loyens L Daniel J C, Verbist Guy L M M. Simulation of adsorption and diffusion of hydrocarbons in zeolitea [J]. Faraday Discus., 1997, 106: 93-104
    [7] Vlugt T J H, Krishna R, Smit B. Molecular Simulations of Adsorption Isotherms for Linear and Branched Alkanes and Their Mixtures in Silicalite [J]. J. Phys. Chem. B, 1999, 103: 1102-1118
    [8] Vlugt T J H, Zhu, W, Kapteijn, F, et al. Adsorption of Linear and Brached Alkanes in the Zeolites Silicalite-l[J]. J. AM. Chem. Soc., 1998, 120: 5599-5600
    [9] Henchel Matthias, Snurr Randall, Buss Eckhard. Adsorption of CH_4-CF_4 Mixtures in Silicalite: Simulation, Experiment, and Theory [J]. Langmuir, 1997, 13: 6795-6804
    [10] Du Zhimei, Manos George, Vlugt Thijs J H, et al. Molecular Simulation of Adsorption of Short Linear Alkanes and Their Mixtures in Silicaliles [J]. AIChE journal, 1998, 44(8): 1756-1764
    [11] Nascimento, M A C. J. Mol. Structure(Theochem), 1999, 464, 239
    [12] Lu Linghong, Wang Qi, Liu Yingchun. Adsorption and Separation of Ternary and Quaternary Mixtures of Short Linear Alkanes in Zeolites by Molecular Simulation [J]. Langmuir, 2003, 19: 10617-10623
    [13] Lu Linghong, Wang Qi, Liu Yingchun. The Adsorption and Localization of Mixtures of C_4-C_7 Alkanes Isomers in Zeolites by Computer Simulation [J]. J. Phys. Chem. B, 2005, 109: 8845-8851
    [14] 吕玲红,王琦,刘迎春.短链烷烃二元混合物在分子筛上吸附分离的分子模拟[J].化学学报,2003,61(8):1232
    [15] Benco Lubomir, Demuth Thomas, Hafner Jurgen. Adsorption of linear hydrocarbons in zeolites: A density functional investigation [J]. Journal of Chemical Physics, 2001, 14(14): 6327-6334
    [16] Smit, B, Krishna, R. Molecular simulation in zeolitic process design [J]. Chemical Engineering Science, 2003, 58: 557-568
    [17] Beerdsen Edith, Smit Berend, Calero Sofia. The Influences of Non-framework Sodium Cations on the Adsorption of Alkanes in MFI- and MOR- Zeolites [J]. J. Phys. Chem. B, 2002, 106: 10659-10667
    [18] Beerdsen, Edith, Dubbeldam, David, Smit, Berend, et al. Simulating the effect of nonframework cations on the adsorption of alkanes in MFI- type zeolites [J]. J. Phys. Chem. B, 2003, 107: 12088-12096
    [19] Rosenbluth M N, Rosenbluth A W. Monte Carlo simulations of the average extension molecular chains [J]. J. Chem. Phys., 1955, 23: 356-359
    [20] Frenkel D, Smit B. Understanding Molecule Simulation [M]. Academic Press: Amsterdam, 1996
    [21] Allen M P, Tilderley D J. Computer Simulation of Liquids [M]. Oxford US, Clarendon Press, 1987
    [22] Ryckaert J P, Bellemans A. Molecular. Dynamics of Liquid Alkanes [J]. Faraday Discuss. Chem. Soc., 1978, 66: 95-106
    [23] Wick Collin D, Martin Marcus G., Siepmann J Ilja. Transferable Potentials for Phase Equilibrium. 4. United-Atom Description of Linear and Brabched Alkenes and Alkylbenzenes [J]. J. Phys. Chem. B, 2000, 104: 8008-8016
    [24] Jorgensen W L, Madura J D, Swenson C J. Optimized Intermolecular Potential Functions for Liquid Hydrocarbons [J]. J. Am. Chem. Soc., 1984, 106: 6638
    [25] Bezus A. G, Kiselev A V, Lopatkin A A, et al. Molecular statistical calculation of the thenno-dynamic adsorption characteristics of zeolites using the atom-atom approximation [J]. J. Chem. Soc.. Faraday Trans. 2, 1978, 74: 367
    [26] Kiselev, A V, Lopatkin, A A, Shulga, A A. Molecular statistical calculation of gas adsorption by silicalite [J]. Zeolites, 1985, 5: 261
    [27] Dubbedam, D, Calero, S, Vlugt, T J H, et al. Force Field Parametrization through Fitting on Inflection Points in Isotherms [J]. Physical Review Letters, 2004, 93, 8
    [28] Dubbedam, D, Calero, S, Vlugt, T J H, el al. United Atom Force for Alkanes in Nanoporous Materials [J]. J. Phys. Chem. B, 2004, 108: 12301-12313
    [29] Vlugt T J H. Adsorption and Diffusion in zeolites: A Computational Study, (available from: http://molsim.chem.uva.nl/publications) [D]. The Netherlands, Amsterdam: University of Amsterdam, 2000
    [30] Abdul-Rehamn H B, Hasanain M A, Loughlin K F. Quaternary, Ternary, Binary, and Pure Component Sorption on Zeolites. Light Alkanes on Linde S-115 Silicalite at Moderate to High Pressures [J]. Ind. Eng. Chem. Res., 1990, 29: 1525-1535
    [31] Sun M S, Shah D B, Xu H H, el al. Adsorption Equilibrium of Cl-C4 Alkanes, CO2 and SF6 on Silicalite [J]. J. Phys. Chem. B, 1998, 102: 1466-1473
    [32] Schenk Merijn. Shape Selectivity in zeolites, (available from: http://molsim.chem.uva.nl/publications) [D]. The Netherlands, Amsterdam: University of Amsterdam, 2003
    [1] Chapman S, Gowling T G. The Mathematical Theory of Non Uniform Gases [M]. Cambridge University Press: Cambridge, 1952
    [2] Enskog D, Sven K. Vetenskapsaked. Handl [M]. 1922, 63: 4
    [3] Chen S H, Evans K F, Davis H T. Tracer Diffusion in Methanol, 1-Butanol, and 1-Octanol [J]. AIChE J., 1983, 29: 640
    [4] Eyring H, Hirschfelder J. The theory of the liquid state [J]. J. Phys. Chem., 1937, 41: 249
    [5] Guggenheim E A J. The principle of corresponding states [J]. J. Chem. Phys., 1945, 13: 253
    [6] Cohen M H, Tumbull D. Molecular Transport in Liquids and Gases [J]. J. Phys. Chem., 1959, 31: 1164
    [7] Wesselingh J A, Bollen A M. Multicomponent diffusivities from the free volume theory [J]. Chem Eng ResDes, Trans. IchemE., 1997, 75:590
    [8] Einstein A. A. Uber die yon der molekularkinetischen Theorie der Warme geforderte Bewegung yon in ruhenden Flussigkeiten suspendierten Teilchen [J]. Ann. Physik, 1905, 17: 549
    [9] Reid R C, Sherwood T K, Prausnitz J M. The properties of gases and liquids [M]. McGraw Hill: New York, 1977
    [10] Rutten W M. Diffusion in liquid [D]. University of Delft, 1992
    [11] Darken L S, Aime M. Diffusion, mobility and their interrelation through free energy in binary metallic systems [J]. Trans Am Inst Mining Met Eng, 1948, 175: 184-201
    [12] Hartly G. S, Crank M. Some Fundamental Definitions and Concepts in Diffusion Processes [J]. Trans. Farad. Soc., 1949, 45: 801
    [13] Wilke C R, Chang P C. Correlations of Diffusion Coefficients in Dilute Solutions [J]. AIChE J., 1955, 1: 264
    [14] Ertl. H, Dullien F A L. Self-diffusion and viscosity of some liquids as a function of temperature[J]. AIChE J., 1973, 19: 1215
    [15] Cumming P T, Evans D J. Nonequilibrium molecular dynamics approaches to transport properties and non-Newtonian fluid rheology [J], Ind. Eng. Chem. Res., 1992, 31: 1237
    [16] Allen M P, Tilderley D J. Computer Simulation of Liquids [M]. Oxford US: Clarendon Press, 1987
    [17] 高滋,何鸣元,戴逸云.沸石催化与分离技术[M].北京:中国石化出版社,1999.24-26
    [18] June R Larry, Bell Alexis T, Theodorou Doros N. Molecular Dynamics Study of Methane and Xenon in Silicalite [J]. J. Phys. Chem. B, 1990, 94: 8232-8240
    [19] June R Larry, Bell Alexis T, Theodorou Doros N. Molecular Dynamics Study of Butane and Hexane in Silicalite [J]. J. Phys. Chem. B, 1992, 96: 1051-1060
    [20] Choudary Vasant R, Nayak Vikram S, Mamman Ajit. Diffusion of Straight- and Branched- Chain Liquid Compounds in H-ZSM-5 Zeolite [J]. Ind. Eng. Chem. Res., 1992, 31: 624-628
    [21] Hufton Jeffrey R, Ruthven Douglas M, Diffusion of Light Alkanes in Silicalite Studied by the Zero Length Column Method [J]. Ind. Eng. Chem. Res., 1993, 32: 2379-2386
    [22] Runnebaum Ron C, Maginn Edward J. Molecular Dynamics Simulations of Alkanes in the Zeolite Silicalite: Evidence for Resonant Diffusion Effects [J]. J. Phys. Chem. B, 1997, 101: 6394-6408
    [23] Liang Wugeng, Chen Songying, Peng Shaoyi. Difference of Diffusivities in Zeolites Measured by the Non-Steady-State and the Steady-State Methods [J]. Ind. Eng. Chem. Res., 1997, 36: 1882-1886
    [24] Keipert Olaf P, Baerns Manfred. Determination of the intracrystalline diffusion coefficients of alkanes in H-ZSM-5 zeolite by a transient technique using the temporal-analysis-of-products(TAP) reactor [J]. Chemical Engineering Science, 1998, 53(20): 3623-3634
    [25] Schuring D, Jansen A P J, Santen R A van. Concentration and Chainlength Dependence of the Diffusivity of Alkanes in Zeolites Studied with MD Simulations [J]. J. Phys. Chem. B, 2000, 104: 941-948
    [26] Furukawa Shin Ichi, Shigeta Takeshiro, Nitta Tomoshige. Non-Equilibrium Molecular Dynamics for Simulating Permeation of Gas Mixtures Through Nanoporous Carbon Membranes [J]. Journal of Chemical Engineering of Japan, 1996, 29(4): 725-727
    [27] Furukawa Shin Ichi, Nitta Tomoshige, Computer Simulation Studies on Gas Permeation Through Nanoporous Carbon Membranes by Non-Equilibrium Molecular Dynamics, Journal of Chemical Engineering of Japan, 1996,30(1): 116-122.
    [28] Furukawa Shin Ichi, Sugahara Takeshi, Nitta Tomoshige. Non-Equilibrium MD Studies on Gas Permeation of Mixtures Through Carbon Membranes with Belt-like Heterogeneous Surfaces [J]. Journal of Chemical Engineering of Japan, 1999, 32(2): 223-228
    [29] Furukawa Shin Ichi, Nitta Tomoshige. Non-equilibrium molecular dynamics simulations studies n gas permeation across carbon membranes with different pore shape composed of micro-graphite crystallites [J]. Journal of Membrane Science, 2000, 178: 107-119
    [30] Furukawa S, McCabe C, Nitta T, et al. Non-Equilibrium molecular dynamics simulation study of the behavior of hydrocarbon-isomers in silicalite [J]. Fluid Phase Equilibria, 2002, 194-197: 309-317
    [31] Furukawa Shin Ichi, Nitta Tomoshige. A Study of Permeation of n-Butane through ZSM-5 Membrane by using Monte Carlo and Equilibrium/Non-Equilibrium Molecular Dynamics Simulations [J]. Journal of Chemical Engineering of Japan, 2003, 36(3): 313-321
    [32] Furukawa Shin Ichi, Nitta Tomoshige. A New Algorithm of Boundary-Driven Type Non-Equilibrium Molecular Dynamics for Simulating Membrane Permeation of Gas Mixtures [J]. Journal of Chemical Engineering of Japan, 2005, 38(4): 278-282
    [33] Gergidis Leonidas N, Theodorous Doros. Molecular Dynamics Simulation of n-Butane-Methane Mixtures in Silicalite [J]. J. Phys. Chem. B, 1999, 103: 3380-3390
    
    [34] Millot Benoit, Methivier Alain, Jobic Herve, et al. Diffusion of Isobutane in ZSM-5 Zeolite: A Comparison of Quasi-Elastic Neutron Scattering and Supported Membrane Results [J]. J. Phys. Chem. B, 1999, 103: 1096-1101
    [35] Millot Benoit, Methivier Alain, Jobic Herve, et al. Permeation of linear and branched alkanes in ZSM-5 supported membranes [J]. Mcroporous and Mesoporous Materials, 2000, 38: 85-95
    [36] Jolimaitre E, Tayakout Fayolle M, Jallut C, et al. Determination of Mass Transfer and Thermodynamic Properties of Branched Paraffins in Silicalite Chromatography Technique [J]. Ind. Eng. Chem. Res., 2001, 40: 914-926
    [37] Song Lijuan, Rees Lovat V C. Adsorption and diffusion of cyclic hydrocarbon in MFI-type zeolites studied by gravimetric and frequency response techniques [J]. Mcroporous and Mesoporous Materials, 2000, 35-36: 301-314
    [38] Crank J. The mathematics of diffusion [M]. 2nd Edition. Clarendon Press, Oxford., 1975
    [39] Olaf P Keipert, Manfred Baerns. Determination of the intracrystalline diffusion coeffieients of alkanes in H-ZSM-5 zeolite by a transient technique using the temporal-analysis-of-products(TAP) reactor [J]. Chemical Engineering Science, 1998, 53(20): 3623-3634
    [40] 张舟,刘辉.高硅沸石中二元物系表面扩散系数的预测[J].北京化工大学学报,2005,32(3):27-31
    [41] Dhananjai B Shah, Chang-Jie Guo, David T Hayhurst. Intracrystalline Diffusion of Benzene in Silicalite: Effect of Structural Heterogeneity [J]. J. Chem. Soc. Faraday Trans., 1995, 91(7): 1143-1146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700