用户名: 密码: 验证码:
车用微米木纤维模压制品成型理论与握钉力计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的快速发展,人们对高档汽车的消费需求不断增多,尤其是高档汽车的实木内饰受到人们的普遍欢迎,如利用实木生产的仪表板、换档杆手柄、车门把手、方向盘等,但由于原料的缺乏和加工技术等因素导致具有高档实木内饰的高档汽车很难走进现今工薪收入家庭。本文提出的车用微米木纤维模压制品是高档汽车实木内饰零件的有效替代品,将解决高档木制品零件在原料、成型技术和成本等方面的问题,将促进木材在汽车行业的发展,提高我国人民对高档汽车的消费水平。
     首先,研究了车用微米木纤维模压制品加工设备的设计理论,分析了其功能和制定了总体设计方案,研究了设备的组成系统,进行了结构和强度设计,开发了车用微米木纤维模压制品加工设备实验台,该实验台设计结构简单合理、成型速度快,为生产实践提供了一种新的模压加工车用微米木纤维制品的实验设备。利用该实验台进行了大量实验,制备了车用微米木纤维模压制品实验样品,探索出模压成型的工艺方法和工艺路线,获得了关键工艺参数,取得了工业化生产的第一手资料。在对模压设备和模压工艺研究的同时,也对车用微米木纤维模压制品的螺纹强度与纹理走向问题进行了研究,根据实验结果提出了握钉力性能与模压密度的相关方程,给出了模压加压曲线。以上研究形成了车用微米木纤维模压制品成型理论。
     其次,提出了针对模压过程参数和复合材料力学的握钉力计算方法和螺钉连接强度设计理论。建立了车用微米木纤维模压制品螺纹的力学模型,推导了螺纹牙载荷分布曲线和强度计算公式,精确计算了各螺纹牙受力的百分比,提出了微米木纤维模压制品握钉力计算公式,编写了握钉力计算机程序,利用计算机可快速获得握钉力。通过实验验证了车用微米木纤维模压制品强度超过同材质实木制品,证明了车用微米木纤维模压制品零部件的设计是成功的。还详细分析了微米木纤维模压制品螺纹的受力、变形、几何参数之间的关系,求导了载荷分布系数,建立了微米木纤维模压制品握钉结合部的载荷分布方程。并研究了微米木纤维模压制品螺钉组连接强度可靠性优化设计方法。
     最后,分析了微米木纤维模压制品成型工艺中存在的问题和解决方法,并通过实验验证了微米木纤维模压制品握钉力计算公式,分析了理论计算值与实验结果的误差及其产生原因。
     本文研究的车用微米木纤维模压制品成型理论,提供了模压设备和成型工艺,将微米木纤维基础理论应用于汽车行业;本文研究的握钉力计算方法,在木材学与机械学交叉学科进行了深入的研究,利用计算机可快速计算各种规格螺钉的握钉力,将改变木材握钉力性能仅依靠试验测定的现状,显著提高工作效率。
With the fast development of society,demand for luxurious car increases gradually. Wooden decorations in luxurious car,such as wooden panel,joy stick,doorknob,steering wheel and so on,are more and more popular.But lack of raw materials and complicated processing technology made wooden decorations very expensive.Ordinarily families and consumers can't afford to it.The micron wood fiber molded products proposed by this dissertation are workable replacements of wood parts in luxurious cars.It will solve the problems of material shortage,molding technology,and high cost.It will enhance the usage of wooden products in car industry and improve the consumption of luxurious car.
     Firstly,the dissertation studied the design theory of equipment processing micron wood fiber molded products for cars,analyzed the function,worked out an overall design plan, studied component system of the equipment,designed the structure and strength,and developed the experimental equipment of micron wood fiber molded products for cars.The designed structure of the experimental equipment is simple and rational.The speed of molding is high.It provided people a new experimental equipment of molding micron wood fiber products.With the equipment,plenty of experiments had been done and many samples of micron wood fiber molded products for cars were produced.We've got the molding technological method,route,key technological parameters and firsthand data for industrialized production.Meanwhile we studied the thread strength and control of veins tending of micron wood fiber molded products for ears.According to the experimental results,the correlative equation of screw holding capability and molding density is put forward,and the molding press curve is given.The study above forms the molding theory of micron wood fiber molded products for cars.
     Secondly,the method of calculating screw holding capability and the strength design of screw joints of micron wood fiber molded products according to molding process parameters and compound material mechanics were put forward.The mechanical model of screw thread of micron wood fiber molded products for cars was established.The load distributing curve and strength calculating equations of screw thread were deduced.The precise percentage of force in the threads was calculated.The equation of calculating screw holding capability of micron wood fiber molded produts was proposed.The computer program was edited so that the screw holding capability can be obtain rapidly.Experiments has validated that the strength of micron wood fiber molded products is higher than the products made of the same materials of natural woods.The design of micron wood fiber molded parts was proved to be successful.Further more,the relationship of forces,deformation of threads and the geometrical parameters of micron wood fiber molded products were analyzed in detail.The load distributing coefficient was deduced.The load distributing equation of the screw holding binding site of micron wood fiber molded products was established.Besides,the optimal design of strength of screw joints for micron wood fiber molded products with reliability was put forward.
     Thirdly,the questions and solutions of molding process of micron wood fiber molded products were analyzed.The calculating equations of screw holding capability of micron wood fiber molded products were proved by test.The error and reasons of the results of theory and test were analyzed too.
     The molding theory of micron wood fiber molded products for cars studied by this dissertation offered the molding equipment and technology.It applied the fundamental theory of micron wood fiber to car industry.The calculating method of screw holding capability of this dissertation is deep study of intersecting subjects of wood science and mechanics.Using computer,we can calculate the screw holding capability of various screw rapidly.The state that the screw holding capability of wood depends on experiments only will be changed.It will raise the working efficiency greatly.
引文
[1]科尔曼等,江良游译.木材学与木材工艺学原理.北京:中国林业出版社,1991
    [2]Singh A.P.and L.A.Donaldson.Ultra structure of trchcid cell walls in radiate pine(Pinus radiate) mild compression wood.Can.J.Bot.1999,77(2):32-40
    [3]Adya P.Singh and Geoffrey Daniel.The S2 layer in the Tracheid walls of Picea abies wood:In homogeneity in Lignin Distribution and Cell Wall.Holzforschung,2001,55(4):373-378
    [4]Koponcn S,Toratti T,Kanerva P.Modeling longitudinal elastic and shrinkage properties of wood.Wood Science Technology,1989,23(1):55-63
    [5]Koponen S,Toratti T,Kanerva P.Modeling elastic and shrinkage properties of wood based on cell structure.Wood Science Technology,1991,25(1):25-32
    [6]Diao,X.,T.Furuno and T.Uehara.Analysis of cell arrangement in soft wood using twodimensional fast Fourier transformation.Mokuzaishi.1996,42(7):634-641
    [7]Burgcnt I,Bcmasconi A,Nikas K J et al.The influence of rays on the transverse elastic anisotropy in green wood of deciduous trees.Holzforschung,2001,55(5):449-454
    [8]Uagi Watanabe and Misato.Tangential Young's Modulus of Coniferous Early Wood Investigated using Cell models.Holzforschung,1999,53(2):209-214
    [9]Maekawa,T.,M.Fujita and H.Saiki.Characterization of cell arrangement by polar coordinate analysis of power spectral patterns.J.soc.Mater.sci.Jpn.1993,42(3):126-131
    [10]李坚.纳米科技及其在木材科学中的应用前景(Ⅰ).东北林业大学学报,2003(1):1-4
    [11]李坚.纳米科技及其在木材科学中的应用前景(Ⅱ).东北林业大学学报,2003(2):1-3
    [12]赵广杰.木材中的纳米尺度、纳米木材及木材.无机纳米复合材料.北京林业大学学报,2002(9):204-207
    [13]赵广杰.木材细胞壁的构造及其主要成分的堆积过程.北京林业大学学报.1999(6):193-196
    [14]江泽慧等.针叶树木材细胞力学及纵向弹性模量计算--纵向弹性模量的理论模.林业科学.2002,38(5):101-107
    [15]侯祝强,姜笑梅,殷亚方.马尾松管胞长度分规律及计算机随机模拟.林业科学研究.2001,14(3):271-277
    [16]侯祝强,姜笑梅.针叶树木材细胞力学及纵向弹性模量计算--试件纵向弹性模量的预测.林业科学.2003,39(2):123-129
    [17]马岩.纳微米科学与技术及在木材工业的应用前景展望.林业科学.2001,37(6):109-113
    [18]马岩.木材横断面六棱规则细胞数学描述理论研究.生物数学学报.2002,17(1):64-68
    [19]马岩.微米木纤维定向重组细胞含量的定量求解理论研究.生物数学学报.2002,17(3):353-357
    [20]马岩,任洪娥,张云秀.利用微米压缩重组高分子定向材料的分子裂解理论研究.全国先进制造技术、系统及装备学术会议论文集.2003,12:316-318
    [21]马岩等.冻材主方向弹性摸量微观力学理论求解理论.东北林业大学学报.2000,28(6):99-101
    [22]马岩.重组木力学模型及刚度参数分析方法探讨.东北林业大学学报.1995,23(4):107-111
    [23]马岩,汤晓华.刨花板弹性模量的微观力学理论求解方法探讨.木材加工机械.1997,47(3):7-9
    [24]马岩,李松龄,汤晓华.定向刨花板弹性模量微观力学理论求解方法探讨.东北林业大学学报.1996,24(6):94-97
    [25]马岩,金潍洙,汤晓华.重组木微观力学模型及刚度级数分析方法探讨.东北林业大学学报.1995,23(4):106-110
    [26]邢立平,马岩.重组木弹性模量微观力学分析的实验验证.东北林业大学学报.2002.30(4):91-93
    [27]战丽,齐英杰,马岩.重组木复合刨花板截面弹性模量求解方法的研究.木材加工机械.2002,13(2):8-11
    [28]齐英杰,马岩.碎料板弹性模量微观力学的求解理论研究前景展望.人造板通讯.2002,89(4):8-11
    [29]齐英杰,任洪娥.碎料板弹性模量微观力学的发展综述.木材加工机械.2002,13(1):7-12
    [30]马岩.利用微米木纤维定向重组技术形成超高密度纤维板的细胞裂解理论研究.林业科学.2003,39(3):111-115
    [31]Mayan and Qiyingjie.Study On the Cutting Theory and Milling Method of Forming Micrometer Wood Fiber IWMS16 Matsue,JAPAN,2003,7:161-170
    [32]战丽,马岩.木材细胞纤维分布与定量数学描述理论研究.林业机械与木工设备.2003,31(6):14-16
    [33]Gindl W.,Gupta H.S.,Sch(o|¨)berl.T.Mechanical Properties of Spruce Wood Cell Walls by Nan indentation.Applied Physics A-Materials Science & Processing,2004,79(8):2069-2073
    [34]Zhou benlian.Biomimetic Research of Composites.Physics.1995,24(10):577
    [35]Callum A.S.Hill and Dennis Jones.Dimensional changes in Corsican Pine Sapwood due to Chemical Modification with Linear Chain Anhydrides.Holzforschung,1999,53(3):267-271
    [36]Siau J F,Davidson R W,Meyer J Aet al.A geometrical model for wood-polymer composites.Wood Science,I968,1(2):116-128
    [37]Bodig J,Jayne B A.Mechanics of wood and wood composites.New York:Van No strand Reinhold Company Inc,1982
    [38]HE Jianli,LIU Changhong,LI Wenzhi,LI Hengde,Study of Mechanical Properties of Micro-Assembly in Nano-Scale,Journal of Tsinghua University.Science and Technology.1998,38(10):16
    [39]E.D.Wong,P and Yang.Analysis of the effects of density profile on the bending properties of particleboard using finite element method.Holz als Roh-und Worst-off,2003,61(2):66-72
    [40]F.Divos.Formation of the density profile and its effects on the properties of particleboard.Wood Science Technology,1999,33(4):327-340
    [41]Shuming Suo.Simulation modeling of particleboard density profile.Wood and Fiber Science,1994,26(3):397-411
    [42]Otto Such land.A simulation of the horizontal density distribution in a flake board.Forest Product J.,1989,39(5):29-33
    [43]Paul M.Winistorfer.Modeling and comparing vertical density profiles.Wood and Fiber Science,1996,28(1):133-141
    [44]Robert L,Geimer H M.Dimensional stability of flake boards as affected by board specific gravity and flake alignment.Forest Product J.,1982,32(8):44-52
    [45]Derek Barnes.An integrated model of the effect processing parameters on the strength properties of oriented strand wood products.Forest Product J.,2000,50(11/12):33-42
    [46]S.Tamura,T.Aaizawa,J.Kihara.Three-dimensional granular modeling for metallic powder composition and flow analysis.Journal of Materials Processing Technology,1994,42(1):197-207
    [47]任洪娥,徐海涛.细胞特征参数计算机的提取理论.林业科学.2007,43(9):68-73
    [48]杨春梅.横切木材材种细胞识别试件视频模拟理论.计算机应用研究.2007,24(1):49-50
    [49]齐英杰,杨春梅,战丽.微米木纤维图像的模拟再现理论和应用研究.林业科技.2004(5):42-44
    [50]齐英杰,杨春梅,马岩.马尾松细胞外廓结构简化模型的建立与仿真.林业科学.2006,42(9):93-95
    [51]Wei Xu.Influence of out-of-plane orientation of particles on linear expansion of particleboard:A simulation study.Forest Product J.,1998,48(6):85-87
    [52]Congjin Lu.Simulation study of wood-flake composite mat structures.Forest Product J.,1998,48(5):89-93
    [53]Stephen M.Composite model prediction of elastic modulus for flake board.Wood and Fiber Science,1990,22(3):246-261
    [54]T.F.Shupe.Flake orientation effects on physical and mechanical properties of sweet gum flake board.Forest Product J.,2001,51(9):38-43
    [55]Jianying Xu and Ragil Widyorini.Properties of kenaf core binder less particleboard reinforced with kenaf bast fiber-woven sheets.J.Wood Science,2005,51(2):415-420
    [56]马岩.微米木纤维形成MFB的初探.林产工业.2005,32(4):6-8
    [57]马岩,杨春梅.微米长薄片木纤维切削加工功率的理论计算方法与效益分析.林业科学.2006,42(3):42-47
    [58]Mayan,Yangchunmei,Zhan li.Theoretical Computation and Analysis of Benefits of Wood Cutting Power.Frontiers of Forestry in China.2006(4):445-448
    [59]战丽.微米木纤维形成MFB的理论与实验研究.东北林业大学博士论文.2005
    [60]杨春梅.微米木纤维切削功耗计算理论及MFHB形成机理.东北林业大学博士论文.2007
    [61]阿伦,马岩等.微米级薄片木纤维高强度人造板制造工艺的试验研究.木材加工机械.2006,1:22-24
    [62]马岩.中国木工及人造板机械行业如何适应汽车工业的发展.林业机械与木工设备.2004,32(2):7-10
    [63]马岩.国际木工机械新技术的最新进展.林业机械与木工设备.2006,34(1):4-7
    [64]陈绪和.纤维、刨花模压制品技术现状和展望.世界林业研究.1992,3:56-62
    [65]陈绪和.木质纤维模压制品--一种有发展前景的高性能产品.林产工业.1994,21(1):31-34
    [66]高晓露.快速发展中的模压工艺及制品.北京木材工业.1996,1:45-47
    [67]欧阳琳.刨花模压技术.木材加工机械.1994,1:12-16
    [68]陈士英.刨花模压托盘工艺.木材工业.1999,13(2):3-6
    [69]张娟娟.木质托盘--一种有发展潜力的木材制品.木材工业.1990,4(1):33-35
    [70]孙光瑞,陆肖宝,浦强.刨花模压制品主要工艺参数的研究.林产工业.1995,22(6):12-15
    [71]孙光瑞.刨花模压制品的技术关键.林产工业.1996,23(2):25-28
    [72]李大纲.模压木质刨花托盘的技术发展和市场前景.机电信息.2003,22:41-43
    [73]李大纲,葛晓峰.刨花模压工业托盘的特点及主要物理力学性能.株洲工学院学报.2004.18(5):158-161
    [74]马岩,阿伦.MLFB构成机理及孔穴压缩变化率对其力学性能的影响.林业科学.2007,43(6):123-127
    [75]马岩.微米木纤维低密度轻质板制造技术探讨.木材工业.2006.7,20(4):19-21
    [76]Willian F.Smith,Foundations of Materials Science and Engineering.北京:机械工业出版社,2006
    [77]Calm R.W.Material Science and Technology Series.Beijing:Science Publishing House.1999
    [78]成俊卿等.木材学.北京:中国林业出版社,1985
    [79]瓦宁C.H.,木材学.北京:中国林业出版社,1949
    [80]#12
    [81]#12
    [82]张文庆等.国产十种木材的握钉力.中国林业科学研究院研究报告,森工1961,(61):51
    [83]张文庆等.国产15种木材的握钉力.林业科学,1963,8:3
    [84]张寿槐.福建产五种木材的握钉力.中国林业科学研究院木材工业研究所研究报告.1963
    [85]张寿槐.红松、落叶松等五中木材握钉力的研究.中国林业科学研究院木材工业研究所研究报告.1964
    [86]中国林业科学研究院木材工业研究所等.中国主要树种木材的物理力学性质.北京:中国林业出版社.1982
    [87]周定国.定向刨花板物理力学性能的研究.南京林产工业学院学报.1983,1:81-98
    [88]王礼.国产刨花板握螺钉力的试验.林业科技.1989,4:46-48
    [89]马振洲.各种规格圆钉打入木材的握钉力.木工机床.1989.2:37
    [90]GB1928-80木材物理力学试验方法.北京:技术标准出版社.1981
    [91]GB11718.9-89中密度纤维板握螺钉力的测定.北京:中国标准出版社.1993
    [92]GB/T17657-1999人造板及饰面人造板理化性能试验方法.北京:中国标准出版社.2000
    [93]GB/T15105.1-94模压刨花制品家具类.北京:中国标准出版社.1996
    [94]GB/T4897-1992刨花板.北京:中国标准出版社.1993
    [95]GB/T4897-2003刨花板.北京:中国标准出版社.2004
    [96]GB/T14018-92木材握钉力试验方法.北京:中国标准出版社.1993
    [97]#12
    [98]D.Sehlottmann.Konstrukfionslehre Groundage,Springer-Verlag,1979
    [99]W.Beitz und K.H.k(u|¨)ttner.Dubbel Taschenbuch f(u|¨)r den Maschinenbau.14 Auflage,Springer-Veflag,1981
    [100]西田正孝.应力集中.北京:机械工业出版社,1983
    [101]山本晃.ねじ締結の理論と計算.東京:日本東京株式會社養賢堂發行,1977
    [102]丸山一男.塑性域ねじ締結.機械の研究.1988,Vol.40.No.12:1295-1299
    [103]#12
    [104]谢里阳,徐灏.螺栓受力分析的组合结构法及其疲劳寿命估算.机械设计.1986(4):15-20
    [105]孟兆明,闫德元,郭可谦.一种提高螺栓连接强度的新方法.北京航空航天大学学报.1995.7,221(3):109-112
    [106]冯守卫,张涛,郭可谦.关于滑动螺旋传动的螺牙强度计算.西安公路交通大学学报.1998.4,18(2):85-87
    [107]卜炎.螺纹联接设计与计算.北京:高等教育出版社.1995,7:4-15
    [108]刘秦,冯守卫等.螺栓连接强度的影响因素和计算方法.西安公路学院学报.1994.3,14(1):42-46
    [109]张申林,冯守卫.关于螺栓连接强度计算中的几个问题.机械科学与技术.1998.5.17(3):378-382
    [110]D.A.Barness.Unlocking the Secrets of Thread-Locking.Assembly Engineering.1990,Vol.33,No.1
    [111]A.Blake.Threaded Fasteners Materials and Design.Marcel Dekker,Inc.1986
    [112]J.H.Bickford.Bolt Torque:Getting it right,Machine Design.June 21,1990
    [113]J.Newинам etc.Safety Using Yield Control.Machine Design.September 20,1990
    [114]马岩,甘启蒙.生物弹性轻软微米木纤维材料应用前景.林业机械与木工设备.2008,3:4-7
    [115]马岩,杨家武.国际生物机械的发展与展望.木材加工机械.2008,5:36-39
    [116]刘鸿文.材料力学.第4版.北京:高等教育出版社.2004
    [117]王建中,钱秋玲等.湿法纤维板生产线改产模压门板的生产技术.河南林业科技.1998,18(1);43-44
    [118]鲍逸培.我国刨花模压制品生产工艺及设备.木材加工机械.1998,1:3-5
    [119]范恩荣.用低质材制备异型木制品方法的研究.建筑人造板.2000,4:37-38
    [120]虞华.新型钉大有发展前景.今日科技.1992,5:32
    [121]日本木材加工技术协会.JISZ2121-1959木材のクギ引拔抵抗试验方法.日本规格协会.1959
    [122]孙学东,胡生辉,张淑军.关于人造板握螺钉力测试方法的验证试验.中国人造板.2006,9:24-26
    [123]李旸,孙学东,胡生辉,张玉萍.刨花板握螺钉力测试方法比对试验.中国人造板.2007,9:28-30
    [124]王军,尹子康,范秀丽,沈朝芝.导向孔径比与刨花板的握钉力.吉林林业科技.1989,6:48-51
    [125]郭永,李大纲等.引导孔孔径对塑木构件结构强度影响.林业机械与木工设备.2008。36(2):28-30
    [126]Alexander B.Design of Mechanical Joints.Marcel Dekker,Inc.1985:173-231
    [127]#12
    [128]A.A Kran.Dynamic Stress in Helical Spring.Machine Design,1972,Vol.44,No.27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700