用户名: 密码: 验证码:
人工林杨树正常木和应拉木材性与制浆造纸性能关系及其模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以正常生长和偏心生长欧美杨107杨(简称为107杨)木材为研究材料,首先研究两种生长状态部分木材材质指标的的径向变异模式和整体趋势;其次,分别对正常生长杨树中的正常木和偏心生长中的应拉木进行化学组成和制浆造纸性能研究,分析了其化学组成、制浆性能和纸张性能的径向变异模式和整体趋势,并对正常木和应拉木进行了全面比较,再次,以正常木和应拉木的材性和制浆造纸性能径向变异为基础,分析材性与制浆性能和纸张性能之间的关系,并建立了多重线性回归模型。此外,通过对两种生长状态下立木表面轴向生长应变和内部残余轴向应变的研究,分析了生长应变的不同高度、不同周向位置、不同径向位置的变异模式和整体趋势,并结合生长性状和木材性质,分析它们之间的关系。研究得出结果具体如下:
     1.人工林杨树正常木木材材性研究
     从木材解剖特性来看,欧美杨107杨是一种非常优良的制浆造纸原料。径向变异研究得出:木射线比量从髓心向外缓慢上升;导管比量从髓心向外略有下降;纤维比量从髓心向外开始保持不变,到第4年轮后开始迅速下降;纤维长度、纤维宽度、长宽比、胞腔径的径向变异整体趋势是从髓心向外开始迅速增长到一定位置后速度开始放缓;壁腔比的整体径向变异趋势是从髓心缓慢下降,达到第4年轮后开始迅速攀升到树皮;微纤丝角的整体径向变异趋势如开口下乡的抛物线,顶点在第4年轮。方差分析的结果表明不同单株、不同年轮之间纤维形态各指标的变异都较大,并且这种影响程度在各指标之间不一致。年轮对导管比量和纤维比量影响显著,对木射线比量影响不显著。
     从木材化学组成来看,欧美杨107杨同样也是一种非常优良的制浆造纸原料。其径向变异研究得出:纤维素含量和a-纤维素含量径向变异整体趋势是从髓心向外逐渐增加,在第6年轮处曲线趋于平稳;综纤维素含量和1%氢氧化钠抽提物含量整体趋势都是开口向下的抛物线,顶点也都在第5年轮处;苯醇抽提物含量从髓心向外迅速降低;相对结晶度整体径向变异趋势是开口向下的抛物线,顶点在第5年轮和第6年轮之间。方差分析表明化学组成在不同单株和不同年轮之间存在着显著的差异。欧美杨107杨的基本密度偏低,有利于制浆造纸。欧美杨107杨正常木基本密度径向变异的整体趋势线为开口向上的抛物线。方差分析表明木材基本密度在不同单株和不同年轮之间存在着显著的差异。
     欧美杨107杨生长应变研究显示:立木表面轴向生长应力在树干外围的不同周向位置之间比较的差异不显著,但在不同高度中差异显著。生长拉应力值越大,纤维双壁厚越小,此外随着生长拉应力的增加,轴向的全干干缩率下降。欧美杨107杨内部残余轴向生长应变的整体趋势图如开口向下的抛物线,其顶点在髓心位置处。
     2.人工林杨树应拉木木材性质研究
     应拉木在各单株、各年轮之间的分布具有很强的不均匀性。应拉木纤维长度、纤维宽度、长宽比以及木射线比量与正常木之间差异不明显,而微纤丝角度、导管比量要低于正常木,双壁厚、壁腔比要高于正常,且差异在不同水平上显著。偏心生长的欧美杨107杨应拉木区和对应木区木材解剖特性径向变异研究得出:应拉木区木射线整体径向变异模式是从髓心向外以一定速度下降;导管比量从髓心向外一直保持持续增长的趋势:纤维比量在第1(2)年轮和第4年轮之间基本保持不变,随后才有微弱的下降。应拉木区中和对应木区中的纤维长度径向上整体基本为持续增长的趋势;纤维宽度、壁腔比、双壁厚从髓心开始保持较缓速度增长;腔径在第1(2)年轮和第4年轮之间基本保持不变,随后开始缓慢上升;长宽比径向变异的整体趋势如开口向下的抛物线,其顶点位置在第5年轮处;应拉木区中的微纤丝角径从髓心向外逐渐降低;对应木区的微纤丝角度整体径向变异趋势如开口向下抛物线,且第4年轮是抛物线的顶点。各解剖特性在不同单株和不同年轮比较中得出的结果存在不同点,纤维长度、宽度、双壁厚、微纤丝角、胞腔径均显示出较大差异性,而长宽比却没有差异。木材组织比量中只有应拉木区中的纤维比量在不同单株和不同年轮中差异显著。
     应拉木的纤维素含量和a-纤维素含量远高于正常木得到的数值,木材相对结晶度略高于正常木,因此木素含量和1%氢氧化钠抽提物含量相对应的较低,而综纤维素含量基本没有变化。不同单株和不同年轮之间的化学组成和相对结晶度都存在较大差异性。应拉木区密度要高于正常木木材基本密度。应拉木区基本密度的整体径向变异趋势为:从髓心向外保持平稳,从第4年轮后呈现迅速上升的趋势,一直到树皮。不同单株和不同年轮对应拉木区木材基本密度的影响显著。
     偏心生长立木生长应力周向变化趋势为,整个树干外围主要生长应力形式主要以拉应力为主,并且倾斜树干最上部或弯曲树干最凸处的生长应力为拉应力的最大值,倾斜最下部或弯曲树干最凹处的生长应力为拉应力最小值或部分单株出现了压应力。不同单株、不同周向位置之间的生长应变差异性较大,而同一单株不同高度之间差异不明显。立木表面轴向生长应变与木材材质之间关系研究得出,生长应力拉应力越大,双壁厚、壁腔比、轴向全干干缩率、径向全干干缩率、弦向全干干缩率均显著增加,纤维宽度和腔径显著减少。偏心生长木材内部残余轴向生长应变的径向变异整体模式如开口向下的抛物线,顶点在髓心处,从散点图来看,应拉木区树干外围若干年轮的应变值要小于对应木区相对应的年轮,说明应拉木区树干外围的生长拉应力大于对应木区相对对应的位置。
     3人工林杨树正常木和应拉木制浆造纸性能研究
     在正常木制浆条件实验中,欧美杨107杨的制浆性能处于中等水平,制浆得率从髓心向外迅速增加,到第6年轮后是出现微弱下降。卡泊值整体趋势是如开口向上的抛物线,卡泊值从髓心向外开始逐渐降低,到第4年轮时出现最低值,随后逐渐上升。根据制浆性能关系相关木材性质和制浆造纸性能的径向变异模式和整体趋势,本文欧美杨107杨纸浆林的轮伐期要长于6年。不同单株对制浆得率的影响不显著,而对卡泊值的影响显著;年轮对制浆得率的影响显著,而对卡泊值的影响不显著。
     抗张指数的径向变异整体变化趋势为从髓心向外逐渐增加,到第5年轮后开缓慢下降;撕裂指数在生长轮初期主要还是保持一个较为平稳的缓慢上升的状态,到第4、5年轮之间保持基本不变,随后在第6年轮后迅速攀升;耐破指数的径向变异整体趋势与抗张指数较为类似,从髓心向外迅速增加至第5年轮,随后开始缓慢下降。本文认为如果以纸张性能最大化目标,欧美杨107杨纸浆林最佳轮伐期要不能超过5年。因此,综合制浆性能和纸张性能的径向变异结果,木文认为欧美杨107杨纸浆林的最佳轮伐期应该6-7年。不同年轮之间和不同单株之间各纸张性能指标均差异显著。
     与正常木相比可以明显看出,应拉木制浆得率较高,纸浆卡泊值较低。不同单株之间制浆得率和卡泊值的差异不显著;年轮对制浆得率的影响显著,而对卡泊值的影响不显著。从应拉木纸张性能检测性能可以看出,应拉木制作的纸张抗张指数和耐破指数较正常木来说要差的多,但是撕裂指数差别不大。不同年轮之间应拉木各纸张性能指标除耐破指数外均差异显著,应拉木单株之间的各项纸张性能指标均差异显著。
     随着打浆转数的提高,应拉木纸浆打浆度开始迅速提高;随着打浆转数的提高,应拉木纸张抗张指数和耐破指数首先增加迅速,随后速度趋于平缓;应拉木纸张撕裂指数随着打浆转数的提高先是出现微弱的提高,然后撕裂指数开始下降。12000转后,应拉木纸张抗战指数和耐破指数已经被提高到与正常木较为相同的水平,但是整体上看仍然会低于正常木纸张,此外,打浆转数的增加对应拉木纸张性能提高具有一定的上限,过高的打浆转数对纸张性能有所损耗。
     4.人工林杨树正常木和应拉木木材性质与制浆造纸性能关系及模型研究
     在正常木木材性质与制浆性能相互关系得出:木材化学组成的综纤维素含量(Χ_1)、纤维素含量(Χ_3)、a-纤维素含量(Χ_4)、木材相对结晶度(Χ_8)、1%氢氧化钠抽提物含量(Χ_6)之间存在显著的正相关关系,与苯醇抽提物含量(Χ_7)和木材基本密度(Χ_9)之间也存在显著的负相关关系或负偏相关关系(年轮数为控制变量,下同),与半纤维素含量(Χ_2)、木射线比量(Χ_(10))之间关系不显著。卡泊值与木素含量(Χ_5)、木材基本密度、导管比量(Χ_(11))存在显著的正相关关系,与纤维比量(Χ_(12))之间的负相关关系也显著。在应拉木木材性质与制浆性能相互关系得出:制浆得率与纤维素含量、a-纤维素含量、综纤维素含量、木材结晶度、木材密度、纤维比量、年轮数、含胶质纤维比例指标之间存在显著的正相关关系;与1%氢氧化钠抽提物含量、木素含量、苯醇抽提物含量存在显著的负相关关系。卡泊值与a-纤维素含量之间存在显著的负相关关系,与其余指标相关性均不显著。
     采用主成分分析提取所有与制浆性能相关材性指标的主成分,再利用主成分对分别对正常木、应拉木和整体木材制浆得率和卡泊值进行多重线性回归,得到材质指标对制浆得率和卡泊值的经验回归模型。
     正常木材性与制浆性能线性回归模型:制浆得率(%)=0.615χ_1-0.583χ_2+1.23χ_3+1.203χ_4-0.380χ_5+1.380χ_6-0.357χ_7+0.790χ_8-0.050χ_9-0.231χ_(10)+0.139χ_(11)+0.074χ_(12)+140.438(**)卡伯值=0.146χ_1-0.292χ_2 +0.095χ_3 +0.114χ_4 +0.620χ_5 -0.398χ_6 -0.106χ_7 +0.017χ_8+0.070χ_9-0.022χ_(10)+0.890χ_(11)-0.670χ_(12)+17.962 (ns)
     应拉木木材性与制浆性能线性回归模型:制浆得率=0.1924χ_1-0.5096χ_2 +2.5002χ_3 +4.2296χ_4 -0.7326χ_5 +1.0323χ_6 -.01054χ_7+1.8616χ_8+0.021χ_9-0.1664χ_(10)-08759χ_(11)+1.0424χ_(12)+163.9981(***)卡泊值=1.2136χ_1 +0.0784χ_2-1.2501χ_3 -2.5502χ_4 +0.4884χ_5 +0.2997χ_6-0.062χ_7-1.074χ_8-0.008χ_9+0.1976χ_(10)+0.5968χ_(11)-0.7923χ_(12)+23.1694 (ns)
     材性与制浆性能整体线性回归模型制浆得率=2.703χ_1-1.880χ_2+5.846χ_3 +5.085χ_4-2.3912χ_5 -0.108χ_6-0.632χ_7 +3.177χ_8-0.019χ_9 -0.191χ_(10)+2.415χ_(11)+0.678χ_(12)-100.4062(***)卡泊值=-0.5456χ_1+3.3528χ_2-3.7χ_3 -3.1188χ_4+2.2736χ_5+1.3283χ_6+0.144χ_7-1.9228χ_8-0.016χ_9-0.371χ_(10)+1.6744χ_(11)-1.1951χ_(12)-100.4062(***)
     在正常木木材性质与制浆性能相互关系得出:抗张强度与纤维长度(Χ_1)、纤维宽度(Χ_2)、纤维长宽比(Χ_3)、胞腔径(Χ_4)、纤维比量(Χ_(10))、木材结晶度(Χ_(11))之间存在正的显著相关性或偏相关性,与木材基本密度(Χ_(12))、双壁厚(Χ_5)、壁腔比(Χ_6)、导管比量(Χ_9)之间的负相关系数或偏相关系数均显著,与微纤丝角(Χ_7)、木射线比量(Χ_8)之间相关性不显著。耐破指数与纤维宽度,胞腔径显著正相关;与双壁厚和壁腔比之间的显著负偏相关。撕裂指数与双壁厚、纤维长度、纤维长宽比、壁腔比、木材基本密度的正相关关系显著。由于应拉木木材性质与纸张性能受到了应拉木存在的不均匀性影响,无法得出显著的相关性,因此也未进行多重线性回归模型研究。材质指标对制浆得率和卡泊值的经验回归模型为:
     正常木材性与纸张性能线性回归模型:抗张指数=340.524χ_1 +2.037χ_2 +10.627χ_3+1.714χ_4 +0.109χ_5 -0.011χ_6-0.311χ_7+2.794χ_8-3.864χ_9+3.993χ_(10)+1.260χ_(11)-0.0313χ_(12)+2288.786(**)撕裂指数=57.962χ_1 +0.244χ_2 +1.837χ_3 -0.071χ_4 +0.258χ_5 +0.018χ_6 -1.246χ_7+0.121χ_8-0.222χ_9+0.099χ_(10)+0.034χ_(11)+0.913χ_(12)+355.325(**)耐破指数=1359.080χ_1+8.259χ_2+41.131χ_3+8.366χ_4-0.707χ_5-0.158χ_6+11.176χ_7-4.422χ_8-7.256χ_9+11.061χ_(10)+7.039χ_(11)-0.136χ_(12)+8643.946(ns)
     材性与纸张性能整体线性回归模型:抗张指数=0.184χ_1 +0.056χ_2 +0.122χ_3 +0.257χ_4 -0.212χ_5 -0.218χ_6+0.054χ_7 -0.067χ_8 -0.080χ_9 +0.097χ_(10) -0.154χ_(11) -0.099χ_(12) +74.046(***)撕裂指数=0.140χ_1+0.097χ_2+0.105χ_3 -0.004χ_4 +0.079χ_5 +0.039χ_6 +0.034χ_7+0.060χ_8+0.024χ_9-0.213χ_(10)+0.055χ_(11)+0.014χ_(12)+10.987(*)耐破指数=0.100χ_1 -0159χ_2 +0.042χ_3 +0.238χ_4 -0.202χ_5 -0.210χ_6+0.073χ_7-0.042χ_8-0.046χ_9 +0.057χ_(10) -0.156χ_(11) -0.139χ_(12) +451.240(***)
Normal growth and eccentric growth poplar clone 107( Populus×euramericana cv. 'Neva') were selected for studying materials in this paper. At first, the radial variation pattern and trend of selected wood properties from both normal growth and eccentric growth poplar tree were concluded. Secondly, normal wood from normal growth poplar tree and tension wood from eccentric growth poplar tree were distinguished form other wood by combination stained method and "fuzzy appearance " method, and chopped out for determining wood chemical composition and ability f chemical pulp processing and quality of handsheet. Radial variation pattern and trend of chemical composition and quality of pulp and paper were also induced of both normal wood and tension wood. Furthermore, comparison of normal wood and tension wood of properties above was analyzed. Thirdly, according to the research result of radial variation of materials stated, relationship between wood properties and quality of pulp and paper were further analyzed, and Multiple Linear Regression method was utilized to establish experiential mathematic model for estimated pulp and paper qualities based on wood properties. Fourthly, surface longitudinal growth strain of standing tree and inner residual longitudinal growth strain of felled tree was determined at both normal growth and eccentric growth poplar clone 107 trees. Variation patterns and trends of different heights, different periphery positions and different radial positions were concluded. Furthermore, relationship between growth strain and tree growth characters and wood properties were analyzed. All results were listed as follows:
     1. Wood properties of normal wood of poplar clone 107
     According to anatomical properties of poplar clone 107, the clone was one of excellent materials for pulp and paper use. The result of radial variation showed: ray tissue proportion was increasing slowly from pith to bark, vessel tissue proportion was decreasing slightly outward, fiber tissue proportion was stable from pith since the fourth growth ring, and it was decreasing sharply later. Fiber length, fiber width, and ratio of fiber length to width were increasing from pith to outward firstly, and then keep stable when the each of them arrive a certain number. Runkel ratio was decreasing slowly at first, when it arrived at the fourth growth ring, the value of Runkel ratio increasing sharply outward. The shape of general variation trend of microfibrill angle was similar to parabola with downward opening, and the maximum located at the fourth growth ring. ANOVA shown that fiber morphological characters were significant varied among different tress and different growth rings, and the level of significant was different among different characters. Effect of growth ring on vessel tissue proportion and fiber tissue proportion was significant, when it comes to ray tissue proportion, the result was insignificant.
     According to wood chemical composition, poplar clone was also considered as a excellent materials for pulp and paper use. The radial variation trend of each chemical component was induced, and it listed as follows. Cellulose content and a-cellulose content was increasing from pith to outside. And, it kept stable at the sixth growth ring later. The trend curve of holo-cellulose and 1 % sodium hydroxide extractives content is similar to a parabola with downward opening, and the maximum is at the fifth growth ring. Benzene-alcohol extractives content is decreasing from pith to bark. The general radial trend of wood crystallinity formed a parabola with downward opening, and the maximum data located between the fifth growth ring and sixth growth ring. The variance analysis suggested that individual tree and growth ring affected wood chemical component significantly. Oven dry wood density of poplar clone 107 was relative lower than other poplar clones, and it means poplar clone 107 is more suitable for pulp and paper use. The radial variation trend of oven dry wood density formed a parabola with upward opening. The effect of individual tree and growth ring on oven dry wood density was significant.
     Growth strain of poplar clone 107 also was determined and the variation pattern and trend at different height, different periphery position was analyzed. The result indicated that surface growth strain from different periphery position varied insignificantly, however, it difference among different height was apparent. Double cell wall width of fiber and longitudinal shrinkage was deceased when the growth tensile growth increasing. The general radial variation trend curve of inner residue longitudinal growth strain was similar to parabola with downward opening, and the maximum of strain located at the pith.
     2. Wood properties of tension wood of poplar clone 107
     Distribution of tension wood among different trees and different growth ring was greatly uneven. Comparison of fiber length, fiber width, and the ratio of fiber length to fiber width, and ray tissue proportion was absurd, but, normal wood had bigger microfibril angle and vessel tissue proportion than tension wood, and tension wood had advantage at double width of cell wall and Runkel ratio, and the difference was significant at several different levels. Radial variation of anatomical properties both at tension wood zone and opposite wood zone of eccentric growth poplar clone 107 tree were concluded. The ray tissue proportion was deceasing at a certain speed at tension wood zone, and vessel tissue proportion was growing from pith to bark at same zone. Fiber tissue proportion kept stable between pith to the fourth growth increments, and deceased slightly later at tension wood zone. Fiber length both from tension wood zone and opposite wood zone were generally increasing from pith to outward, and fiber width, Runkel ratio, and double cell wall width also hold same trend at tension wood zone, but the variation trend curve was more plane. Diameter of lumen kept at same lever from the first growth ring to the fourth, and deceased later at tension wood zone. Radial variation trend curve of ratio of fiber length to fiber width at tension woo zone was like a parabola with downward opening, and the maximum of vlaue located at the fourth growth ring. At tension wood zone, microfibril angle was decreasing from pith to bark, however, it radial trend curve at opposite wood was similar to ratio of fiber length to fiber width's curve. Degree of difference of several anatomical properties among different trees and different growth increments varied slightly. Fiber length, fiber width, double cell wall width, microfibrill angle and diameter of lumen were significantly varied among trees and growth rings, however the comparison of ratio of fiber length to fiber width was unapparent. Only fiber tissue proportion of all tissue proportion was significantly varied among trees and growth rings.
     Tension wood had dramatically higher cellulose content, a-cellulose content than normal wood, and wood crystallinity was little higher than normal wood. So, normal wood had higher lignin content and 1% sodium hydroxide extractives content than tension wood accordingly. When it came to holo-cellulose content, it is quite similar between two different wood types. The effect of individual tree and growth increment on wood chemical composition and wood crystallinity was significant. Tension wood had higher oven dry wood density than normal wood, and the wood density at tension wood zone held at same level between pith and the fourth growth ring, and then increased sharply. Variance analysis also suggested that oven dry wood density varied significantly among different trees and growth increments.
     Tensile growth stress mainly existed at periphery of eccentric growth poplar tree, and the maximum value located at the upper side of leaned tree or protuberant side of bended tree. The tensile growth stress was decreasing from the upper side to lower side or from protuberant side to concave side, and even compressive growth stress was detected at lower side of leaned tree or protuberant side of bended tree. Furthermore, the comparison of growth stress among different trees and different periphery positions were significant. However, different height of some tree had not significant effect on growth stress. The relationship between surface longitudinal growth stress of living tree and wood characters was analyzed, and the result shown that double cell wall width, Runkel ration, oven dry longitudinal shrinkage, oven dry radial shrinkage, and tangential shrinkage was increased when the tensile growth stress was growing. Fiber width and diameter of lumen was decreased conversely. Radial trend of inner residual longitudinal growth strain of fallen log of eccentric growth poplar tree formed parabola with upward opening, and the summit situated at pith. From scatted doc diagram, the growth strain at tension wood zone was lower than opposite wood zone at their outmost growth ring, and that indicated that tensile growth stress at periphery of tension wood zone was higher than it at corresponding position of opposite wood zone.
     3. Quality of pulp and paper both of normal wood and tension wood of poplar clone 107
     Compare with other poplar clone, the ability of chemical pulp processing of normal wood poplar clone 107 situated at middle level. Pulp yield was increasing from pith to outward at first, and slightly deceasing at the sixth growth ring. Radial trend curve is similar to parabola with upward opening, the minimum value located at the fourth growth ring. Based on radial variation pattern of selected wood properties and chemical pulpability of normal wood, it was suggested that the rotation age of poplar clone 107 tree should more than 6 years for more pulp yield and better quality of pulp. Effect of individual tree on pulp yield was insignificant, but significant effect was found on kappa value. Pulp yield significant varied among different growth ring, however, the same significance had not found for kappa value.
     Tensile strength index of normal wood handsheet had a general radial variation trend curve, and it was like a downward opening parabola which summit located at the fourth growth ring. Tear strength index was increasing from pith to the third growth ring, and then kept stable for several rings, and was increasing quickly since the fifth growth ring at last. Radial variation trend of bursting strength index formed a parabola with downward opening shape, and the summit located at the fifth growth ring. Based on general variation pattern and trend of paper quality related wood properties and paper quality itself, it was suggested that the rotation age of poplar clone 107 tree should shorter than 5years for obtaining high quality paper. Combining suggestion from pulpability research and from handsheet quality research, the general conclusion of prime rotation age of poplar clone 107 tree was six years or seven years according to researching result of this paper. Growth ring significant affected all three quality index of handsheet. However, when it came to individual tree, tensile strength index and tear strength index was still hold the significance, but difference of bursting strength index among trees was unapparent.
     Tension wood had higher pulp yield and lower kappa value than normal wood. Both difference of pulp yield and kappa value among trees were insignificant. The effect of growth ring on pulp yield was significant, but kappa value was not same. Normal wood was higher than tension wood at tensile strength index and Bursting strength index, and the tear strength index was quite same between two different woods. All three paper quality index significant varied among different trees, and also among different growth rings except for bursting strength index. Along with increasing of stirring revolution, the freeness of pulp of tension wood was decreasing continuously, and tensile strength index of tension wood handsheet was increasing sharply at first few levels and then kept stable. Under the same circumference, tear strength index of tension wood handsheet was improved at first and was decreasing later. Bursting strength index of tension wood handsheet was increasing continuously. After 12000 revolutions stirring, tensile strength index and Bursting strength index of tension wood paper was improved to same level of paper of normal wood, however, tension wood still had lower quality of paper than normal wood comprehensively. In addition, the improvement of quality of tension wood paper had a upper limit, because more revolution is harmful to quality of paper.
     4. Modeling relationship between wood properties and pulpability and quality of paper both of normal wood and tension wood.
     The result of research of correlation and partial correlation (control growth ring, the follow is same) between selected wood properties and wood pulpability of normal wood shown that pulp yield was significant positive correlated with holo-celluslose content (Χ_1) , cellulose content(Χ_3), a-cellulose content (Χ_4), wood crystanillity (Χ_8), 1% sodium hydroxide extractives content(Χ_6), and significant negative correlation or partial correlation were found between pulp yield and benzene-alcohol extractives content (Χ_7, oven dry wood density(Χ_9). There are no apparent correlation or partial correlation were detected between pulp yield and semi-cellulose content (Χ_2) and ray tissue proportion (Χ10). Positive correlations were found between Kappa value and lignin content(Χ_5), oven dry wood density, vessel tissue proportion (Χ_(11)) , and conversely correlations were found between Kappa value and fiber tissue proportion. The result of research of correlation and partial correlation (control growth ring, the follow is same) between selected wood properties and wood pulpability of tension wood shown that pulp yield was significant positive correlated with holo-celluslose content, cellulose content, a-cellulose content, wood crystanillity, oven dry wood density, fiber tissue proportion, and significant negative correlation or partial correlation were found between pulp yield and benzene-alcohol extractives content, 1% sodium hydroxide extractives content, lignin content. There are no significant correlation was found between Kappa value and selected wood properties except negative correlation with a-cellulose content.
     Principal component analysis was utilized for reducing number of selected wood properties. When the first few principal components were extracted, multiple liner regression was implemented for modeling relationship between wood pulpability and extracted principal components. Whereafter, the liner regression model between selected wood properties and wood pulpability was established by further calculation. The liner evaluation model for pulp yield and kappa value based on selected wood quality was listed as follows:
     Model of normal woodPulp·yield =0.615χ_1-0.583χ_2+1.23χ_3+1.203χ_4-0.380χ_5+1.380χ_6-0.357χ_7+0.790χ_8-0.050χ_9-0.231χ_(10)+0.139χ_(11)+0.074χ_(12)+140.438(**)Kappa·value =0.146χ_1-0.292χ_2 +0.095χ_3 +0.114χ_4 +0.620χ_5 -0.398χ_6 -0.106χ_7 +0.017χ_8+0.070χ_9-0.022χ_(10)+0.890χ_(11)-0.670χ_(12)+17.962 (ns)
     Model of tension woodPulp·yield =0.1924χ_1-0.5096χ_2 +2.5002χ_3 +4.2296χ_4 -0.7326χ_5 +1.0323χ_6 -.010 54χ_7+1.8616χ_8+0.021χ_9-0.1664χ_(10)-08759χ_(11)+1.0424χ_(12)+163.9981(***) Kappa·value =1.2136χ_1 +0.0784χ_2-1.2501χ_3 -2.5502χ_4 +0.4884χ_5 +0.2997χ_6-0.062χ_7-1.074χ_8-0.008χ_9+0.1976χ_(10)+0.5968χ_(11)-0.7923χ_(12)+23.1694 (ns)
     Comprehensive Model of all woodPulp·yield =2.703χ_1-1.880χ_2+5.846χ_3 +5.085χ_4-2.3912χ_5 -0.108χ_6-0.632χ_7 +3.177χ_8-0.019χ_9 -0.191χ_(10)+2.415χ_(11)+0.678χ_(12)-100.4062(***)Kappa·value =-0.5456χ_1+3.3528χ_2-3.7χ_3 -3.1188χ_4+2.2736χ_5+1.3283χ_6+0.144χ_7-1.9228χ_8-0.016χ_9-0.371χ_(10)+1.6744χ_(11)-1.1951χ_(12)-100.4062(***)
     The result of research of correlation and partial correlation (control growth ring, the follow is same) between selected wood properties and quality of paper of normal wood shown that positive significant correlation was found between tensile strength index with fiber length (Χ_1), fiber width (Χ_2), ratio of fiber length to fiber width(Χ_3), diameter of lumen(Χ_4), fiber tissue proportion(Χ_(10)), wood crystanillity(Χ_(11)), and negative significant correlation with oven dry wood density(Χ_(12)), double cell wall width(Χ_5), Runkel ratio(Χ_6), vessel tissue proportion(Χ_9), and there were no significant correlation with mcirofibrill angle(Χ_7), ray tissue proportion(Χ_8). Significant positive correlations were found between bursting strength index and fiber width, and diameter of lumen, and significant negative correlation were found between double cell wall width and Runkel ratio. Tear strength index significant positive correlated with double cell wall width, fiber length, ratio of fiber length to fiber width, Runkel ratio, and oven dry wood density. Because of uneven distribution of tension wood among different tree and different growth, the correlation between wood quality and quality of paper was insignificant, so, the liner regression model had not calculated at this paper.
     The liner evaluation model for three quality index of paper based on selected wood quality was listed as follows:
     Model of normal wood:Tensile·strength-index =340.524χ_1 +2.037χ_2 +10.627χ_3+1.714χ_4 +0-109χ_5 -0.011χ_6-0.311χ_7+2.794χ_8-3.864χ_9+3.993χ_(10)+1.260χ_(11)-0.0313χ_(12)+2288.786(**)Tear·strength·index =57.962χ_1 +0.244χ_2 +1.837χ_3 -0.071χ_4 +0.258χ_5 +0.018χ_6 -1.246χ_7+0.121χ_8-0.222χ_9+0.099χ_(10)+0.034χ_(11)+0.913χ_(12)+355.325(**)Bursting·strength·index =1359.080χ_1+8.259χ_2+41.131χ_3+8.366χ_4-0.707χ_5-0.158χ_6+11.176χ_7-4.422χ_8-7.256χ_9+11.061χ_(10)+7.039χ_(11)-0.136χ_(12)+8643.946(ns)
     Comprehensive model of all wood:Tensile·strength·index =0.184χ_1 +0.056χ_2 +0.122χ_3 +0.257χ_4 -0.212χ_5 -0.218χ_6+0.054χ_7 -0.067χ_8 -0.080χ_9 +0.097χ_(10) -0.154χ_(11) -0.099χ_(12) +74.046(***)Tear·strength·index =0.140χ_1+0.097χ_2+0.105χ_3 -0.004χ_4 +0.079χ_5 +0.039χ_6 +0.034χ_7+0.060χ_8+0.024χ_9-0.213χ_(10)+0.055χ_(11)+0.014χ_(12)+10.987(*)Bursting·strength ? index =0.100χ_1 -0159χ_2 +0.042χ_3 +0.238χ_4 -0.202χ_5 -0.210χ_6+0.073χ_7-0.042χ_8-0.046χ_9 +0.057χ_(10) -0.156χ_(11) -0.139χ_(12) +451.240(***)
引文
[1]成俊卿.木材学.北京:中国林业出版社,1985
    [2]渡边治人.木材应用基础.张勤丽、张齐生、张彬渊译.上海:上海科技出版社,1984
    [3]尹思慈.木材学.北京:中国林业出版社,2000
    [4]陈绪和,金微.21世纪中国木材产品研究.世界林业研究,2001,14(1):37-43
    [5]谢来苏,隆言泉.21世纪的造纸纤维原料.国际造纸,2001,20(1):5-12
    [6]李世新.试析2005年我国纸浆市场供求状况及价格趋势.中华纸业,2005,25(3):60-64
    [7]管永刚.我国造纸工业原料结构的变迁.黑龙江造纸,2005,(5)
    [8]李金花,宋红竹,薛永常等.我国制浆造纸木材纤维原料的现状及发展对策.世界林业研究,2003,16(6):31-35
    [9]谢来苏,詹怀宇.制浆原理与工程.北京:中国轻工业出版社,2001
    [10]杨淑蕙.植物纤维化学(第二版).北京:中国轻工业出版社,2001
    [11]隆言泉.造纸原理与工程.北京:中国轻工业出版社,1994
    [12]庞志强,陈嘉川,杨桂花.植物纤维原料生长时间对化学成分和制浆性能的影响.黑龙江造纸,2004,(2):12-15
    [13]孙葆青,魏丽芬.植物纤维的化学组成与纸浆性能.湖北造纸,2004,(2):6-7
    [14]蒋华松,沈文瑛,张大同等.阔叶材原料特性与制浆之间关系的探讨.中国造纸,1998,(1):36-40
    [15]沈文瑛,蒋华松.针叶材制浆性能影响因索的回归分析.南京林业大学学报,1997,21(1):7-13
    [16]Zobel, B., JPv, B.Wood variation, its sauce and control.Berlin:Springer-Verlag,1989
    [17]Zobel, B. J., Jett, J. B.Genetics of wood production.Berlin:Springer-Verlag,1995
    [18]Zimmermann, M. H.The formation of wood in forest trees.New York:Academic Press,1964
    [19]李忠正.林纸一体化与中国主要速生人工造纸树种的制浆造纸性能.中华纸业,2001,22(7):5-12
    [20]Bowyer, J. L. , Shmulsky, R. , GHaygreen, J.Forest Products and Wood Science:Fourth Edition.Iowa:Iowa State Press, Blackwell Publishing Company,2003
    [21]邱坚,杜官本,郑志锋.林纸一体化与人工林培育的生物木材学研究.西南造纸,2003,32(5):21-22
    [22]顾民达.加快林纸结合步伐,实现造纸工业现代化.中华纸业,2001,22(12):45-51
    [23]Archer, R. R.Growth stresses and strains in trees.Berlin:Springer Verlag,1986
    [24]Wardrop, A. B.The reaction wood anatomy of arborescent angiosperms. In The formation of wood in forest tree, Vol. (Ed,~∧(Eds, MH, Z.)New York: Academic Press, 1965
    [25]Yang, J. L. , Waugh, G.Growth stress, its measurement and effects.Australian forestry,2001,64(2): 127-135
    [26]Dadswell, H. E. , Wardrop, A. B.The structure and properties of tension wood.Holzforschung, 1955,9:97-104
    [27]Norberg, P. H., Meier, H.Physical and chemical properties of the gelatinous layer in tension wood fibre of aspen (Populus tremula L.).HoIzforschung,1966,20:174-178
    [28]华毓坤.中国木材工业概况 人造板通讯 2002,(1):2-6
    [29]施昆山,林凤鸣.2015年我国木材供求展望.人造板通讯,2003,(2):27-30
    [30]张守攻,张建国.我国工业人工林培育现状及其在林业建设中的战略意义.中国农业科技导报,2000,2(1):32-36
    [31]朱光潜.我国进口木材概况及木材产业前景.人造板通讯,2005,(10):1-7
    [32]鲍甫成,江泽慧.中国主要人工林树种木材性质.北京:中国林业出版社,1998
    [33]郭树平.黑龙江省纸浆用材林发展前景.林业科技,2007,32(1):22-26
    [34]罗小荷.人工林与中国林业可持续发展.福建林业科技,2002,29(2):69-72
    [35]乔永平.发展人工林:解决我国木材供需矛盾的长远战略选择.林业经济问题,2006,26(3):269-273
    [36]宋士奎.与时俱进加快推进速生林工程建设.国际造纸,2002,21(6):5-10
    [37]陈奇志.2006年我国造纸工业运行状况分析.造纸信息,2007,(2):19-20
    [38]查毫清,赵伟.对进口纸浆战略及国际纸浆市场走势的探讨.中华纸业,2005,26(1)
    [39]中国造纸协会.中国造纸工业2004年度报告.中华纸业,2005,26(5):6-12
    [40]邝仕均.国际商品木浆的主要种类及其应用.中国造纸学报,2004,增刊:161-167
    [41]胡宗渊.我国造纸工业的发展与“十一五”展望.上海造纸,2006,(3):3-8
    [42]陈克复,胡楠.我国制浆造纸设备制造业的进步及面临的任务.纸和造纸,2005,(SO):6-12
    [43]孙晓梅,张守攻.21世纪中国纸浆用材林综合发展战略.世界林业研究,2002,15(1):61-68
    [44]国家发展和改革委员会.全国林纸一体化工程建设“十五”及2010年专项规划.中华纸业,2004,25(3):6-15
    [45]张久荣,吴玉章.人工林杨木利用现状及前景.中国林业产业,2006,(第二届中国杨树产业可持续发展高峰论坛专题):23-26
    [46]虞春航,李淑梅,韩一凡.我国杨树工业人工林存在的一些问题.林业实用技术,2006,(11):11-14
    [47]金正道.我国人工林必须进行集约化经营.中国林业产业,2001,(10):35-38
    [48]吴武汉,王安民.造纸林基地建设中需要重视和解决的问题.国际造纸,2002,21(6):69-73
    [49]吴武汉.林纸一体化进程中更应关注的问题.天津造纸,2006,(4):2-15
    [50]黄光霖,周志春.马尾松纸浆林培育中存在的问题及其对策.西南造纸,2000,(2):11-14
    [51]黄润斌.我国造纸工业现代化与木桨造纸.中华纸业,2001,22(12):50-54
    [52]刘光良.我国高得率浆发展的方向—杨木高得率浆及草类高得率浆.中华纸业,1998,(5):8-12
    [53]姚光裕.世界木材制浆技术新进展.世界林业研究,1994,(2):53-59
    [54]陈嘉翔.制浆理论与技术的成就和发展.中华纸业,1994,(3-11)
    [55]吴福骞.制浆技术新发展及科研动向.北方造纸,1997,(3):13-20
    [56]吴定新,姚春丽.杨木制浆造纸技术的发展.北京林业大学学报,1997,19(1):63-71
    [57]姚光裕.杨木制浆方法评述.纸和造纸,1992,(2):11-12
    [58]陈长武,康振华.几种制浆方法评价的介绍.天津造纸,1995,(2):20-25
    [59]沈清江,秦梦华.生物技术在制浆造纸中的应用与研究进展.湖南造纸,2006,(3):12-15
    [60]郭明辉,赵西平,王金满.不同土质对人工林落叶松纤维形态及造纸性能的影响.东北林业大学学报,2002,30(2):43-45
    [61]董健,田志和,王喜武.长白落叶松纸浆材造纸性能及工艺成熟期的研究.沈阳农业大学学报,1995,26(4):392-398
    [62]王树力,吴济生,仲崇淇.长白落叶松纸浆林木材材行及纸浆特性的研究.林业科学,1997,33(3):281-287
    [63]王军辉,张守攻,石淑兰等.日本落叶松纸浆材造纸性能的研究.北京林业大学学报,2004,26(5):71-75
    [64]郭明辉,赵西平,陈广胜等.坡向对人工林落叶松纤维形态及造纸性能的影响.东北林业大学学报,2002,30(3):21-24
    [65]张宋智,王军辉,张守攻等.日本落叶松AS-AQ法制浆特性.东北林业大学学报,2005,33(2):34-38
    [66]王军辉,张守攻,石淑兰等.日本落叶松不同树龄的制浆性能研究.西北农林科技大足额学报,2005,33(2):117-123
    [67]谢新良,石淑兰,胡惠仁等.口本落叶松硫酸盐法制浆特性.中国造纸,2004,23(1):1-3
    [68]董健,赵文华,王喜武等.日本落叶松纸浆材造纸性能及工艺成熟期的研究.辽宁林业科 技,1997,(1):26-30
    [69]尤纪雪,沈文瑛,纪文兰等.不同树龄福建马尾松KP法制浆性能的评价.林产化学与工业,1996,16(4):29-36
    [70]尤纪雪,刘学斌,纪文兰等.不同树龄贵州马尾松用于纸浆造纸的研究.林产工业,1996,23(4):21-26
    [71]张大同,王忠,赵觉声等.不同种源幼龄马尾松制浆适应性的研究.南京林业大学学报,1995,19(3):21-28
    [72]龚志海,黄文胜,张广炎等.短周期良种马尾松制浆造纸性能研究.广东林业科技,2004,20(2):30-33
    [73]陈天华,王章荣,徐立安.马尾松木材性状的遗传变异及其在造纸工业中的应用.林产化学与工业,1996,16(3):71-79
    [74]周志春,秦国峰,李光荣等.马尾松天然林木材化学组分和浆纸性能的地理模式.林业科学研究,1995,8(1):1-6
    [75]李光荣,周志春,陈炳星等.马尾松纸浆性能在家系问的遗传差异.中华纸业,1999,(5):7-14
    [76]王章荣,陈天华,周志春等.马尾松制浆造纸性能的群体变异及适应性试验.林产化学与工业,1999,19(1):64-69
    [77]温佐吾,谢双喜,周运超等.造林密度对马尾松林分生长、木材造纸特性及经济效益的影响.林业科学,2000,36(专刊 1):36-44
    [78]王雄波.湿地松制浆造纸的研究.北方造纸,1994,(4):15-21
    [79]聂少凡,林金国,林思祖.人工杉木林木材制浆性能的变异.福建林学院学报,1998,18(2):121-125
    [80]喻力,詹怀宇,钱艳莉等.火炬松改良硫酸盐法蒸煮和低污染漂白的研究.中国造纸,1999,(5):8-13
    [81]张永贵.6种杨树木材比重、白度、粗浆得率测定.辽宁林业科技,1999,(2):50-51
    [82]龙柱,李建华,王保等.速生杨树龄及品种对APMP制浆的影响.中国造纸,2005,24(1):10-13
    [83]林治宪,赵学融,魏连江等.一年生中林系号杨树全秆带皮材制浆造纸性能的研究 第一部分:KP法和KP+hua法蒸煮制漂白化学浆.天津农学院学报,1996,3(4):21-31
    [84]杜煜.中林杨-46制浆造纸性能的研究.西北轻工业学院学报,2002,20(6):37-41
    [85]庞志强,陈嘉川,庞金宣.窄冠杨黑11制浆性能初探.中华纸业,2003,24(9):33-34
    [86]邢善湘,张求耀,,刘正添.7个杂种毛白杨无性系幼龄材化学成分和纤维形态的研究.北京林业大学学报,1994,16(1):53-57
    [87]杨桂花,庞志强,王进喜等.太青杨1号APMP制浆初探.黑龙江造纸,2005,(1):4-5
    [88]曾广植.木、竹的树龄、相对密度及小径材、枝桠材等对纸浆强度影响的试验评述.纸和造纸,2001,(5):69-72
    [89]周志春,李建民,陈炳星等.几种亚热带速生乡土阔叶树种的制浆特性评价.中国造纸,2003,22(2):8-13
    [90]彭毓秀,李忠正.桉木化学浆造纸性能的研究.中国造纸,1995,(5):35-41
    [91]谢益民,伍红,赖燕明.桉木的化学组成及材性对KP法制浆特性的影响.中国造纸,1998,(5):7-12
    [92]姚庆端.桉树优良无性系制浆造纸性能与适应性的研究.福建林学院学报,2004,24(4):316-322
    [93]沈葵忠,周玉兴,林中柠等.七种南方速生纸浆材制浆性能.西南造纸,2002,(3):11-14
    [94]马邕文,周深桥,万金泉等.尾叶桉硫酸盐法蒸煮工艺条件的优化.造纸科学与技术,2003,22(6):8-12
    [95]徐清华,安郁琴,候世珍.尾叶桉改良硫酸盐法蒸煮的研究.纸和造纸,2000,(4):34
    [96]房桂干,谢国恩,李萍等.10种速生材制化学机械浆适应性综合评估的研究.林产化学与工业,1995,15(增刊):19-31
    [97]周深桥,马邕文,万金泉等.五种桉木制浆性能的比较.陕西科技大学学报,2004,22(1):26-28
    [98]罗建举,杨建杯,韦善华等.尾叶桉纸浆材化学成分等在树干高度上的变异.中南林学院学报,1998,18(3):75-81
    [99]姚光裕.幼龄兰桉木材树龄和生长条件对其化学组分和硫酸盐纸浆得率的影响.西南造纸,2002,(5):10-11
    [100]卞丽萍,岳金权,夏德安等.不同地理种源速生白桦制浆特性研究.森林工程,2006,22(5):1-3
    [101]潘志刚,吕鹏信,陆熙娴.中国厚荚相思木制浆特性的研究.林产工业,1994,21(5):17-19
    [102]龚木荣,李忠正.六年生马占_大叶_厚荚3种相思树制浆性能比较.中国造纸,2002,(1):1-3
    [103]胡惠仁,石淑兰,何秋实.速生阔叶材厚荚相思制浆性能的评价.纸和造纸,2002,(5):42-44
    [104]邓拥军,房桂干,李萍等.四种相思树硫酸盐法制浆性能的比较.陕西科技大学学报,2006,24(2):1-7
    [105]陈炳星,周志春,李光荣等.桤木制浆造纸研究现状与我国桤木浆的开发利用.林业科学研究,1999,12(6):656-661
    [106]李建民,周志春,陈炳星等.马褂木人工林的生长和制浆造纸性能.中国造纸,2002,(2):5-8
    [107]薛崇昀,贺文明,张睿玲.不同树龄马占相思制浆性能的研究.中国造纸,2006,25(9):1-5
    [108]Kumar, K., Karira, S. G., Singh, M. M.Evaluation of poplar clones for pulp and paper manufacture Populus.Singh., R. V.Srinagar:1979
    [109]Saikia, C. N., Goswami, T., Ali, F.Evaluation of pulp and paper making characteristics of certain fast growing plants.Wood science and technology,1997,31(6):467-475
    [110]李萍,房桂干,孙成志.制化学机械浆有关材性研究.林产化学与工业,1995,15(增刊):13-19
    [111]张菊先,郭勇为.几种典型造纸速生材的纤维特性及其用途.湖南造纸,2003,(2):27-32
    [112]Sjostrom, E.Wood Chemistry, 2nd edition.New York:Academic Press In, 1993
    [113]Amidon, T. E.Effect of the wood properties of hardwoods on kraft paper properties.Tappi,1981,64:123-126
    [114]房桂干,谢国恩,李萍等.综合评估方法的研究.林产化学与工业,1995,15(增刊):1-7
    [115]秦丽娟,陈夫山,王高升.纤维的性质对纸张性能的影响.黑龙江造纸,2004,(1):11-12
    [116]周亮,刘盛全,舒德友.不同施肥条件下1-69杨木材纤维形态和化学成分的比较研究.安徽农业大学学报,2005,32(3):354-359
    [117]庞志强,陈嘉川,杨桂花.不同树龄三倍体毛白杨纤维形态与制浆性能.中国造纸,2004,23(5):14-18
    [118]Law, K. N., Kokta, B. V., Mao, C. B.Fibre morphology and soda-sulphite pulping of switchgrass.Bioresource technology,2001,77(1): 1 -7.
    [119]MCMILLIN, C. W.Aspects of Fiber Morphology Affecting Properties of Handsheets Made from Loblolly Pine Refiner Groundwood.Wood Science and Technology, 1969,3(2): 139-149
    [120]JOHN R., B. GEORGE, J.Wood Quality and its Biological Basis.Oxford:Blackwell Publishing Ltd,2003
    [121]Ulrika, M., Geoffrey, D.Effects of refining on the fibre structure of kraft pulps as revealed by FE-SEM and TEM: Influence of alkaline degradation.Holzforschung,2004,58:226-232
    [122]Fahlen, J.The Cell Wall Ultrastructure of Wood Fibres Effects of the Chemical Pulp Fibre Line:[Doctor].Stockhlom:Royal Institute of Technology,2005
    [123]李坚.木材波谱学.北京:科学出版社,2003
    [124]李坚,栾树杰.生物木材学.哈尔滨:东北林业大学出版社,1993
    [125]Peter Labosky, J., Bowersox, T. W., Blankenhorn, P. R.Krafe pulp yields and paper properities obtained from first and second rotations of three hybrid poplar clones.Wood Science and Technology, 1983,15(1):81-89
    [126]Wimmer, R., Downes, G. M., Evans, R.Direct Effects of Wood Characteristics on Pulp and Handsheet Properties of Eucalyptus globulus.Holzforschung,2002,56:224-252
    [127]Ona, T., Sonoda, T., Ito, K. etc.Investigation of relationships between cell and pulp properties in Eucalyptus by examination of within-tree property variations.Wood science and technology. June 2001. 35(3) p. 229-243.,2001,
    [128]Raymond, C. A., Schimleck, L. R., Muneri, A.etc.Nondestructive sampling of Eucalyptus globulus and E. nitens for wood properties. Ⅲ. Predicted pulp yield using near infrared reflectance analysis. Wood Science and Technology.,2001,35(3):203-215
    [129]Kibblewhite, P., Evans, R., Riddell, M. J. C.Interrrelationship between krafe handsheet and wood fibre and chemical properties for the trees and logs of 29 Eucalyptus fastigata and 29 E. nitens. Appita Journal,2004,57(4):317-325
    [130]De, B. D., Singleton, R., Harrington, C. A. etc.Wood density and fiber length in young populus stems: relation to clone, age, growth rate and pruning. Wood and Fiber Science,2002,34:529-539
    [131]Labosky, P., Jr., Bowersox, T. W., Blankenhorn, P. R.Kraft pulp yields and paper properties obtained from first and second rotations of three hybrid poplar clones.Wood and fiber science 1983,15(1):81-89
    [132]Semen, E., Kuo, M., Su, Y.-C. etc.Physical properties of kraft pulp from four-years aspen hybrids and crosses.Wood Science and Technology,2001,33(1): 140-147
    [133]王明庥.林木遗传育种学.北京:中国林业出版社,2001
    [134]Koubaa, A.. Hernandez, R. E.. Beaudoin, M.等.Interclonal, intraclonal, and within-tree variation in fiber length of poplar hybrid clones.Wood and fiber science 1998,30(1):40-47
    [135]李金英.林地土壤类型对毛白杨木材性质的影响..陕西林业科技,2002,(2):68-72
    [136]曹福亮.林分密度对南方型杨树木材性质的影响.南京林业大学学报,1994,18(2):41-46
    [137]Thor, E., Core, H. A.Fertilization, irrigation and site factor relationships with growth and wood properties of yellow poplar Wood Science and Technology, 1977,9(3): 130-135
    [138]Duchesne, I., Zhang, S. Y.Variation in tree growth, wood density, and pulp fiber properites of 35 white spruce (Picea glauca (Moench) Voss) families grown in Quebec.Wood and fiber science 2004,36(4):467-475
    [139]Washusen, R., Baker, T., Menz, D. etc.Effect of thinning and fertilizer on the cellulose crystallite width of Eucalyptus globulus. Wood science and technology,2005,39(7):569-578
    [140]Snook, S. K., Labosky, P., Jr., Bowersox, T. W. etc.Pulp and papermaking properties of a hybrid poplar clone grown under four management strategies and two soil sites.Wood and fiber science,1986,18(1):157-167
    [141]Miranda, I., Tom(?), M., Pereira, H.The influence of spacing on wood properties for Eucalyptus globulus Labill pulpwood.Appha Journal,2003,56(1): 140-144
    [142]John H, K., Gleisner, R., Mann, D. etc.Evaluation of forest thinning materials for TMP production.Tappi journal,2006,5(4): 17-21
    [143]Holt, D. H., Murphey, W. K.Properties of hybrid poplar juvenile wood affected by silvicultural treatments Wood science, 1978,10(4): 198-203
    [144]徐淑莺,邱玉桂,姚兰英.不同树龄桤木的原料特性分析.纸和造纸,2001,(2):34-35
    [145]Kibblewhite, R. P., Riddel, M. J. C.Within-tree variation of some wood and krafe fibre properties of Eucalyptus fastigata and E. nitens.Appita Journal,2001,54(2):136-142
    [146]Du, S., Yamamoto, F.An overview of the biology of reaction wood formation.Journal of Integrative Plant Biology,2007,49(2): 131 -143
    [147]Yoshizawa, N., Satoh, M., Yokota, S. etc.Formation and structure of reaction wood in Buxus microphylla var. insularis Nakai.Wood science and technology, 1993,27(1): 1-10
    [148]Hamilton, J. R., Thomas, C. K., Carvell, K. L.Tension wood formation following release of upland oak abvance reproduction.Wood and fiber science, 1985,17(3):382-390
    [149]Maeglin, R. R.Juvenile wood, tension wood, and growth stress effects on processing hardwoods. 1987
    [150]徐纬英.杨树.哈尔滨:黑龙江人民出版社,1988
    [151]张绮纹,李金花.杨树工业用材林新品种.北京:中国林业出版社,2003
    [152]赵天赐,陈章水.中国杨树集约栽培.北京:中国科学技术出版社,1994
    [153]方升佐,朱梅.经营措施对杨树木材性质的影响.林业科技开发,2003,17(3):8-12
    [154]姜岳忠,王桂岩,吕雷昌,袁索萍等.杨树纸浆材定向培育技术研究.林业科学,2004,40(1):123-131
    [155]苏晓华,黄秦军,张冰玉等.中国杨树良种选育成就及发展对策.世界林业研究,2004,17(1):46-50
    [156]叶克林,王金林.人工林杨树木材的加工利用.木材工业,2003,17(1):5-9
    [157]张志毅,何占国.中国杨树资源与杂交育种研究现状及发展对策.河北林业科技,2006,(增刊):20-25
    [158]张智光,王明庥,佘光辉等.江苏杨树产业的战略思考.南京林业大学学报(人文社会科学版),2005,5(1):63-68
    [159]张忠涛,孙乐智.我国的杨树资源与开发利用.林业建设,2001,(5):21-25
    [160]柴修武.灌溉对Ⅰ-69杨木材性质和化学机械浆的影响.林业科技通讯,1990,10:24-27
    [161]张自敏,邹红春,李群等.两种幼龄杨的化学组成及纤维形态与APMP浆的性能.天津造纸,2004,(2):9-18
    [162]王宏斌,蒲俊文,谢益民.三倍体毛白杨AS-AQ法制浆技术研究.北京林业大学学报,2004,26(1):83-87
    [163]唐孝华,房桂干.速生树种制浆造纸适应性能评估模型的研究.林产化学与工业,1996,16(3):60-67
    [164]蒋忠道,许元春.杨木特性及其制浆工艺探讨.湖北造纸,2003,(1):8-9
    [165]房用,张兴丽,孟振龙等.杨树造纸材优良无性系筛选.东北林业大学学报,2007,35(1):8-15
    [166]李娟,曹帮华,王学东等.杨树纸浆材无性系生长规律及造纸特性研究.山东林业科技,2004,(5):1-3
    [167]李忠正,姚光裕,张大同.意大利杨纤维形态和化学组成的研究.南京林产工业学院学报,1982,6(2):158-172
    [168]张大同,李忠正,黄敏仁等.美洲黑杨新无性系硫酸盐法制浆性能的初步评价.浙江造纸,1997,(13-18)
    [169]杨蕾,姚春丽.不同立地条件对欧美杨1 07材性及ASAM制浆性能的影响.造纸科学与技术,2007,26(3):8-13
    [170]王世绩.不同供水条件对Ⅰ-69杨材质的影响.林业科学研究,1991,4(1):101-105
    [171]华毓坤,金菊婉.江苏南方型杨树的加工利用现状及发展.木材工业,2006,20(2):72-76
    [172]Jiang, S., Xu, K., Wang, Y.-Z. etc.Role of GA, GA and Uniconazole-P in Controlling Gravitropism and Tension Wood Formation in Fraxinus mandshurica Rupr. var. japonica Maxim. Seedlings.Journal of integrative plant biology,2008,50(1): 19-28
    [173]Coutand, C., Fournier, M., Moulia, B.The Gravitropic Response of Poplar Trunks: Key Roles of Prestressed Wood Regulation and the Relative Kinetics of Cambial Growth versus Wood Maturation.Plant physiology,2007,144(2): 1166-1180
    [174]Hellgren, J. M., Olofsson, K., Sundberg, B.Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine.Plant physiology. 2004 May. 135(1) p. 212-220.,2004,
    [175]Bamber, R. K.A general theory for the origin of growth stresses in reaction wood :how trees stay upright.IAWA Journal,2001,22(205-212)
    [176]Wardrop, A. B., Dadswell, H. E.The nature of reaction wood I - The structure and properties of tension wood fibres.Australian journal of scientific research, series B,Biological sciences,1948,l:3-16
    [177]Wardrop, A. B., Dadswell, H. E.The nature of reaction wood. IV. Variations in cell wall organization of tension wood fibres.Australian journal of botany 1955,3:177-189
    [178]Trenard, P. Y.Scanning electron microscopic study of gelatinous fibers in beech tension wood. .Holzforschung, 1983,37(3): 157-161
    [179]Donaldson, L.Cellulose microfibril aggregates and their size variation with cell wall type.Wood Science and Technology,2007,41(5):443-460
    [180]Prodhan, A. K. M. A., Funada, R., Ohtani, J. etc.Orientation of microfibrils and microtubules in developing tension-wood fibres of Japanese ash (Fraxinus mandshurica var. japonica).Planta. 1995. 196(3) p. 577-585.,1995,
    [181]Yoshizawa, N., Inami, A., Miyake, S. etc.Anatomy and lignin distribution of reaction wood in two Magnolia species.Wood science and technology,2000,34:83-196
    [182]Xu, F., Sun, R. C., Lu, Q. etc.Comparative study of anatomy and lignin distribution in normal and tension wood of Salix gordejecii.Wood Science and Technology,2006,40(5):358-370
    [183]Gierlinger, N., Schwanninger, M.Chemical Imaging of Poplar Wood Cell Walls by Confocal Raman Microscopy.Plant physiology,2006,140(4): 1246-1254
    [184]Furuya, N., Takahashi, S., Miyazaki, M.The chemical compositions of gelatinous layer from the tension wood of Populus euro-americana.Mokuzai Gakkaishi,1970,16(1):26-30
    [185]Chow, K. Y. A comparative study of the structure and composition of tension wood in beech (Fagus sylvatica L.).Forestry,1946,20:62-77
    [186]Jourez, B., Riboux, A., Leclercq, A.Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv " ghoy").IAWA Journal,2001,22:133-157
    [187]Mathew, F.Structural studies on Tension wood of Hevea brasiliensis (Para Rubber)with special reference to clonal variability:[Doctor]. Kotayam:Mahatma Gandhi University,2003
    [188]Timell, T. E.The chemical composition of tension wood.Svensk Papperstidn,1969,72:173-181
    [189]Panshin, A. J., De, Z. C.Textbook of Wood Technology, 4th edn.New York: Mc Graw-HillBook Co.,1980
    [190]Jourez, B., Riboux, A., Leclercq, A.Comparison of basic density and longitudinal shrinkage in tension wood and opposite wood in young stems of Populus euramericana cv. Ghoy when subjected to a gravitational stimulus.Canadian journal of forest research,2001,31 (10): 1676-1683
    [191]Washusen, R., Ades, P., Evans, R. etc.Relationships between density,shrinkage, extractives content and microfibril angle in tension wood from three provenancesof 10-year-old Eucalyptus globulus Labill. .Holzforschung,2001,55:176-182
    [192]Clair, B., Ruelle, J., Thibaut, B.Relationship between growth stresses, mechano-physical properties and proportion of fibres with gelatinous layer in chestnut (Castanea Sativa Mill.).Holzforschung,2003,57:189-195
    [193]Washusen, R., Ilic, J.Relationship between transverse shrinkage and tension wood from three provenances of Eucalyptus globulus Labill.Hote als Roh und Werkstoff,2001,59:85-93
    [194]Clair, B., Jaouen, G., Beauchene, J. etc.Mapping radial, tangential and longitudinal shrinkages and relation to tension wood in discs of the tropical tree Symphonia globulifera.Holzforschung,2003,57(6):665-671
    [195]Arganbright, D. G., Bensend, D. W., Manwiller, F. G.Influence of gelatinous fibers on the shrinkage of silver maple.Wood science,1970,3:83 - 89
    [196]Yamamoto, H., Abe, K., Arakawa, Y. etc.Role of the gelatinous layer (G-layer) on the origin of the physical properties of the tension wood of Acer sieboldianum.Journal of wood science,2005,51(3): 222-233
    [197]Abe, K., Yamamoto, H.The influences of boiling and drying treatments on the behaviors of tension wood with gelatinous layers in Zelkova serrata.Journal of wood science,2007,53(1):5-10.
    [198]Vazquez-Cooz, I., Meyer, R. W.Cutting forces for tension and normal wood of maple.Forest products journal,2006,56(4):26-34
    [199]Parham, R. A., Robinson, K. W., Isebrands, J. G.Effects of tension wood on Kraft paper from a short-rotation hardwood (Populus "Tristis No. 1 ").Wood Science and Technology, 1977,11:291-303
    
    [200]Chafe, S. C.Growth stress in trees.Australian forest research, 1979,9(3):203-223
    [201]Dinwoodie, J. M.Growth stresses in timber. A review of literature. Forestry chronicle., 1966,39:162-170
    [202]Boyd, J. D.The key factor in growth stress generation in trees: lignification or crystallisation.IAWA bulletin n. s., 1985,6:139-150
    [203]Boyd, J. D.Tree growth stresses - Part V : Evidence of an origin in differentiation and lignification.Wood science and technology 1972,6:251-262
    [204]Bamber, R. K. The origin of growth stresses. Forpride Digest, 1979,8:75-79
    [205]Bamber, R. K.The origin of growth stresses: a rebuttal.IAWA bulletin n. s.,1987,8:80-84
    [206]Yamamoto, H., Okuyama, T., Yoshida, M. etc.Generation process of growth stresses in cell walls III. Growth stresses in compression wood. Mokuzai Gakkaishi 1991,37:94-100
    [207]Yamamoto, H., Okuyama, T., Yoshida, M.Generation process of growth stresses in cell walls V. Model of tensile stress generation in gelatinous fibers.Mokuzai Gakkaishi,1993,39:118-125
    [208]Yamamoto, H., Okuyama, T., Sugiyama, K. etc. Generation process of growth stresses in cell walls IV. Action of the cellulose microfibrils upon the generation of tensile stresses.Mokuzai Gakkaishi,1992,38:107-113
    [209]Yamamoto, H., Okuyama, T.Analysis of the generation process of growth stresses in cell walls.Mokuzai Gakkaishi 1988,34:788-793
    [210]Yamamoto, H.Generation mechanism of growth stresses in wood cell walls : roles of lignin deposition and cellulose microfibril during cell wall maturation.Wood science and technology 1998,32:171-182
    [211]Okuyama, T., Yamamoto, H., Yoshida, M. etc.Growth stresses in tension wood : role of microfibrils and lignification. Annals of forest science, 1994,51:291-300
    [212]Okuyama, T., Yamamoto, H., Iguchi, M. etc. Generation process of growth stresses in cell walls Ⅱ. Growth stresses in tension wood.Mokuzai Gakkaishi, 1990,36:797-803
    [213]Okuyama, T., Takeda, H., Yamamoto, H. etc.Relation between growth stress and lignin concentration in the cell wall: ultraviolet microscopic spectral analysis.Journal of wood science, 1998,44(2):83-89
    [214]Okuyama, T., Sasaki, Y., Kikata, Y. etc.The seasonal change in growth stress in the tree trunk.Mokuzai Gakkai, 1981,27(5):350-355
    [215]Chafe, S. C.Variation in longitudinal growth stress with height in trees of Eucalyptus nitens Maiden.Australian forest research, 1985,15(1):51-55
    [216]Chafe, S. C. Variations in longitudinal growth stress, basic density and modulus of elasticity with height in the tree.Australian forest research, 1981,11 (1):79-82
    [217]Wahyudi, I., Okuyama, T., Hadi, Y. S. etc.Growth stresses and strains in Acacia mangium.Forest products journal, 1999,49(2):77-81
    [218]Huang, Y. S., Chen, S. S., Lin, T. P. etc.Growth stress distribution in leaning trunks of Cryptomeriajaponica.Tree physiology. .21(4) p. .2001,21(4):261-266
    [219]方长华.胶质层对杨树应拉木生长应拉和木材性质的影响:[博士].合肥:安徽农业大学,2007
    [220]Timell, T. E.Compression wood in Gymnosperms. Vols 1-3.Berlin:Springer Verlag,1986
    [221]Sugiyama, K., Okuyama, T., Yamamoto, H. etc.Generation process of growth stresses in cell walls: relation between longitudinal released strain and chemical composition.Wood science and technology, 1993,27(4):257-262
    [222]Joseleau, J. P., Imai, T., Kuroda, K. etc.Detection in situ and characterization of lignin in the G-layer of tension wood fibres of Populus deltoides.Planta,2004,219(2):338-345
    [223]Yoshida, M., Ohta, H., Okuyama, T.Tensile growth stress and lignin distribution in the cell walls of black locust (Robinia pseudoacacia).Journal of wood science 2002,48(2):99-105
    [224]Malan, F. S.Relationships between growth stress and some tree characteristics in South African grown Eucalyptus grandis.South African forestry journal, 1988,144:43-46
    [225]Malan, F. S.Wood property variation in South African grown Eucalyptus grandis trees of varying growth stress intensity.Symposium on forest products research international--achievements and the future : 22-26 Apr 1985, Pretoria / org. National Timber Research Institute of the South African Council for Scientific and Industrial Research. p. 16.,1985,
    [226]Malan, F. S., Gerischer, G. F. R.Wood property differences in South African grown Eucalyptus grandis trees of different growth stress intensity..Holzforschung, 1987,41(331-335)
    [227]Murphy, T. N., Henson, M.. Vanclay, J. K.Growth stress in Eucalyptus dunnii.Australian forestry,2005,68(2): 144-149
    [228]Muneri, A., Leggate, W., Palmer.G.Relationships between surface growth strain and some trees. wood and sawn timber characteristics of Eucalyptus cloeziana.South African forestry journal, 1999,186:41-49
    [229]胡继青,姜笑梅,候祝强等.三种人工林桉树轴向生长应变变异初探.木材工业,2000,14(6):9-11
    [230]管宁,姜笑梅,文小明.木材材性株内径向变异模式初探Ⅰ.论材性株内径向变异模式的系统研究.林业科学,1996,32(4):365-377
    [231]Nicholson, J. E.A rapid method for estimating longitudinal growth stresses in logs.Wood Science and Technology, 1971,5:40-48
    [232]Yoshida, M., Okuyama, T.Techniques for measuring growth stress on the xylem surface using strain and dial gauges.Holzforschung 2000,56:739-746
    [233]Yang, J. L., Baill(?)res, H., Evans, R. etc.Evaluation growth strain of Eucalyptus globulbus Labill. from SilviScan meansurements.Holzforschung,2006,66:574-579
    [234]Badia, M. A., Mothe, F., Constant, T. etc. Assessment of tension wood detection based on shiny appearance for three poplar cultivars. Annals of forest science 2005,(62):43-49
    [235]Miguel, A. B., Thi(?)ry, C., Fr(?)d(?)ric, M. etc.Tension wood occurence in three cultivars of Populus × euramericana. Part Ⅰ: Inter-clone and intra-tree variability of tension wood.Annals of forest science,2006,63:23-30
    [236]Grzeskowiak, V., Sassus, F, Fournier, M.Coloration macroscopique, Retraits longitudinaux de maturation et de s(?)chage du bois de tension du Peuplier (Populusx euramericana cv. Ⅰ.214.).Annales des sciences forestieres, 1996,53:1083-1097
    [237]IFJU.G.Quantitive wood anatomy certain geometric-statistical relationships.Wood and Fiber Science, 1893,15(4):326-355
    [238]李坚,文达,刘一星.体视显微术在木材组织学中的应用.东北林业大学学报,1986,(3):92-94
    [239]李正理.植物制片技术(第二版).北京:科学出版社,1991
    [240]中华人民共和国国家技术监督局.GB1927-1943-91.木材物理力学性质试验方法.北京:中国标准出版社,1991
    [241]屈维均.制浆造纸实验.北京:轻工业出版社,1990
    [242]方文彬,吴义强.阔叶树材组织率的研究.福建林学院学报,2006,26(3):224-228
    [243]任海青.三角枫木材细胞组织比量及微纤丝角径向变异研究.安徽农业大学学报,1997,24(1):14-17
    [244]费本华.铜钱树木材纤维形态特征和组织比量变异的研究.东北林业大学学报,1994,22(4):61-68
    [245]姜在民,蔡靖.不同产地河北杨木材纤维形态的研究.陕西林业科技,1999,(2):61-63
    [246]赵泾峰,王宏斌,冯德君等.三倍体毛白杨的木材构造与材性的研究.陕西林业科技,2001,(4):1-3
    [247]张立非,骆秀琴.山杨木材材性的研究.木材工业,1993,7(4):26-32
    [248]姜笑梅,殷亚方,浦上弘幸.北京地区Ⅰ-214杨树木材解剖特性与基本密度的株内变异及其预测模型.林业科学,2003,39(6):115-122
    [249]彭毓秀.纸的断裂韧性及其与纤维长度的关系.中国造纸,1994,(4):11-15
    [250]方红,刘善辉.造纸纤维原料的评价.北京木材工业,1996,(2):19-22
    [251]Watson, A. J., Dadswell, H. E.Influence on fibre morphology on paper properties. 4. Micellar spiral angle.Appita 1964,17:151-156
    [252]王嘉楠,查朝生,刘盛全.人工林杨树木材纤维形态特征及其变异的研究.安徽农业大学学报,2006,33(2):149-154
    [253]杨自湘,王守宗,徐红等.不同产地青杨的幼树木材材性变异的研究.林业科学研究,1995,8(4):437-441
    [254]李金花,张绮纹.不同年龄47号杨木材性质变异研究.林业科学研究,2005,18(5):567-572
    [255]Donaldson, L. A.Effect of physiological age and site on microfibril angle in Pinus radiata.IAWA Journal, 1996,17(4):421 -429
    [256]姜笑梅,骆秀琴,陈益泰等.杉木材性株内的变异Ⅱ.管胞形态的变异.林业科 学,1997,33(5):443-449
    [257]姜笑梅,许明坤,黄东森.木材材性株内径向变异模式研究初探 Ⅴ.15个欧美杨无性系木材纤维长度的径向变异模式的研究.林业科学,1997,33(2):169-177
    [258]邱肇荣,刘君良,张士诚.长白落叶松木材管胞微纤丝角的变异研究.吉林林学院学报,1996,12(3):152-156
    [259]费本华.X射线衍射法测定铜钱树木材微纤丝角及其变异的研究.安徽农业大学学报,1995,22(3):262-265
    [260]杨文忠,方升佐.杨树无性系微纤丝角的时空变异模式.东北林业大学学报,2004,32(1):25-29
    [261]李火根,黄敏仁,阮锡根.美洲黑杨新无性系木材细胞次生壁 S2 层微纤丝角株内变异的初步研究.西北林学院学报,1997,12(1):61-65
    [262]Wardrop, A. B.The reaction anatomy of arborescent angiosperms. In The formation of wood in forest tree, New York:Academic Press,1964
    [263]Wardrop, A. B.The nature of reaction wood. Ⅴ. The distribution and formation of tension wood in some species of Eucalyptus. Australian journal of botany,1956,4:152-166
    [264]阮锡根,王婉华,潘彪.应力木纤丝角的研究.林业科学,1993,29(6):531-536
    [265]Boyd, J. D.lnterpretation of X-Ray diffractrograms of wood for assessments of microfibril angles in fibre cell walls.Wood Science and Technology,1977,11:93-114
    [266]李淡清,刘金凤,张必福等.蓝按、直干按木材纤维长度在株内的变异.云南林业科技,2000,(2):8-13
    [267]McMillin, C. W., Alexandria, L.Wood Chemical Composition as Related to Properties of Handsheets Made from Loblolly Pine Refiner Groundwood.Wood Science and Technology,1969,3:232-238
    [268]徐有明,方洪元,黄吉田.意杨纸浆材材行变异的研究.木材工业,1994,8(1):38-45
    [269]蒲俊文,宋君龙,姚春丽.三倍体毛白杨化学成分径向变异的研究.造纸科学与技术,2002,21(3):1-4
    [270]方升佐,杨文忠.杨树无性系木材基本密度和纤维索含量株内变异.植物资源与环境学,2004,13(1):19-23
    [271]秦特夫,黄洛华,周勤.杉木、Ⅰ-72杨主要化学组成的株内纵向变异研究.林业科学研究,2004,17(1):47-53
    [272]鲍甫成,江泽慧,姜笑梅等.中国主要人工林树种幼龄材与成熟材及人工林与天然林木材性质比较研究.林业科学,1998,34(2):63-75
    [273]刘洪谔,刘力,斯红光.几种杨树木材化学成分分析.浙江林学院学报,1995,12(4):343-346
    [274]徐有明.水杉纸浆材材性变异与利用.东北林业大学学报,1996,24(6):50-57
    [275]徐艾清,樊永明,张志毅等.三倍体毛白杨(B304)生长特征及化学成分变异的研究.中华纸业,2005,26(11):64-65
    [276]骆秀琴,文小明,管宁等.木材材性株内径向变异模式初探Ⅳ.17个欧美杨无性系木材密度径向变异模式的研究.木材工业,1997,33(1):75-83
    [277]陈金明.立地条件对拟赤杨人工林材性的影响.福建师范大学学报(自然科学版),2006,22(4):92-97
    [278]梁世镇.木树干燥缺陷——中国农业百科全书(森林工业卷).北京:中国农业出版社,1993
    [279]南京林产工业学院主编.木材干燥.北京:中国林业出版社,1981
    [280]Clair, B., Jaouen, G., Beauch(?)ne, J. etc.Mapping radial, tangential and longtitudinal shrinkages and relationship to tension wood in discs of the tropical tree Symphonia globulifer.Holzforschung,2003,57:665-671
    [28] 吕建雄,林志远,赵有科等.杉小和I-72杨人工林木材干缩性质的研究.林业科学,2005,41(5):40-45
    
    [282]Nicholson, J. E.Growth stress differences in Eucalyptus.Forest science, 1973,19:169-184
    [283]Boyd, J. D.Tree growth stress. III. The origin of growth stress.Australian journal of scientific research, series B,Biological sciences, 1950,3:294-309
    [284]Yao, J.Relationship between height and growth stresses within and among while ash, water oak, and shagbark hickory.Wood science, 1979,11:246-251
    [285]Polge, H., Thiercelin, F.Growth stress appraisal through increment core measurements.Wood science, 1979,12(2):86-92
    [286]Fournier, M., Bordonne, P. A., Guitard, D.etc.Growth stress patterns in tree stems-a model assuming evolution with the tree age of maturation strains.Wood science and technology, 1990,24(2): 131 -142
    [287]Prodhan, A. K. M A., Ohtani, J., Funada, R. etc.Ultrastructural investigation of tension wood fiber in Fraxinus mandshurica Rupr. var. japonica Maxim.Annals of botany, 1995,75(3):311-317
    [288]Araki, N., Fujita, M., Saiki, H. etc.Transition of fiber wall structure from normal wood to tension wood in certain species having gelationous fibers of Sl+G and S1+S2+S3+G types.Mokuzai Gakkaishi 1983,29(8):491-499
    [289]Fang, C.-H., Clair, B., Gril, J. etc.Transverse shrinkage in G-fibers as a function of cell wall layering and growth strain. Wood science and technology,2007,41(8):659-671
    [290]Wilson, B. F., Gartner, B. L.Lean in red alder (Alnus rubra): growth stress, tension wood, and righting response.Canadian journal of forest research, 1996,26( 11): 1951 -1956
    [291]Kibblewhite, R. P., Evans, R., Riddell, M. J. C.Interrelationship between krafe handsheet, and wood fibre and chemical properties for the trees and logs of 29 Eucalyptus fastigata and 29 E. nitens.Appita Journal,2004,57(4):317-323

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700