用户名: 密码: 验证码:
同步辐射光电离质谱研究木材类生物质热解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质是唯一的含碳可再生资源,随着化石燃料的消耗和环境问题的日益严峻,生物质的有效利用已经引起广泛的关注。我国是一个林业大国,拥有丰富的林业资源,国内目前对林业废弃物生物质还是以直接燃烧为主,不仅效率低下而且污染环境。热解是一种将生物质转化为生物油的热化学转化方法,会是未来生物质利用的主要发展方向。以往对木材类林业生物质热解产物的研究主要是利用热重、红外光谱及色谱等技术,无法对热解产物进行实时在线的检测。同步辐射光电离质谱技术是一种快速的检测手段,本文创新性地利用同步辐射光电离技术结合高性能的商用质谱仪,对白杨和松木及木材类生物质三种主要组分,纤维素、半纤维素和木质素的热解过程进行了系统地研究。
     论文第一章以能源和环境的问题为背景,阐述了生物质的重要性以及研究生物质热解的重要意义,并介绍了本论文的主要研究方法和思路等。
     论文第二章对白杨和松木进行了元素分析,并分别利用红外光谱、交叉极化魔角旋转固体核磁共振碳谱(CP/MAS13C NMR);红外光谱、核磁共振氢谱(1H-NMR)及核磁共振碳谱(13C-NMR):红外光谱、1H-NMR、13C-NMR及无畸变极化转移增强(DEPT)技术对纤维素、半纤维素和木质素的化学结构特征进行了表征。研究结果表明:纤维素样品主要是由p纤维素和无定形纤维素构成;半纤维素样品是由β-D-1,4-木糖苷键连接起来的,该木聚糖的主链碳上连接有4-O-甲基-D-葡萄糖醛酸和阿拉伯呋喃糖,并且仍然有木质素残余物的存在;木质素样品具有对羟苯基、愈疮木基和紫丁香基结构,木质素结构单元之间的键型主要为p-0-4’,同时还包括β-5'、β-β'.5-5'和β-1'结构单元,该木质素中含有半纤维素的残余物,主要为木聚糖。
     论文第三章利用热重研究了纤维素、半纤维素(木聚糖)和木质素在不同升温速率下的热重过程,研究表明:半纤维素比纤维素的热解起始温度更低,二者热解温度范围不同,而木质素热解温区更宽,并且半纤维素和木质素的热解过程是分为两步进行的。通过三种组分的低压热解同步辐射光电离质谱及气相色谱质谱联用仪分析,可以发现在纤维素热解的早期,纤维素的热解分别是按照转糖基作用和糖苷键断裂两条路径同时进行的,在纤维素热解的后期,纤维素的转糖基作用占主导地位;在半纤维素热解的早期,半纤维素的热解主要是以通过涉及脱水而生成4-羟基-5,6-二氢-(2H)-吡喃-2-酮的反应路径为主。在半纤维素热解逐渐进行的过程中,半纤维素热解形成糠醛的路径逐渐开始显现;在木质素热解的早期,具有芳香环共轭双键结构的物种最早出现,这可能与缺少足够的氢供体有关。接着分别对三组分的主要热解路径进行了分析。通过红外光谱对三组分在500℃热解产生的固体焦炭进行了分析,结果表明三组分均含有未完全热解的残余部分。
     论文第四章利用热重研究了白杨和松木在不同升温速率下的热失重过程,研究表明:二者的热分解区间大致相同,最大热失重速率和热失重率随升温速率增加而呈现的变化趋势一致。通过白杨和松木在不同压力下热解的同步辐射光电离质谱及气相色谱质谱联用仪分析,可以发现二者的热解产物大致相同,主要区别在于木质素热解产物,白杨含有较多的愈创木基和紫丁香基基团木质素,而松木含有较多的愈创木基基团木质素,白杨和松木分别归属于硬木和软木;二者所含的纤维素和半纤维素部分与纤维素和半纤维素纯组分的热解机理都有所区别,可能是由于受到自身所包含的其他组分的影响;热解压力对二者的热解产物分布均有明显影响,高压热解时更容易产生高分子量产物;热解压力对二者自身各组分的热解快慢也有明显影响,尤其是对是否具有共轭双键结构的木质素产物的出现顺序影响更为显著。通过红外光谱对白杨和松木在500℃热解产生的固体焦炭进行分析,结果表明白杨中木质素成分比松木中的木质素更容易发生热裂解。
In consideration of the depletion of fossil fuels and serious environmental issues, the effective utilization of biomass resource is attracting great attention, because it is carbon-renewable and CO2neutral. China is rich in forest resources. However, direct combustion, a common utilization method of wood resources with low efficiency will cause severe environmental pollution. Biomass pyrolysis is a thermal conversion technology used for the production of biofuels, which would be a promising method of biomass utilization in the future. The common methods of studying biomass pyrolysis products mainly include thermogravimetry (TG), infrared spectroscopy, and chromatography. However, these methods cannot perform the rapid on-line analysis during biomass pyrolysis. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV PIMS) is a rapid detection method. In this work, SVUV PI technique in combination with high-performance commercial mass spectrometer was applied for the pyrolysis study of poplar, pine and their three main components, i.e., cellulose, hemicellulose and lignin.
     In the1st chapter, the importance of biomass and the necessity of studying biomass pyrolysis has been introduced based on energy and environmental issues. The research methods used in this thesis are briefly outlined.
     The2nd chapter shows the elemental analysis of poplar and pine, and then demonstrates the structural characterization of cellulose by infrared spectroscopy and cross polarization/magic angle spinning13C nuclear magnetic resonance (CP/MAS I3C NMR). The structural characterization of hemicellulose was investigated by infrared spectroscopy,1H nuclear magnetic resonance (1H-NMR), and13C nuclear magnetic resonance (13C-NMR). The structural characterization of lignin was studied by infrared spectroscopy,1H-NMR,13C-NMR and distortionless enhancement by polarization transfer (DEPT) technique. The results show that cellulose mainly consist ofβ cellulose and amorphous cellulose. Hemicellulose is linked by P-D-1,4-xylose units. It can be confirmed that4-O-methyl-D-glucuronic acid and arabinofuranosyl is linked to carbon atoms in the main chain of xylan. Lignin residue is also found in hemicellulose. Lignin is built by three cinnamyl alcohols, namely p-coumaryl, coniferyl, and sinapyl alcohol. The linkages among them mainly consist of β-O-4' bond, β-5', β-β',5-5', and β-1'units. Lignin also contains hemicellulose residue, where xylan is the dominant component.
     In the3rd chapter, the thermal decomposition characteristics of cellulose, hemicellulose and lignin at different heating rates are investigated by TG, which shows that the starting pyrolysis temperature of hemicellulose is lower than that of cellulose. The temperature range during lignin pyrolysis is wider than those of cellulose and hemicellulose. The pyrolysis of hemicellulose and lignin can be divided into two steps. According to the pyrolysis products study of three main components at low pressure by SVUV PIMS as well as GCMS, the thermal decomposition pathways during early stage of cellulose include transglycosylation and glycosidic rupture. However, during the late stage of cellulose pyrolysis, transglycosylation pathway dominates. At the early stage of hemicellulose pyrolysis, the formation of4-hydroxy-5,6-dihydro-(2H)-pyran-2-one through dehydration is the main pathway. As the reaction time increases, the formation of furfural can be observed gradually. During the early evolution of lignin pyrolysis, a series of species with a double bond in conjugation with the aromatic ring appear earlier than others in lignin, which is probably due to the insufficiency of hydrogen. The main pathways during the pyrolysis of three main components are discussed in this chapter. The solid residues of pyrolysis at500℃from three components are analyzed by infrared spectroscopy, and the results show that none of them is pyrolyzed completely.
     The4th chapter introduces the thermal decomposition characteristics of poplar and pine at different heating rates by TG, which shows that the temperature ranges during poplar and pine pyrolysis are nearly the same. The trends of the maximum weight loss as well as the maximum weight loss rate of poplar are consistent with those of pine, as heating rate increases. According to the pyrolysis products study of poplar and pine at different reaction pressure by SVUV PIMS as well as GCMS, the pyrolysis products of them are nearly the same, except for the pyrolysis products of lignin. Lignin in poplar is predominantly composed of guaiacyl and syringyl subunits, which shows that poplar is characteristic of hardwood. However, lignin in pine is rich in guaiacyl subunit, which demonstrates that pine is typical of softwood. The pyrolysis mechanisms of cellulose and hemicellulose in poplar are different from those of pure cellulose and hemicellulose, which is probably affected by other components in poplar. The same results during pine pyrolysis are also confirmed in this work. The reaction pressure affects the molecular weight distribution of pyrolysis products, where more high molecular weight species can be detected at higher pressure. The reaction pressure also affects pyrolysis speed of three main components in poplar and pine, especially for the appearance order of lignin pyrolysis products with and without double bond. The solid residues of pyrolysis at500℃from poplar and pine are analyzed by infrared spectroscopy, and the results show that lignin in poplar is easier to be pyrolyzed than lignin in pine.
引文
[1]贺静,钱伯章,2013[J].中国石油和化工经济分析,08:27-34.
    [2]如海,2013[J].绿叶,03:49-55.
    [3]窦林琪,武蕴华,2010[J].山西能源与节能,01:15-16.
    [4]朱国才.我国能源及新能源利用现状及发展趋势,[C].2005年中国镁盐生产节能降耗、利用新能源高峰研讨会,中国河北石家庄,2005.
    [5]朱锡锋,生物质热解原理与技术[M].中国科学技术大学出版社,2006.
    [6]McKendry P,2002 [J]. Bioresour. Technol.,83:37-46.
    [7]Balat M,2006 [J]. Energ. Source Part A,28:517-525.
    [8]Jones R W, Reinot T, McClelland J F,2010 [J]. Energ. Fuel,24:5199-5209.
    [9]Reale S, Di Tullio A, Spreti N, et al,2004 [J]. Mass Spectrom. Rev.,23:87-126.
    [10]赵军,王述洋,2007[J].现代化农业,30-31.
    [11]朱建春,李荣华,杨香云,et al.,2012 [J]西北农林科技大学学报(自然科学版),139-145.
    [12]徐庆福,王立海,2006[J].森林工程,1-3.
    [13]刘典福,李鹏,孙大玮,et a1.,2013[J].能源研究与管理,11-14+48.
    [14]张宗兰,刘辉利,朱义年,2009[J].中外能源,27-32.
    [15]汪业林,2006[J].安徽电气工程职业技术学院学报,72-75.
    [16]沈明忠,王新雷,2011[J].能源技术经济,41-45.
    [17]谭天伟,王芳,邓立,et al.,2002 [J]现代化工,4-6.
    [18]Babu B V,2008 [J]. Biofuel. Bioprod. Bior.,2:393-414.
    [19]Zhang Q, Chang J, Wang T, et al.,2007 [J]. Energy Convers. Manage.,48:87-92.
    [20]Demirbas A, Arin G,2002 [J]. Energ. Source.,24:471-482.
    [21]Mohan D, Pittman C U, Steele P H,2006 [J]. Energ. Fuel,20:848-889.
    [22]Bridgwater A V,2003 [J]. Chem. Eng. J.,91:87-102.
    [23]Bahng M K, Mukarakate C, Robichaud D J, et al.,2009 [J]. Anal. Chim. Acta,651: 117-138.
    [24]Demirbas A,2001 [J]. Energy Convers. Manage.,42:1357-1378.
    [25]马承荣,肖波,杨家宽,et al.,2005 [J]环境技术,16-18+41.
    [26]Wagenaar B M, Prins W, van Swaaij W P M,1994 [J]. Chem. Eng. Sci.,49:5109-5126.
    [27]王树荣,骆仲泱,董良杰et al.,2002 [J]太阳能学报,4-10.
    [28]宋春财,胡浩权,2003[J].煤炭转化,91-97.
    [29]苏琼,肖波.汪莹莹,2007[J].能源研究与信息,11-15.
    [30]Oasmaa A, Meier D,2005 [J]. J. Anal. Appl. Pyrolysis,73:323-334.
    [31]Murugan P, Mahinpey N, Johnson K E, et al.,2008 [J]. Energ. Fuel,22:2720-2724.
    [32]Agblevor F A, Beis S, Mante O, et al.,2010 [J]. Ind. Eng. Chem. Res.,49:3533-3538.
    [33]Vasiliou A, Nimlos M R, Daily J W, et al.,2009 [J]. J. Phys. Chem. A,113:8540-8547.
    [34]Prins M J, Li Z S, Bastiaans R J M, et al.,2011 [J]. J. Anal. Appl. Pyrolysis,92:280-286.
    [35]Li X, Hayashi J-i, Li C-Z,2006 [J]. Fuel,85:1509-1517.
    [36]Ikoma T, Ito O, Tero-Kubota S,2002 [J]. Energ. Fuel,16:40-47.
    [37]Haas T J, Nimlos M R, Donohoe B S,2009 [J]. Energ. Fuel,23:3810-3817.
    [38]Paris O, Zollfrank C, Zickler G A,2005 [J]. Carbon,43:53-66.
    [39]Balat M,2008 [J]. Energ. Source Part A,30:620-635.
    [40]原晓华,马隆龙,吴创之,et al.,2006 [J]太阳能学报,635-638.
    [41]王健,张守玉,郭熙,et al.,2013[J].燃料化学学报,67-73.
    [42]Zhao X, Cheng K, Liu D,2009 [J]. Appl. Microbiol. Biotechnol.,82:815-827.
    [43]Liu Q, Wang S, Zheng Y, et al.,2008 [J]. J. Anal. Appl. Pyrolysis,82:170-177.
    [44]谭洪,王树荣,骆仲泱,et al.,2005 [J]浙江大学学报(工学版),710-714.
    [45]Zhu X F, Venderbosch R,2005 [J]. Fuel,84:1007-1010.
    [46]Ren N, Wang A, Cao G, et al.,2009 [J]. Biotechnol. Adv.,27:1051-1060.
    [47]何芳,蔡均猛,徐梁,et al.,2005 [J]农机化研究,163-166.
    [48]Fullana A, Contreras J A, Striebich R C, et al.,2005 [J]. J. Anal. Appl. Pyrolysis,74: 315-326.
    [49]Evans R J,'Milne TA,1987 [J]. Energ. Fuel,1:311-319.
    [50]Evans R J, Milne T A,1987 [J]. Energ. Fuel,1:123-137.
    [51]Mukarakate C, Scheer A M, Robichaud D J, et al.,2011 [J]. Rev. Sci. Instrum.,82: 033104.
    [52]Grierson S, Strezov V, Ellem G, et al.,2009 [J]. J. Anal. Appl. Pyrol.,85:118-123.
    [53]Brown A L, Dayton D C, Nimlos M R, et al.,2001 [J]. Chemosphere,42:663-669.
    [54]Ng C-Y,2002 [J]. Annu. Rev. Phys. Chem.,53:101-140.
    [55]Qi F,2013 [J]. Proc. Combust. Inst.,34:33-63.
    [56]Li Y Y, Qi F,2010 [J]. Acc. Chem. Res.,43:68-78.
    [57]Pan Y, Zhang L, Guo H, et al.,2010 [J]. Int. Rev. Phys. Chem.,29:369-401.
    [58]Bridgwater A V,1999 [J]. J. Anal. Appl. Pyrol,51:3-22.
    [1]Bahng M K, Mukarakate C, Robichaud D J, et al.,2009 [J]. Anal. Chim. Acta,651: 117-138.
    [2]Bridgwater A V,1999 [J]. J. Anal. Appl. Pyrol.,51:3-22.
    [3]常胜,赵增立,张伟,et al.,2011 [J]燃料化学学报,746-753.
    [4]邓启平,李大纲,张金萍,2008[J].西北林学院学报,149-153.
    [5]姜伟,韩光亭,张元明,et al.,2012 [J]纺织学报,6-10.
    [6]王树荣,刘倩,骆仲泱,et al.,2006 [J]浙江大学学报(工学版),1154-1158.
    [7]文丽华.2005.生物质多组分的热裂解动力学研究[D];浙江大学.
    [8]Langkilde F W, Svantesson A,1995 [J]. J. Pharm. Biomed. Anal.,13:409-414.
    [9]杨卿.2010.麦草及其三种主要组分的热解规律[D];华南理工大学.
    [10]Sun X F, Sun R C, Su Y Q, et al.,2004 [J]. J. Agric. Food. Chem.,52:839-847.
    [11]尉慰奇,武书彬,彭云云,2010[J].林产化学与工业,66-70.
    [12]Kacurakova M, Belton P S, Wilson R H, et al.,1998 [J]. J. Sci. Food Agric.,77:38-44.
    [13]Sun R C, Lawther J M, Banks W B,1996 [J]. Carbohydr. Polym.,29:325-331.
    [14]Faix O,1991 [J]. Holzforschung,45:21-27.
    [15]Rumyantseva Y I, Zhbankov R G, Marchewka R, et al.,1996 [J]. J. Appl. Spectrosc.,63: 62-66.
    [16]Sharma R K, Wooten J B, Baliga V L, et al.,2004 [J]. Fuel,83:1469-1482.
    [17]Xiao B, Sun X F, Sun R C.,2001 [J]. Polym. Degrad. Stab.,74:307-319.
    [18]Hinterstoisser B, Salmen L,1999 [J]. Cellulose,6:251-263.
    [19]Kono H, Yunoki S, Shikano T, et al.,2002 [J]. J. Am. Chem. Soc.,124:7506-7511.
    [20]陆方,程海涛,王戈,et al.,2007 [J]竹子研究汇刊,37-41.
    [21]何建新,王善元,2008[J].纺织学报,1-5.
    [22]刘传富,孙润仓,叶君,2005[J].中国造纸学报,184-188.
    [23]Fundador N G V, Enomoto-Rogers Y, Takemura A, et al.,2012 [J]. Carbohydr. Polym.,87: 170-176.
    [24]Ren J, Peng X, Zhong L, et al.,2012 [J]. Carbohydr. Polym.,89:152-157.
    [25]彭云云,武书彬,2009[J].化工进展,1478-1484.
    [26]彭新文,任俊莉,孙润仓,2011[J].华南理工大学学报(自然科学版),82-86.
    [27]Capanema E A, Balakshin M Y, Chen C L, et al.,2001 [J]. Holzforschung,55:302-308.
    [28]Scholze B, Hanser C, Meier D,2001 [J]. J. Anal. Appl. Pyrolysis,58:387-400.
    [29]秦特夫,2001[J].林业科学研究,375-382.
    [30]郑志锋,邹局春,陈浪,et al.,2007 [J]西北林学院学报,131-133.
    [31]郑秋闿,董庆顺,2011[J].潍坊学院学报,58-61.
    [32]Salanti A, Zoia L, Orlandi M, et al.,2010 [J]. J. Agric. Food. Chem.,58:10049-10055.
    [33]Shukry N, Fadel S M, Agblevor F A, et al.,2008 [J]. J. Appl. Polym. Sci.,109:434-444.
    [34]路瑶,魏贤勇,宗志敏,et al.,2013[J]化学进展,838-858.
    [35]Rumyantseva YI, Zhbankov RG, Teeaar R,1995 [J]. J.Appl. Spectrosc.,62:122-125.
    [36]Capanema E A, Balakshin M Y, Kadla J F,2005 [J]. J. Agric. Food. Chem.,53: 9639-9649.
    [37]Holtman K M, Chang H M, Jameel H, et al.,2006 [J]. J. Wood Chem. Technol.,26: 21-34.
    [38]Evtuguin D V, Neto C P, Silva A M S, et al.,2001 [J]. J. Agric. Food. Chem.,49: 4252-4261.
    [39]Xia Z C, Akim L G, Argyropoulos D S,2001 [J]. J. Agric. Food. Chem.,49:3573-3578.
    [40]Yang Q, Wu S, Lou R, et al.,2011 [J]. Wood Science and Technology,45:419-431.
    [41]Goncalves A R, Schuchardt U, Bianchi M L, et al.,2000 [J]. J. Brazil. Chem. Soc.,11: 491-494.
    [42]杨海涛,谢益民,范建云,et al.,2007 [J]林产化学与工业,11-14.
    [I]Antal M J, Varhegyi G,1995 [J]. Ind. Eng. Chem. Res.,34:703-717.
    [2]QuTT, Guo WJ, Shen LH, et al.,2011 [J]. Ind. Eng. Chem. Res.,50:10424-10433.
    [3]Shafizad.F, Fu Y L,1973 [J]. Carbohydr. Res.,29:113-122.
    [4]Sun R C, Lawther J M, Banks W B,1996 [J]. Carbohydr. Polym.,29:325-331.
    [5]Shen D K, Gu S, Bridgwater A V,2010 [J]. J. Anal. Appl. Pyrolysis,87:199-206.
    [6]Reale S, Di Tullio A, Spreti N, et al.,2004 [J]. Mass Spectrom. Rev.,23:87-126.
    [7]Li J, Cai J H, Yuan T, et al.,2009 [J]. Rapid Commun. Mass Spectrom.,23:1269-1274.
    [8]Wang J, Li Y Y, Tian Z Y, et al.,2008 [J]. Rev. Sci. Instrum.,79:103504.
    [9]Weng J, Jia L, Wang Y, et al.,2013 [J]. Proc. Combust. Inst.,34:2347-2354.
    [10]贾良元.2013.若干光电离质谱新技术的发展与应用[D];中国科学技术大学.
    [11]Fahmi R, Bridgwater A V, Darvell LI, et al.,2007 [J]. Fuel,86:1560-1569.
    [12]Wahyudiono, Sasaki M, Goto M,2009 [J]. Fuel,88:1656-1664.
    [13]Patwardhan P R, Brown R C, Shanks B H,2011 [J]. Chemsuschem,4:1629-1636.
    [14]王毓,翁俊桀,贾良元,et al.,2014 [J]质谱学报,(in press).
    [15]Koullas D P, Lois E, Koukios E G,1991 [J]. Biomass Bioenerg.,1:199-206.
    [16]Evans R J, Milne T A,1987 [J]. Energ. Fuel,1:311-319.
    [17]Evans R J, Milne T A,1987 [J]. Energ. Fuel,1:123-137.
    [18]Dong C-q, Zhang Z-f, Lu Q, et al.,2012 [J]. Energy Convers. Manage.,57:49-59.
    [19]Dufour A, Weng J, Jia L, et al.,2013 [J]. Rsc Adv.,3:4786-4792.
    [20]Mamleev V, Bourbigot S, Le Bras M, et al.,2009 [J]. J. Anal. Appl. Pyrolysis,84:1-17.
    [21]Lede J,2012 [J]. J. Anal. Appl. Pyrolysis,94:17-32.
    [22]Ponder G R, Richards G N, Stevenson T T,1992 [J]. J. Anal. Appl. Pyrolysis,22: 217-229.
    [23]Patwardhan P R, Satrio J A, Brown R C, et al.,2009 [J]. J. Anal. Appl. Pyrolysis,86: 323-330.
    [24]Nimlos M R, Evans R J,2002 [J]. Abstracts of Papers of the American Chemical Society, 223:U585-U585.
    [25]Shafizad.F, Lai Y Z,1972 [J]. J. Org. Chem.,37:278-&.
    [26]Gardiner D,1966 [J]. J. Chem. Soc. C,1473-1476.
    [27]Azeez A M, Meier D, Odermatt J,2011 [J]. J. Anal. Appl. Pyrolysis,90:81-92.
    [28]Shen D K, Gu S,2009 [J]. Bioresour. Technol., 100:6496-6504.
    [29]Ponder G R, Richards G N.1993 [J]. Carbohydr. Res..244:341-359.
    [30]杨卿.2010.麦草及其三种主要组分的热解规律[D];华南理工大学.
    [31]Evans R J, Milne T A,1987 [J]. Energy. Fuels,1:311-319.
    [32]Ohnishi A, Kato K, Takagi E,1977 [J]. Carbohydr. Res.,58:387-395.
    [33]Pouwels AD,Tom A,Eijkel GB, et al.,1987 [J]. J. Anal. Appl. Pyrolysis,11:417-436.
    [34]Ponder G R, Richards G N,1991 [J]. Carbohydr. Res.,218:143-155.
    [35]Owen B C, Haupert L J, Jarrell T M, et al.,2012 [J]. Anal. Chem.,84:6000-6007.
    [36]Haupert L J, Owen B C, Marcum C L, et al.,2012 [J]. Fuel,95:634-641.
    [37]Zakzeski J, Bruijnincx P C A, Jongerius A L, et al.,2010 [J]. Chem. Rev.,110: 3552-3599.
    [38]Faix O, Meier D, Grobe 1,1987 [J]. J. Anal. Appl. Pyrol.,11:403-416.
    [39]Jarvis M W, Haas T J, Donohoe B S, et al.,2011 [J]. Energ. Fuel,25:324-336.
    [1]Fendt A, Streibel T, Sklorz M, et al.,2012 [J]. Energ. Fuel,26:701-711.
    [2]Evans R J, Milne T A,1987 [J]. Energ. Fuel,1:311-319.
    [3]Rodrigues J, Graca J, Pereira H,2001 [J]. J. Anal. Appl. Pyrol.,58-59:481-489.
    [4]Evans R J, Milne TA,1987 [J]. Energ. Fuel,1:123-137.
    [5]Brown A L, Dayton D C, Nimlos M R, et al.,2001 [J]. Chemosphere,42:663-669.
    [6]Jones R W, Reinot T, McClelland J F,2010 [J]. Energ. Fuel,24:5199-5209.
    [7]Mukarakate C, Scheer AM, Robichaud D J, et al.,2011 [J]. Rev. Sci. Instrum.,82:033104.
    [8]Jarvis M W, Haas T J, Donohoe B S, et al.,2011 [J]. Energ. Fuel,25:324-336.
    [9]Faix O, Meier D, Grobe I,1987 [J]. J. Anal. Appl. Pyrol.,11:403-416.
    [10]Genuit W, Boon J J, Faix O,1987 [J]. Anal. Chem.,59:508-513.
    [11]Vanderhage E R E, Boon J J, Steenvoorden R J J M, et al.,1994 [J]. Anal. Chem.,66: 543-550.
    [12]Streibel T, Geissler R, Saraji-Bozorgzad M, et al.,2009 [J]. J. Therm. Anal. Calorim.,96: 795-804.
    [13]Grierson S, Strezov V, Ellem G, et al.,2009 [J]. J. Anal. Appl. Pyrol.,85:118-123.
    [14]Jarvis M W, Haas T J, Donohoe B S, et al.,2011 [J]. Energy. Fuels,25:324-336.
    [15]Orfao J J M, Antunes F J A, Figueiredo J L,1999 [J]. Fuel,78:349-358.
    [16]Wagenaar B M, Prins W, van Swaaij W P M,1993 [J]. Fuel Process.Technol.,36: 291-298.
    [17]DeSisto W J, Hill N, Ⅱ, Beis S H, et al.,2010 [J]. Energ. Fuel,24:2642-2651.
    [18]Sensoz S, Can M,2002 [J]. Energ. Source.,24:347-355.
    [19]Weng J, Jia L, Sun S, et al.,2013 [J]. Anal. Bioanal. Chem.,405:7097-7105.
    [20]贾良元.2013.若干光电离质谱新技术的发展与应用[D];中国科学技术大学.
    [21]Faix O, Meier D, Fortmann I,1990 [J]. Holz Roh. Werkst.,48:351-354.
    [22]Faix O, Meier D, Fortmann I,1990 [J]. Holz Roh. Werkst.,48:281-285.
    [23]Faix O, Fortmann I, Bremer J, et al.,1991 [J]. Holz Roh. Werkst.,49:299-304.
    [24]Faix O, Fortmann I, Bremer J, et al.,1991 [J]. Holz Roh. Werkst.,49:213-219.
    [25]Reale S, Di Tullio A, Spreti N, et al.,2004 [J]. Mass Spectrom. Rev.,23:87-126.
    [26]杨卿.2010.麦草及其三种主要组分的热解规律[D];华南理工大学.
    [27]Evans R J, Milne T A,1987 [J]. Energy. Fuels,1:311-319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700