用户名: 密码: 验证码:
钢渣硅钙肥高效利用与重金属风险性评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是世界钢铁生产第一大国,近几年钢铁年均生产量都在7亿吨左右。钢渣是炼钢过程中的副产品,占到钢铁生产量的15-20%,但我国钢渣综合利用率只在10%,远低于发达国家,造成环境污染和资源浪费。钢渣含有Si、Ca等养分元素,是优良的硅钙肥原料,钢渣作为硅钙肥农用是实现钢渣循环利用的有效途径。但由于钢渣中同时含有少量重金属元素,农田施用会存在一定的生态环境风险。本文以钢渣农业资源化利用为核心,以钢渣硅钙肥在稻田的安全高效施用为研究目标,主要从以下几方面开展研究:首先选用两种不同的成品钢渣硅钙肥,通过盆栽试验研究不同性质的硅钙肥施用对水稻生长、产量和病害防御的影响。其次,从全国主要钢铁厂搜集不同的钢渣,对其植物有效性硅含量以及重金属的毒理性进行了测定和评估,并通过培养模拟试验,研究了几种钢渣中硅的释放规律。
     (1)通过温室盆栽试验研究发现:当土壤中植物有效性硅(SiO2)含量低于临界值95-110mg/kg时,施入钢渣和水淬渣两种不同的钢渣硅钙肥,都可以显著的促进水稻的生长、病害的防御和产量的形成。空气缓慢冷却型钢渣中硅的植物有效性要高于快速冷却的水淬渣。两种钢渣硅钙肥的施用显著提高了水稻茎秆和叶片中硅的含量。进一步通过扫描电镜观察到施硅显著提高了叶片表皮中硅化细胞的数目和强度以及乳突的大小和强度,有利于防止病菌的侵染。通过叶片透射电镜观察到,施硅处理提高了水稻叶片表皮细胞细胞壁硅化层的厚度,对硅的入侵起到物理防御机制。施硅处理细胞内真菌数目和侵染程度显著降低,结合以往研究推测认为,叶片内水溶性硅诱导寄主细胞从生理上抑制病原菌(Bipolaris oryzae)的生长和扩散。因此,硅在防御水稻胡麻叶斑病中物理防御机制和化学防御机制兼在。
     (2)通过对全国主要钢铁厂中钢渣搜集分析发现:不同钢渣中植物有效性硅含量差异很大。钢渣冷却方式对有效性硅含量影响显著,水淬渣有效性硅含量显著高于空气自然冷却钢渣有效硅含量。S3、S4、S6、S7和S8中植物有效性SiO2含量大于15%,被认为是高品质的硅肥原料。S1、S11、S12和S13中植物有效性SiO2含量范围在10-15%,可以考虑作为硅肥原料利用。S2、S5、S10和S12中植物有效性SiO2含量低于10%,不宜作为硅肥原料。钢渣中有效性硅含量与全硅含量及电导率(EC)呈显著正相关系。
     (3)通过对3种不同的钢渣在不同介质中培养试验研究发现:钢渣在土壤溶液中培养,第一天的硅素释放量主要由钢渣冷却方式决定,而在以后的培养过程中主要受温度的影响,其次为钢渣粒径,冷却方式影响甚微。35℃培养97天后,S1、S2与S3钢渣硅的溶出率(累积硅释放量与有效硅的比例)分别为37.3%、30.3%与27.3%;在25℃培养下,S1、S2与S3钢渣硅的溶出率分别为14.3%、7.86%与10.2%。钢渣在纯蒸馏水的培养中,第一天钢渣硅释放主要受温度的影响,而在以后的培养过程中主要受钢渣粒径的影响,温度和钢渣冷却方式对其影响甚微。在35℃,S1、S2与S3钢渣硅的溶出率分别为0.22%、0.16%与0.16%。在25℃培养下,S1、S2与S3钢渣硅的溶出率分别为0.17%、0.13%与0.14%。
     (4)通过对十种有效硅含量高的钢渣中重金属特性分析发现:S12和S14钢渣中Cr总量超过国家粉煤灰农用的限定标准,S7、S12与S14钢渣TCLP浸提液中Cr浓度超过了美国环保局限定的最高浓度。钢渣的TCLP浸提液中测定的Cr浓度与钢渣中Cr全量浓度并不一致,Cr的环境风险性并不单由总量决定,更大程度上决定于化学存在形态。所有搜集钢渣都不存在Cd、Pb、Hg和As等重金属元素的污染的环境风险。
China is the largest producer of steel in the world with its annual crude steel output of near700Mt inrecent years. Slags are the byproducts of steel and iron industries, which account for15%-20%of globalsteel and iron production. However, the utilization of slag was only10%in China, which is far belowthat in developed countries. Disposing of these untreated slags not only requires plenty of land, but alsocauses many environmental problems. Slag contains large amounts of SiO2and CaO with smallamounts of micronutrients, it has been well documented that application of slag-based silicon (Si)fertilizer can not only improve the fertility of soils, but also enhance the growth and yield of crops andthe resistance to plant diseases. So, slag applied as Si fertilizer on paddy soil has benefits not only forrice health and growth, but also for economic and environmental issues. However, most slags containtrace amounts of heavy metals; this raises questions about the potential risks of heavy metals in slagleaching into environment. The objective of this paper was to realize steel or iron slag recycling bymeans of field application as Si-fertilizer with high efficiency and good safety. The research workmainly includes these aspects:(1) Choosing two different Si fertilizers through pot experiments toassess the effects of steel slag and iron slag applied at the same level of plant-available Si on rice growthand brown spot disease resistance and also to investigate the relationship between Si-mediatedultrastructural changes and brown spot disease infection in rice.(2) Collecting different types of slagsamples from ten steel and iron corporations in China examine phyto-available Si concentrations andthe total main chemical components, including total heavy metal concentrations of different slagmaterials. Furthermore, we aimed through BCR-and TCLP-extraction procedures to estimate thepotential mobility and leaching of metals.(3) Choosing three different steel slags to study Si-releasingcharacters from slags and their influencing factors through incubation experiments at both35oC and25oC.
     (1) In the pot experiment, we chose both steel and iron slags to investigate their effects on ricegrowth and disease resistance under greenhouse conditions. Scanning electron microscopy (SEM) andtransmission electron microscopy (TEM) were used to examine the effects of slags on ultrastructuralchanges in leaves of rice naturally infected with brown spot. Both Si fertilizers tested significantlyincreased rice growth and yield, and decreased brown spot incidence, with steel slag fertilizer showing astronger effect than iron slag fertilizer. Under the current experimental conditions, Si application at arate of400mg SiO2kg-1soil (available SiO2extracted by0.5M HCl) met the Si requirements of rice.SEM analysis showed that silicon application led to more pronounced cell silicification in rice leaves,more silica cells, and more pronounced and larger papilla as well. TEM analysis results showed thatmesophyll cells of silicon-untreated rice leaf were disorganized, with colonization of the fungus(Bipolaris oryzae), including chloroplast degradation and cell wall alterations. Silicon applicationpreserved mesophyll cells relatively intact and significantly increased the thickness of silicon layer. Itcan be concluded that applying Si fertilizer to Si-deficient paddy soil is necessary for both high riceyield and brown spot disease control. The immobile silicon deposited in host cell walls and papillae sites is the first physical barrier for fungal penetration and soluble Si in the cytoplasm enhancesphysiological or induced resistance to fungal colonization.
     (2) Steel and iron slags were collected from ten steel and iron corporations in China. The siliconphyto-availability and the main chemical components were tested. The results show that thephyto-available Si concentrations (extracted by0.5M HCl) of different slags varied widely, due todifferences in the total Si content and cooling process during slag formation. Water-cooling slagscontained more available Si than air-cooling steel slags. Slags could be divided into three classes. Thefirst class, with an available SiO2concentration greater than15%, including S3, S4, S6, S7, S8and S9represents high-grade materials for Si fertilizer. The second class, with an available SiO2concentrationbetween10%and15%, including S1, S11, S12, and S13could be considered as materials for Sifertilizer. The third class, with an available SiO2concentration is below10%(including S2, S5, S10andS12) has a low value for Si fertilizer.
     (3) We chose three different steel slags, including S1(in powder form, water-cooling), S2(ingranular form, water-cooling), S3(in granular form, air-cooling) with identically available Si content, tobe incubated in both soil suspension and distilled water media at35℃and25℃. Leaching solutionswere collected through centrifugation at regular intervals in order to study Si-releasing characters and itsimpacting factors. The results demonstrated that in soil suspension-incubation experiment, the rate of Sireleased from slags on the first day was mainly influenced by slag cooling process, but was impactedprincipally by temperature and grain size of slags as the experiment continued. The Si-releasingpercentage (the ratio of accumulation of Si releasing to available Si content) of S1, S2and S3were37.3%,30.3%and27.3%, respectively, after97-d-soil-incubation at35℃, compared to14.3%,7.86%and10.2%under25℃. However, in distilled water-incubation experiment, the amount of Si releasedfrom slags on the first day was mainly influenced by temperature, while afterwards it was affectedprincipally by grain size of slags and temperature but not by slag cooling process. The Si-releasingpercentage of S1, S2and S3was0.22%,0.16%and0.16%, respectively, after97-d-water-incubation at35℃, compared to0.17%,0.13%and0.14%at25℃.
     (4) Total chromium (Cr) concentrations in some slags far exceeded the Chinese Standard and theToxicity Characteristic Leaching Procedure (TCLP)-extractable concentrations of Cr in leachingsolutions of some slags exceeded the US EPA limit. The principal component analysis (PCA)demonstrated that the TCLP-extractable concentrations of Cr were not consistent with the total Crconcentrations in slags, but depended strongly on the European Community Bureau of Reference(BCR)-extractable chemical forms. No slags posed a significant risk of cadmium (Cd), lead (Pb),mercury (Hg) or arsenic (As) to agricultural ecosystems in which the slags are applied.
引文
1.鲍士旦.土壤农化分析[M].北京,中国农业出版社,1999,pp233–236.
    2.陈怀满.我国土壤污染现状、发展趋势及对策建议[J].土壤学进展,1990,18:53–56.
    3.程绪想,杨全兵.钢渣的综合利用[J].粉煤灰综合利用,2010,5:45–49.
    4.戴伟民,张克勤,段彬伍,等.测定水稻硅含量的一种简易方法[J].中国水稻科学,2005,19(5):460–462.
    5.董保澍.我国固体废弃物处理与利用现状及发展趋势[J].冶金环保,1999,5:5–6.
    6.高尔明,赵全志.水稻施用硅肥增产的生理效应研究[J].耕作于栽培,1998,5:20–28.
    7.高明,魏朝富,谢德体.有机肥对紫色水稻土有效硅的影响[J].西南农业大学学报,1996,18(3):273–275.
    8.何电源.土壤和植物中的硅[J].土壤学进展,1980,56:1–10.
    9.贺立源,李孝良.湖北省水稻土有效硅的含量与分布[J].华中农业大学学报,1995,14(4):363–368.
    10.贺立源,王忠良.土壤机械组成和pH与有效硅的关研究[J].土壤,1998,30(5):243–246.
    11.李灿华,吴江红,汪晖,等.从资源属性看我国钢渣资源化利用[J].重钢技术,2011,54(1):12–15.
    12.李春花,周卫,荣向农.硅肥中有效SiO2分析方法的标准化研究[J].磷肥与复肥,2004,19(4):60–61.
    13.李萍.硅提高水稻抗锰毒害的生理和分子机制[M].博士学位论文,北京,中国农业科学院,
    2012.
    14.李伟峰.转炉钢渣的理化性质及资源化研究[M].硕士学位论文,北京:北京化工大学,2008.
    15.梁永超,陈兴华,张永春,等.淹水及添加有机物料对土壤有效硅的影响[J].土壤,1992,24(5):244–247.
    16.梁永超,张永春,马同生.植物的硅素营养[J].土壤学研究进展,1993,21(3):7–14.
    17.刘鸣达,张玉龙,李军,等.施用钢渣对水稻土硅素肥力的影响[J].土壤与环境,2001,10(3):220–223.
    18.鲁如坤.土壤农业化学分析方法[M].北京,中国农业科技出版社,2000,pp146–195.
    19.马同生.我国水稻土硅素养分与硅肥施用研究现况[J].土壤学研究进展,1990,3:1–5.
    20.马同生.我国水稻土中硅素丰缺原因[J].土壤通报,1997,28(4):169–171.
    21.秦遂初,马国瑞.植物营养与合理施肥[M].见:孙羲主编.土壤养分.北京:中国农业出版社,1983,pp152–160.
    22.史新慧,王贺,张福锁.硅提高水稻抗镉毒害机制的研究[J].农业环境科学学报,2006,25:1112–1116.
    23.王博.钢渣中游离氧化钙、游离氧化镁的测定及其安定性研究[D].硕士学位论文,北京:北京化工大学,2010.
    24.吴志宏,邹宗树,王承智.转炉钢渣在农业生产中的再利用[J].矿产综合利用,2005,6:25–28.
    25.向万胜,何电源,廖先苓.湖南省土壤中硅的形态与土壤性质的关系[J].土壤,1993,25(3):146–151.
    26.向万胜,苏以荣,何电源,等.湖南省主要成土母质(母岩)发育的水稻土有效硅的含量状况[J].土壤肥料,1993,2:38–40.
    27.邢雪荣,张蕾.植物的硅素营养研究综述[J].植物学通报,1998,2:2–8.
    28.薛高峰,宋阿琳,孙万春,等.硅对水稻叶片抗氧化酶活性的影响及其与白叶枯病抗性的关系[J].植物营养与肥料学报,2010,16:591–597.
    29.杨艳芳,梁永超,娄运生,等.硅对小麦过氧化物酶、超氧化物歧化酶和木质素的影响及与抗白粉病的关系[J].中国农业科学,2003,36(7):813–817.
    30.于群英,李孝良,张永兰.安徽省水稻土水稻土有效硅状况及硅肥效果[J].土壤,1999,3:164–166.
    31.虞国平.水稻在我国粮食安全中的战略地位分析[J].新西部,2009,22:31–33.
    32.臧惠林,张效朴.我国南方水稻土供硅能力的研究[J].土壤学报,1982,19:131–140.
    33.张国良,戴其根,张洪程.施硅增强水稻对纹枯病的抗性[J].植物生理与分子生物学报,2006,32:600–606.
    34.郑少波.钢渣粉活性与胶凝性及其混凝土性能的研究[D].博士学位论文,武汉,武汉理工大学,2008.
    35. Al-Abed S R, Hageman P L, Jegadeesan G, et al. Comparative evaluation of short-term leach testsfor heavy metal release from mineral processing waste [J]. Sci Total Environ,2006,364:14–23.
    36. Agarie S, Hanaoka N, Ueno O, et al. Effects of silicon on tolerance to water defcit and heat stressin rice plants (Oryza sativa L.), monitored by electrolyte leakage [J]. Plant Prod Sci,1998,1:96–103.
    37. Alter H. The composition and environmental hazard of copper slags in the context of the BaselConvention [J]. Resour Conserv Recycl,2005,43:353–360.
    38. Alvarez E A, Mochon M C, Jimenez-Sanchez J C, et al. Heavy metal extractable forms in sludgefrom wastewater treatment plants [J]. Chemosphere,2002,47:765–775.
    39. Alvarez J, Datnoff L E. The economic potential of silicon for integrated management andsustainable rice production [J]. Crop Prot,2001,20:43–48.
    40. Bailey S E, Olin T J, Mark R B, et al. A review of potentially low-cost sorbents for heavy metals[J]. Wat Res Vol,1999,33:2469–2479.
    41. Bandick A K, Dick R P. Field management effects on soil enzyme activities [J]. Soil Biol Biochem,1999,31:1471–1479.
    42. Barnhart J. Occurrences, uses, and properties of chromium [J]. Regul Toxicol Pharmacol,1997,26:3–7.
    43. Becker M, Asch F. Iron toxicity in rice-conditions and management concepts [J]. J Plant Nutr SoilSci,2005,168:558–573.
    44. Bélanger R R, Benhamou N, Menzies J G. Cytological evidence of an active role of silicon inwheat resistance to powdery mildew (Blumeria graminis f.sp.tritici)[J]. Phytopathol,2003,93:402–412.
    45. Bigham R D, Connolly M, Lee B, et al. Physical and chemical characteristics of blast furnace,basic oxygen furnace, and electric arc furnace steel industry slags [J]. Environ Sci Technol,2000,4:1576–1582.
    46. Bocharnikova A, Loginov S V, Matychenkov V V. Silicon fertilizer efficiency [J]. Russ Agric Sci,2010,36:446–448.
    47. Bonman J M, Estrada B A, Bandong J A. Leaf and neck blast resistance in tropical lowland ricecultivars [J]. Plant Dis,1989,73:388–390.
    48. Bowen P, Menzies J, Ehret D. Soluble silicon sprays inhibit powdery mildew development ongrape leaves [J]. J. Amer Soc Hort Sci,1992,117:906–912.
    49. Brunings M, Ma J F, Mitani N, et al. Differential gene expression of rice in response to silicon andrice blast fungus Magnaporthe oryzae [J]. Ann Appl Biol,2009,155:161–170.
    50. Buck G B, Kornd rfer G H, Datnoff L E. Extraction for estimating plant available silicon frompotential silicon fertilizer sources [J]. J Plant Nutr,2011,34:272–282.
    51. Cai K Z, Gao D, Luo S M, et al. Physiological and cytological mechanisms of silicon-inducedresistance in rice against blast disease [J]. Physiol Plant,2008,134:324–333.
    52. Cha W, Kim J, Choi H. Evaluation of steel slag for organic and inorganic removals in soil aquifertreatment [J]. Water Res,2006,40:1034–1042.
    53. Chain F, C té-Beaulieu C, Belzile F, et al. A Comprehensive transcriptomic analysis of the effectof silicon on wheat plants under control and pathogen stress conditions [J]. Mol Plant Micro Inter,2009,11:1323–1330.
    54. Chang S J, Zeng D D, Li C C. Effect of silicon nutrient on bacterial blight resistance of rice (Oryzasativa L.)[A]. Abstract of Second Silicon in Agriculture Conference[C]. Kyoto, Japan:2002pp31–33.
    55. Chen H M, Zheng C R, Tu C, et al. Chemical methods and phytoremediation of soil contaminatedwith heavy metals [J]. Chemosphere,2000,41:229–234.
    56. Chen W, Yao X, Cai K, et al. Silicon alleviates drought stress of rice plants by improving plantwater status, photosynthesis and mineral nutrient absorption [J]. Biol Trace Elem Res,2011,142:67–76.
    57. Chérif M, Bélanger R R. Defense responses induced by soluble silicon in cucumber roots infectedby pythium spp [J]. Phytopathol,1994,84:236–242.
    58. da Cunha K P V, do Nascimento C W A. Silicon Effects on metal tolerance and structural changesin maize (Zea mays L.) grown on a cadmium and zinc enriched soil [J]. Water Air Soil Pollut,2009,197:323–330.
    59. Dallagnol L J, Rodrigues F á, Mielli M V B, et al. Defective active silicon uptake affects somecomponents of rice resistance to brown spot [J]. Phytopathol,2009,99:116–121.
    60. Dallagnol L J, Rodrigues F á, DaMatta F M, et al. Deficiency in silicon uptake affects cytological,physiological, and biochemical events in the rice–Bipolaris oryzae interaction. Phytopathol,2011,101:92–104.
    61. Das B, Prakash S, Reddy P S R, et al. An overview of utilization of slag and sludge from steelindustries. Resour [J]. Conserv Recycl,2007,50:40–57.
    62. Datnoff L E, Deren C W, Snyder G H. Silicon fertilization for disease management of rice inFlorida [J]. Crop Prot,1997,16:525–531.
    63. Datnoff L E, Rodrigues F á. The role of silicon in suppressing rice diseases [J]. APSnet Features.Doi10.1094/APSnet Feature–2005–0205.
    64. Datnoff L E, Snyder G H, Deren C W. Influence of silicon fertilizer grades on blast and brown spotdevelopment and yields of rice [J]. Plant Dis,1992,76:1011–1013.
    65. Datnoff L E, Snyder G H, Kornd rfer G H. Silicon in agriculture [M]. Elsevier, Amsterdam,2001,pp197–201.
    66. Datnoff L E, Snyder G H, Raid R N, et al. Effect of calcium silicate on blast and brown spotintensities and yields of rice [J]. Plant Dis,1991,75:729–732.
    67. Deren C W, Datnoff L E, Snyder G H, et al. Silicon concentration, disease response, and yieldcomponents of rice genotypes grown on flooded organic histosols [J]. Crop Sci,1994,34:733–737.
    68. Epstein E. Silicon [J]. Ann Rev Plan Physiol Plant Mol Biol,1999,50:641–664.
    69. Epstein E. The anomaly of silicon in plant biology [J]. Proc Natl Acad Sci,1994,91:11–17.
    70. Fauteux F, Chain F, Belzile F, et al. The protective role of silicon in the Arabidopsis powderymildew pathosystem [J]. Proc Natl Acad Sci,2006,46:17554–17559.
    71. Fawe A, Abou-Zaid M, Menzies J G, et al. Silicon-mediated accumulation of flavonoidphytoalexins in cucumber [J]. Phytopathol,1998,88:396–401.
    72. Foy C D. Soil chemical factors limiting plant root growth [J]. Adv Soil Sci,1992,19:97–149.
    73. Friesl W, Lombi E, Horak O, et al. Immobilization of heavy metals in soils using inorganicamendments in a greenhouse study [J]. J Plant Nutr Soil Sci.2003,166:191–196.
    74. Fuentes A, Lloréns M, Sáez J, et al. Phytotoxicity and heavy metals speciation of stabilised sewagesludges [J]. J Hazard Mater,2004,108:161–169.
    75. Geiseler J. Use of steelworks slag in Europe [J]. Waste Manage,1996,16(3):59–63.
    76. Ghanmi D, McNally D J, Benhamou N, et al. Powdery mildew of Arabidopsis thaliana:apathosystem for exploring the role of silicon in plant–microbe interactions [J]. Physiol Mol PlantPathol,2004,64:189–199.
    77. Ghareeb H, BozsóZ, Ott P G, et al. Transcriptome of silicon-induced resistance againstRalstoniasolanacearum in the silicon non-accumulator tomato implicates priming effect [J]. Physiol MolPlant Pathol,2011,75:83–89.
    78. Gong H J, Chen K M. The regulatory role of silicon on water relations, photosynthetic gasexchange, and carboxylation activities of wheat leaves in feld drought conditions [J]. Acta Physiol.Plant,2012,34:1589–1594.
    79. Goto M, Ehara H, Karita S, et al. Protective effect of silicon on phenolic biosynthesis andultraviolet spectral stress in rice crop [J]. Plant Sci,2003,164:349–356.
    80. Gray C W, Dunham S J, Dennis P G, et al. Field evaluation of in situ remediation of a heavy metalcontaminated soil using lime and red-mud [J]. Environ pollut,2006,142:530–539.
    81. Gu H H, Qiu H, Tian T, et al. Mitigation effects of silicon rich amendments on heavy metalaccumulation in rice (Oryza sativaL.) planted on multi-metal contaminated acidic soil [J].Chemosphere,2011,83:1234–1240.
    82. Gu H H, Zhan S S, Wang S Z, et al. Silicon-mediated amelioration of zinc toxicity in rice(OryzasativaL.) seedlings [J]. Plant Soil,2012,350:193–204.
    83. Guha H, Saiers J E, Brooks S, et al. Chromium transport, oxidation, and adsorption inmanganese-coated sand [J]. J Contam Hydrol,2001,49(3–4):311–334.
    84. Halim C E, Amal R, Beydoun D, et al. Evaluating the applicability of a modified toxicitycharacteristic leaching procedure (TCLP) for the classification of cementitious wastes containinglead and cadmium [J]. J Hazard Mater,2003,103:125–140.
    85. Hamon R E, McLaughlin M J, Cozens G. Mechanisms of attenuation of metal availability in situremediation treatments [J]. Environ Sci Technol,2002,36:3991–3996.
    86. Hashioka Y. Studies on rice blast disease in the tropics.(I) Anatomical comparison of leafepidermis of Formosan rice with that of Taiwan rice from plant pathological viewpoints [J]. AgricHort,1942,17:846–852.
    87. Hauck M, Paul A, Mulack C, et al. Effects of manganese on the viability of vegetative diaspore ofthe epiphytic lichen Hypogymnia physodes [J]. Environ Exp Bot,2002,47,127–142.
    88. Hayasaka T, Fujii H, Ishiguro K. The role of silicon in preventing appressorial penetration by therice blast fungus [J]. Phytopathol,2008,98:1038–1044.
    89. Haynes R, Belyaeva O N, Kingston G. Evaluation of industrial wastes as sources of fertilizersilicon using chemical extractions and plant uptake [J]. J Plant Nutr Soil Sci,2013,76:238–248.
    90. He C W, Wang L J, Liu J, et al. Evidence for ‘silicon’ within the cell walls of suspension-culturedrice cells [J]. New Phytol,2013,200:700–709.
    91. Heine G, Tikum G, Horst W J. The effect of silicon on the infection by and spread of Pythiumaphanidermatum in single roots of tomato and bitter gourd [J]. J Exp Bot,2007,58:569–577.
    92. Horst W J. The physiology of manganese toxicity [M]. In: Graham R D, Hannam R J, Uren N C.(eds) Manganese in soils and plants. Kluwer Academic Publishers, Dordrecht,1988, pp175–188.
    93. http://www.worldsteel.org/media-centre/press-releases/2012/12-2012-crude-steel html.
    94. Huang S J, Chang C Y, Mui D T, et al. Sequential extraction for evaluating the leaching behaviorof selected elements in municipal solid waste incineration fly ash [J]. J Hazard Mater,2007,149:180–188.
    95. Huber D, Graham R. The role of nutrition in crops resistance and tolerance to disease. In: Rengel,Z (ed) Mineral nutrition of crops: fundamental mechanism and implications[M]. Binghamton, USA:The Haworth,1999, pp169–204.
    96. Inokari G, Kubota T. On the effect of soil dressing and silica application to peatland paddy fields[J]. J Sap Soc gric Sci,1930,98:484–485.
    97. Janusa M A, Bourgeois J C, Heard G E, et al. Effects of particle size and contact time on thereliability of toxicity characteristic leaching procedure solidified/stabilized waste [J]. Microchem J,1998,59:326–332.
    98.Kabata-Pendias A, Pendias H. Trace Elements in Soils and Plants [C]. third ed. CRC Press, BocaRaton, F L.
    99. Kanto T. Research of silicate for improvement of plant defense against pathogens in Japan [A].Abstract of second silicon in agriculture conference[C]. Tokyo, Japan: pp22–26.
    100. Kato N, Owa N. Dissolution of slag fertilizers in a paddy soil and Si uptake by rice plant [J]. SoilSci Plant Nutr,1997a,43:329–341.
    101. Kato N, Owa N. Evaluation of Si availability in slag fertilizers by an method using a cationexchange resin [J]. Soil Sci. Plant Nutr,1997b,43:351–359.
    102. Kim J G, Dixon J B. Oxidation and fate of chromium in soils [J]. Soil Sci Plant Nutr,2002,48:483–490.
    103. Kim S G, Kim K W, Park E W, et al. Silicon-induced cell wall fortification of rice leaves: Apossible cellular mechanism of enhanced host resistance to blast [J]. Phytopathol,2002,92:1095–1103.
    104. Kotas J, Stasicka Z. Chromium occurrence in the environment and methods of its speciation [J].Environ Pollut,2000,107:263–283.
    105. Laforest G, Duchesne J. Characterization and leachability of electric arc furnace dustmade fromremelting of stainless steel [J]. J Hazard Mater,2006,135:156–164.
    106. Langer I, Krpata D, Fitz W J, et al. Zinc accumulation potential and toxicity threshold determinedfor a metal-accumulating Populus canescens clone in a dose-response study [J]. Environ Pollut,2009,157:2871–2877.
    107. Law C, Exley C. New insight into silica deposition in horsetail (Equisetum arvense)[J]. BMCPlant Biol,2011,11:112.
    108. Lee T S, Hsu L S, Wang C C, et al. Amelioration of soil fertility for reducing brown spot incidencein the patty field of Taiwan [J]. J Agric Res Chin,1981,30:35–49.
    109. Lemes E M, Mackowiak C L, Blount A, et al. Effects of silicon Applications on soybean rustdevelopment under greenhouse and field conditions [J]. Plant Dis,2011,95:317–324.
    110. Li P, Wang X X, Zhang T L, et al. Effects of several amendments on rice growth and uptake ofcopper and cadmium from contaminated soil [J]. J Environ Sci,2008,20:449–455.
    111. Liang Y C, Ma T S, Li F J, et al. Silicon availability and response of rice and wheat to silicon incalcareous soils [C]. Commun Soil Sci Plant Anal,1994,25:2285–2297.
    112. Liang Y C, Sun W C, Si J, et al. Effects of foliar-and root-applied silicon on the enhancement ofinduced resistance to powdery mildew in Cucumis sativus [J]. Plant Pathol,2005,54:678–685.
    113. Liang Y C, Sun W C, Zhu Y G, et al. Mechanisms of silicon-mediated alleviation of abiotic stressesin higher plants: A review [J]. Environ Pollut,2007,147:422–428.
    114. Liang Y C, Wong J W C, Wei L. Silicon mediated enhancement of cadmium tolerance in maize(Zea mays L.) grown in cadmium contaminated soil[J]. Chemosphere,2005,58:475–483.
    115. Liang Y C, Zhang W H, Qin C, et al. Effect of exogenous silicon (Si) on H+-ATPase activity,phospholipids and fuidity of plasma membrane in leaves of salt-stressed barley [J]. Environ ExpBot,2006,57:212–219.
    116. Liang Y C, Zhu J, Li Z J, et al. Role of silicon in enhancing resistance to freezing stress in twocontrasting winter wheat cultivars [J]. Environ Exp Bot,2008,64:286–294.
    117. Liang Y C. Effects of silicon on enzyme activity and sodium, potassium and calcium concentrationin barley under salt stress [J]. Plant Soil,1999,209:217–224.
    118. Liang YC, Zhang W H, Qin C, et al. Effect of exogenous silicon (Si) on H+-ATPase activity,phospholipids and fuidity of plasma membrane in leaves of salt-stressed barley [J]. Environ ExpBot,2006,57:212–219.
    119. Lin C W, Chang H B, Huang H J. Zinc induces mitogen-activated protein kinase activationmediated by reactive oxygen species in rice roots [J]. Plant Physiol Biochem,2005,43:963–968.
    120. Lind B B, F llman A M, Larsson L B. Environmental impact of ferrochrome slag in roadconstruction [J]. Waste Manage,2001,21:255–264.
    121. Lombi E, Hamon R E, McGrath S P, et al. Lability of Cd, Cu, and Zn in polluted soils treated withlime, beringite, and red mud and identification of a non-labile colloidal fraction of metals usingisotopic techniques [J]. Environ Sci Technol,2003,37:979–984.
    122. Ma C C, Li Q F, Gao Y B, et al. Effects of silicon application on drought resistance of cucumberplants [J]. Soil Sci Plant Nutr,2004a,50:623–632.
    123. Ma J F, Takahashi E. Effect of silicic acid on phosphorus uptake by riceplant [J]. Soil Sci PlantNutr,1989,35:227–234.
    124. Ma J F, Takahashi E. Effect of silicon on the growth and phosphorus uptake of rice [J]. Plant Soil,1990,126:115–119.
    125. Ma J F, Takahashi E. Soil, Fertilizer, and Plant Silicon Research in Japan[M]. Amsterdam, Elsevier,2002.
    126. Ma J F, Tamai K, Yamaji N, et al. A silicon transporter in rice [J]. Nature,2006,440:688–691.
    127. Ma J F, Yamaji N, Mitani N, et al. An efflux transporter of silicon in rice [J]. Nature,2007,448:209–213.
    128. Ma J F, Yamaji N. Silicon uptake and accumulation in higher plants [J].Trends Plant Sci,2006,11:392–397.
    129. Macfie S M, Taylor G J. The effects of excess manganese on photosynthetic rate and concentrationof chlorophyll inTriticum aestivumgrown in solution culture [J]. Physiol Plant,1992,85:467–475.
    130. Macíasa F, Caraballo M A, Nieto J M. Environmental assessment and management of metal-richwastes generated in acid mine drainage passive remediation systems [J]. J Hazard Mater,2012,229–230:107–114.
    131. Maekawa K, Watanabe K, Aino M, et al. Suppression of rice seedling blast with some silicic acidmaterials in nursery box [J]. Soil Sci Plant Nutr,2001,72:56–62.
    132. Maiz I, Arambarri I, Garcia R, et al. Evaluation of heavy metal availability in polluted soils by twosequential extraction procedures using factor analysis. Environ Pollut,2000,110:3–9.
    133. Marchetti M A, Peterson H D. The role of Bipolaris oryzae in floral abortion and kerneldiscoloration in rice. Plant Dis,1984,68:288–291.
    134. Marschner, H. Relationships between mineral nutrition and plant diseases and pests. In: Marschner,H (ed.) Mineral nutrition of higher plants [M]. New York, USA: Elsevier,2002, pp436–460.
    135. Matoh T, Murata S, Takahashi, E. Effect of silicate application on photosynthesis of rice plant [J].Jpn J Soil Sci Plant Nutr,1991,62:248–251.
    136. McKeague J A, Cline M G. Silica in soil solutions: II. The adsorption of monosilicic acidby soil and by other sbustance [J]. Can J Soil Sci,1963,43(1):83–96.
    137. Menzies J G, Ehret D L, Glass A D M, et al. Effects of soluble silicon on the parasitic fitness ofsphaerotheca juliginea on cucumis sativus [J]. Phytopathol,1991,81:84–88.
    138. Mitani N, Ma J F, Iwashita T. Identification of the silicon form in xylem sap of rice (Oryza sativaL.)[J]. Plant Cell Physiol,2005,46:279–283.
    139. Mittler R. Oxidative stress, antioxidants and stress tolerance [J]. Trends Plant Sci,2002,7:405410.
    140. Miyake Y, Takahashi E. Effect of silicon on the growth of solution-cultured cucumber plant [J].Soil Sci Plant Nutr,1983,29:71–83.
    141. Motlagh M R, Kaviani B. Characterization of new bipolaris spp.: the causal agent of rice brownspot disease in the North of Iran [J]. Int J Agric Biol,2008,10:638–642.
    142. Motz H, Geiseler J. Products of steel slags an opportunity to save naturalresources [J]. WasteManage,2001,21:285–293.
    143. Nair A, Juwarkar A A, Devotta S. Study of speciation of metals in an industrial sludge andevaluation of metal chelators for their removal [J]. J Hazard Mater,2008,152:545–553.
    144. Nemati K, Bakar N K A, Abas R, et al. Speciation of heavy metals by modifed BCR sequentialextraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia [J]. JHazard Mater,2011,192:402–410.
    145. Neumann D, Zur N U. Silicon and heavy metal tolerance of higher plants [J]. Phytochemist,2001,56:685–692.
    146. Nwugo C C, Huerta A J. Effects of silicon nutrition on cadmium uptake, growth andphotosynthesis of rice plants exposed to low-level cadmium [J]. Plant Soil,2008,311:73–86.
    147. Okuda A, Takahashi E. Studies on the physiological role of silicon in crop plant. Part1on themethod of silicon-free culture [J]. J Sci Soil Manure,1961,32:474–480.
    148. Onodera I. Chemical studies on rice blast [J]. Sci Agric Soc,1917,180:606–617.
    149. Ou S H. Rice Diseases.2nd edn. Commonwealth Agricultural Bureau [C]. New England,1985,pp109–201.
    150. Pantsar-Kallio M, Reinikainen S P, Oksanen M. Interactions of soil components and their effectson speciation of chromium in soils [J]. Anal Chim Acta,2001,439:9–17.
    151. Proctor D M, Fehling K A, Shay E C, et al. Physical and chemical characteristics of blast furnace,basic oxygen furnace, and electric arc furnace steel industry slags [J]. Environ Sci Technol,2000,34:1576–1582.
    152. Rabindra B, Gowda S S, Gowda K T P, et al. Blast disease as influenced by silicon in some ricevarieties [J]. Current Res,1981,10:82–83.
    153. Rai U N, Pandey S, Sinha S, et al. Revegetating fly ash landfills with Prosopis juliflora L.: impactof different amendments and Rhizobium inoculation [J]. Environ Int,2004,30:293–300.
    154. Raven J A. Cycling silicon–the role of accumulation in plants [J]. New Phytol,2003,158:419–430.
    155. Re′mus-Borel W, Menzies J G, Be′langer, R R. Silicon induces antifungal compounds in powderymildew-infected wheat [J]. Physiol Molr Plant Pathol,2005,66:108–115.
    156. Rodrigues F á, Benhamou N, Datnoff L E, et al. Ultrastructural and cytochemical aspects ofsilicon-mediated rice blast resistance [J]. Phytopathol,2003a,93:535–546.
    157. Rodrigues F á, Datnoff L E. Silicon and rice disease management [J]. Fitopatol Bras,2005a,30:457–469.
    158. Rodrigues F á, Jurick W M, Datnoff L E, et al. Silicon influences cytological and molecular eventsin compatible rice-Magnaporthe grisea interactions [J]. Physiol Mol Plant Pathol,2005b,66:144–159.
    159. Rodrigues F á, Kornd rfer G H, Seebold K W, et al. Effect of silicon and host resistance on sheathblight development in rice [J]. Plant Dis,2001,85:827–832.
    160. Rodrigues F á, McNally D J, Datnoff L E, et al. Silicon enhances the accumulation of diterpenoidphytoalexins in rice: A potential mechanism for blast resistance [J]. Phytopathol,2004,94:177–183.
    161. Rodrigues F á, Vale F X R, Datnoff L E, et al. Effect of rice growth stages and silicon on sheathblight development [J]. Phytopathol,2003b,93:256–261.
    162. Rodrigues F á, Valeb F X R, Kornd rfer G H, et al. Influence of silicon on sheath blight of rice inBrazi [J]. Crop Prot,2003c,22:23–29.
    163. Rodrigues L, Ruiz E J, Alonso-Azca′rate J, et al. Heavy metal distribution and chemical speciationin tailings and soils around a Pb–Zn mine in Spain [J]. J Environ Manage,2009,90:1106–1116.
    164. Romero-Aranda M R, Jurado O, Cuartero J. Silicon alleviates the deleterious salt effect on tomatoplant growth by improving plant water status [J]. J Plant Physiol,2006,163:847–855.
    165. Sanita di Toppi L, Gabbrielli R. Response to cadmium in higher plants [J]. Environ Exp Bot,1999,41:105–130.
    166. Sauve S, McBride M, Hendershot W. Soil solution speciation of lead (II) effects of organic matterand pH [J]. Soil Sci Soc Am J,1998,62:618–621.
    167. Savant N K, Snyder G H, Datnoff L E. Depletion pf plant available silicon in soils: A possiblecause of declining rice yields [J]. Soil Sci Plant Anal,1997a,28:1245–1252.
    168. Savant N K, Snyder G H, Datnoff L E. Silicon management and Sustainable rice production [J].Adv Agron,1996,58:151–199.
    169. Schiitzendiibel A, Schwanz P, Teichmann T, et al. Cadmium-induced changes in antioxidativesystems, hydrogen peroxide content, and differentiation in scots pine roots [J]. Plant Physiol,2001,127:887–898.
    170. Seaman J, Arey J S, Bertsch P M. Immobilization of nickel and other metals in contaminatedsediments by hydroxyapatite addition [J]. J Environ Quality,2001,30:460–469.
    171. Seebold K W, Correa-Victoria, F J, Snyder G H. Effects of Silicon and fungicides on the control ofleaf and neck blast in upland rice [J]. Plant Dis,2004,88:253–258.
    172. Seebold K W, Kucharek T A, Datnoff L E, et al. The influence of silicon on components ofresistance to blast in susceptible, partially resistant, and resistant cultivars of rice [J]. Phytochemist,2001,91:63–69.
    173. Shanmuganathana P, Lakshmipathiraja P, Srikanth S, et al. Toxicity characterization and long-termstability studies on copper slag from the ISASMELT process [J]. Resour Conserv Recycl,2008,52:601–611.
    174. Shen H T, Forssberg E, Nordstr m U. Physicochemical and mineralogical properties of stainlesssteel slags oriented to metal recovery[J]. Resour Conserv Recycl,2004,40:245–271.
    175. Shen H T, Forssberg E. An overview of recovery of metals from slags [J]. Waste Manage,2003,23:933–949.
    176. Shi C, Qian J. High performance cementing materials from industrial slags–a review[J]. ResourConserv Recycl,2000,29:195–207.
    177. Shi Q H, Bao Z Y, Zhu Z J, et al. Silicon-mediated alleviation of Mn toxicity in Cucumis sativus inrelation to activities of superoxide dismutase and ascorbate peroxidase [J]. Phytochemist,2005,66:1551–1559.
    178. Snyder G. H, Rich D W, Elliott C L, et al. Evaluation of candidate silicon fertilizers [J]. Soil CropSci Soc Flo Proc,2005,64:52–54.
    179. Song A L, Li P, Li Z J. et al. The alleviation of zinc toxicity by silicon is related to zinc transportand antioxidative reactions in rice [J]. Plant Soil,2011,344:319–333.
    180. Song A L, Li Z J. Zhang J, et al. Silicon-enhanced resistance to cadmium toxicity in Brassicachinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhancedantioxidant defense capacity [J]. J Hazard Mater,2009,172:74–83.
    181. Sun W C, Zhang J, Fan Q H, et al. Silicon-enhanced resistance to rice blast is attributed tosilicon-mediated defence resistance and its role as physical barrier [J]. Eur J Plant Pathol,2010,128:39–49.
    182. Swings J, Van den Mooter M, Vauterin L, et al. Reclassification of the causal agents of bacterialblight (Xanthomonas campestris pv. oryzae) and bacterial leaf streak (Xanthomonas campestris pv.oryzae) of rice as pathovars of Xanthomonas oryzae (ex. Ishiyama1922) sp. Nov. Nom. Rev [J].Int J Syst Bacteriol,1990,40:309–311.
    183. Takahashi K. Effects of slags on the growth and the silicon uptake by rice plants and the availablesilicates in paddy soils [J]. Bulletin Shikoku Agric Exp Sta,1981,38:75–114.
    184. Takahashi Y. Nutritional studies on development of Helminthosporium leaf spot. Proceedings,Symposium on rice diseases and their control by growing resistant varieties and other measures[A].Agriculture, Forestry and Fisheries Research Council [C]. Kyoto, Japan,1967, pp157–170.
    185. Tamai K, Ma J F. Reexamination of silicon effects on rice growth and production under fieldconditions using a low silicon mutant [J]. Plant Soil,2008,307:21–27.
    186. Tossavainena M, Engstrom F, Yang Q, et al. Characteristics of steel slag under different coolingconditions [J]. Waste Manage,2007,27:1335–1344.
    187. Tossavainen M, Forssberg E. Studies of the leaching behaviour of rock material and slag used inroad construction: a mineralogical interpretation [J]. Steel Res,2000,71,442–448.
    188. Tsakiridis P E, Papadimitriou G D, Tsivilis S, et al. Utilization of steel slag for Portland cementclinker production [J]. J Hazard Mater,2008,152:805–811.
    189. Tuna A L, Kaya C, Higgs D, et al. Silicon improves salinity tolerance in wheat plants [J]. EnvironExp Bot,2008,62:10–16.
    190. US EPA (US Environmental Protection Agency). Microwave assisted acid digestion of siliceousand organically based matrices, Method3052, Washington, DC, government printing office,1989.
    191. US EPA (US Environmental Protection Agency). TCLP, Method1311, Rev0. In SW-846: Testmethods for evaluating solid waste, physical/chemical methods, Washington, DC, office of solidwaste,1992.
    192. US EPA (US Environmental Protection Agency). Test Methods for Evaluating Solid Wastes, EPAReport SW-846, Environmental Protection Agency, Washington, DC,1986.
    193. Van Nguyen N, Ferrero A. Meeting the challenges of global rice production [J]. Paddy WaterEnviron,2006,4:1–9.
    194. Visser S, Parkinson D. Soil biological criteria as indicators of soil quality [J]. Am J Altern Agric,1992,7:33–37.
    195. Voglara G E, Lestan D. Equilibrium leaching oftoxic elements from cement stabilized soil [J]. JHazard Mater,2013,18–25:246–247.
    196. Volk R J, Kahn R P, Weintraub R L. Silicon content of the rice plant as a factor in influencing itsresistance to infection by the rice blast fungus, Piricularia oryzae [J]. Phytochemist,1958,48:121–178.
    197. Wailes E J, Cramer G L, Chavez E C, et al. Arkansas global rice model: international baselineprojections for1997–2010[M]. Arkansas Agric Exp Sta, Arkansas,1997, pp1–46.
    198. Wang C, Li X C, Ma H T, et al. Distribution of extractable fractions of heavy metals in sludgeduring the wastewater treatment process [J]. J Hazard Mater,2006,137:1277–1283.
    199. Wang H, Li C, Liang Y C. Agricultural utilization of silicon in China [A]. In: Silicon inAgriculture. Datnoff L E, Snyder G H, Korndorfer G H. ed [M]. Elsevier, Amsterdam,2001, pp343–358.
    200. Wang Y M, Chen T C, Yeh K J, et al. Stabilization of an elevated heavy metal contaminated site [J],J Hazard Mater,2001,88:63–74.
    201. Winslow M D. Silicon, disease resistance, and yield of rice genotypes under upland culturalconditions [J]. Crop Sci,1992,32:1208–1213.
    202. Xue Y J, Hou H b, Zhu S J. Characteristics and mechanisms of phosphate adsorption onto basicoxygen furnace slag [J]. J Hazard Mater,2009,162:973–980.
    203. Yoshida S, Ohnishi Y, Kitagishi k. Role of silicon in rice nutrition [J]. Soil Plant Food,1959,5:127–133.
    204. Yoshida S. Chemical aspects of the role of silicon in physiology of the rice plant [J]. Bull ShikokuAgr Exp Stat,1965,15:1–58.
    205. Yoshihiro S, Yukihiko Y, Masamitsu T, et al. Evaluation of hexavalent chromium from moltensewage sludge slag: influence of sample basicity and cooling Rate[J]. Eng Chem Res,2013,52,3903–3909.
    206. Yuan X Z, Huang H J, Zeng G M, et al. Total concentrations and chemical speciation of heavymetals in liquefaction residues of sewage sludge[J]. Bioresour Technol,2011,102:4104–4110.
    207. Zan o-Júnior L A, Rodrigues F á, Ferreira R L, et al. Rice resistance to brown spot mediated bysilicon and its interaction with manganese [J]. Phytopathol,2009,157:73–78.
    208. Zhang C C,Wang L J, Nie Q, et al. Long-term effects of exogenous silicon on cadmiumtranslocation and toxicity in rice (Oryza sativa L.)[J]. Environ Exp Bot,2008,62:300–307.
    209. Zhang G L, Dai Q G., Zhang H C. Silicon application enhances resistance to sheath blight(Rhizoctonia solani) in rice [J]. J Plant Physiol Mol Biol,2006,32:600–606.
    210. Zhang H W, Hong X. An overview for the utilization of wastes from stainless steel industries.Resour [J]. Conserv Recycl,2011,55:745–754.
    211. Zhao X L, Jiang T, Du B. Effect of organic matter and calcium carbonate on behaviors of cadmiumadsorption–desorption on/from purple paddy soils [J]. Chemosphere,2014,99:41–48.
    212. Zhuo L, Li H, Cheng F Q, et al. Co-remediation of cadmium-polluted soil using stainless steel slagand ammonium humate [J]. Environ Sci Pollut Res,2012,19:2842–2848.
    213. Zuccarini A. Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolusvulgaris under NaCl stress [J]. Biol Planta,2008,52:157–160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700