用户名: 密码: 验证码:
热带西太平洋硅藻席地球化学:碳、硅循环及古海洋响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅藻席将巨量的有机碳和生物硅输出到海底,提高海洋生物泵效率,引起大气CO2分压(PCO2)的变化,最终调节全球气候,其在全球碳、硅循环中的作用最近才予以重视。本论文利用从东菲律宾海帕里西维拉海盆获取的两个典型的含Ethmodiscus rex硅藻席岩心WPD-03和WPD-12,通过粘土矿物、生源组分、主、微量和稀土元素、总有机碳同位素和Ethmodiscus rex碳、硅同位素的地球化学系统研究,确定了Ethmodiscus rex勃发所需营养物硅的来源及利用程度,评估了硅藻席沉积期的生产力状况,查明了硅藻席沉积期的氧化还原环境,阐述了硅藻席在热带碳循环中的驱动作用,并探讨了由古海洋响应制约的热带西太平洋硅藻席的形成机制与沉积模式。
     粘土矿物和Ethmodiscus rex硅同位素组成表明硅藻质粘土沉积期发生过显著的风尘增强过程,风尘携带的丰富硅和铁促进了Ethmodiscus rex的勃发,从而沉积硅藻席。Ethmodiscus rex特殊的生态学特征(生长于次表层水体)以及对海洋环境的特殊需求(适宜于成层化水体)可解释其勃发对风尘输入的滞后响应。
     Ethmodiscus rex硅同位素组成并结合硅藻利用可溶硅的同位素分馏模型表明硅藻席沉积的末次盛冰期(LGM),Ethmodiscus rex勃发已完全利用尽了(次)表层水中的可溶硅,即对营养物硅而言,东菲律宾海在LGM与现代一样,也处于贫营养状态。
     生源组分、总有机碳同位素和Ethmodiscus rex碳同位素组成显示古生产力从远洋粘土沉积期→硅藻质粘土沉积期→硅藻席底部沉积期明显增加,在随后的硅藻席中、上部沉积期处于高稳定状态。硅藻席沉积期估计的初级生产力、有机碳雨率(Rain rates)和埋藏生产力平均分别为248.42 g/m2 yr、61.93 g/m2 yr和5.27 g/m2 yr,其初级生产力与现代高生产力的上涌海区可比。多种生产力的定量估算表明在巨型或“树荫种”硅藻生产力评估中要格外谨慎,应区分其代表的“深部”生产力和透光带普通浮游植物代表的“表层”生产力模式。
     主、微量和稀土元素组成表明远洋粘土、硅藻质粘土和硅藻席分别沉积于氧化、亚氧化和硫化缺氧的环境,但硅藻席沉积期的底层水为亚氧化条件。研究区LGM的深部大洋环流模式以及生产力状况联合表明硅藻席沉积的硫化缺氧环境并不是大洋侧向环流减弱引起的水体滞流造成,而主要是Ethmodiscus rex勃发导致的大规模有机质输出到海底而耗尽溶解O2所致。
     Ethmodiscus rex碳同位素组成表明LGM时,Ethmodiscus rex勃发消耗了(次)表层水中大量的溶解CO2(CO2(aq)),使硅藻质粘土-硅藻席过渡处CO2(aq)从15.4μmol/L锐减到6.5μmol/L,PCO2也相应地从545 ppmv急减到231 ppmv。硅藻席沉积期PCO2平均为220 ppmv,明显低于硅藻质粘土沉积期的PCO2(平均为440 ppmv),且PCO2总体上逐渐减小,在LDM上部(0~125 cm)沉积期明显低于LGM时全球PCO2(180~200 ppmv),综合表明硅藻席确实扮演“碳汇”角色,最终使研究区(东菲律宾海帕里西维拉海盆)逐渐演化成CO2的汇。
     综合研究表明东菲律宾海的硅藻席由成席的巨型“树荫种”硅藻Ethmodiscus rex吸收风尘硅,并由风尘铁刺激,在大洋成层化条件下勃发,随后“秋季倾泻”而沉积。现有资料似乎不支持“锋面作用”在研究区硅藻席的形成中起作用,也不支持南大洋“硅溢漏”作用带入可溶硅供Ethmodiscus rex勃发。
Diatom mats play an important role in changing partial pressure of atmospheric carbon dioxide (PCO2) and, consequently modulating global climate by massive flux of organic carbon and biogenic silicon to seafloor and improved efficiency of marine biological pump. However, their significances in global carbon and silicon cycles have not heretofore been sufficiently emphasized. Two sediment cores (WPD-03 and WPD-12) with laminated Ethmodiscus rex diatom mats (LDM), located in the Parece Vela Basin of the eastern Philippine Sea, were used to trace the source and relative utilization degree of nutrient Si for the blooming of Ethmodiscus rex, evaluate paleoproductivity levels and reconstruct paleoredox environments during the LDM deposition by measurements of clay minerals, biogenic components, major, trace and rare earth elements, total organic carbon isotope, and Ethmodiscus rex carbon and silicon isotopes. Furthermore, we elucidated the deriving force of LDM in tropical carbon cycle and, finally explored the paleoceanographic constraints on the formation and deposition of LDM from tropical West Pacific.
     Clay mineral and Ethmodiscus rex silicon isotope compositions show that, during the diatomaceous clay (DC) deposition, it recorded a remarkable strengthened eolian accumulation, which imported plentiful silicon and iron to promote the blooming of Ethmodiscus rex probably and consequently resulted in the formation of LDM. Special ecological characteristics (i.e. populating in subsurface seawater) and peculiar demands on marine environments (i.e. adapted to stratified seawater) of Ethmodiscus rex could result in the lag response of their blooming to dust inputs.
     With the isotope fractionation model of diatom for dissolved silicon utilization, Ethmodiscus rex silicon isotope composition suggests that Ethmodiscus rex completely consumed the silicic acid during the Last Glacial Maximum (LGM) of LDM deposition. As a result, for the nutrient silicic acid, the eastern Philippine Sea was characterized by oligotrophic conditions during the LGM, the same as at present.
     Biogenic component, total organic carbon isotope and Ethmodiscus rex carbon isotope compositions indicate that paleoproductivity increased through time during deposition of the pelagic clay (PC), DC, and basal LDM, followed by a stabilization during deposition of middle and upper LDM. Primary productivity, organic carbon rain rates, burial productivity during the LDM deposition were averagely estimated to 248.42 g/m2 yr, 61.93 g/m2 yr and 5.27 g/m2 yr, respectively. Thereinto, the primary productivity is comparable to those of some modern continent-margin upwelling zones. Moreover, the estimations for several kinds of productivity above suggest that a caution must be taken to assess the‘deep’productivity represented by giant and‘shade flora’diatoms, which should be distinguishable from classic‘surface’productivity characterized by common phytoplankton in the photic zone.
     Major, trace and rare earth element compositions infer that the LDM, DC and PC accumulated under sulfidic anoxic, suboxic and oxic conditions, respectively, while redox conditions in eastern Philippine Sea bottom waters during the LDM deposition were probably largely suboxic. Sulfidic anoxic conditions within the LDM appear to have coincided with marine productivity maxima, thus suggesting that oxygen depletion in the pore water and at the seawater-sediment interface may have been linked to an increased flux of organic matter to the seafloor rather than to restricted lateral circulation.
     Ethmodiscus rex carbon isotope compositions suggest that the blooming of Ethmodiscus rex during the LGM consumed plenty of dissolved CO2 in seawater (CO2(aq)). In the DC-LDM transition, the CO2(aq) content rapidly decreased from 15.4μmol/L to 6.5μmol/L; Accordingly, PCO2 also distinctly reduced from 545 ppmv to 231 ppmv. Average PCO2 of about 220 ppmv during the LDM deposition is markedly lower than that of about 440 ppmv during the DC deposition, and PCO2 gradually decreased to the level evident lower than LGM global PCO2 arranging from 180 to 200 ppmv during deposition of upper LDM, suggesting LDM played a substantial‘carbon sink’role, and finally developed the eastern Philippine Sea into an obvious sink for CO2.
     Integrated analysis suggest that mat-forming, giant and‘shade flora’diatom Ethmodiscus rex utilized dust silicon, bloomed in the stratified seawater with the stimulation of dust Fe and then deposited to LDM by the‘fall dump’in the eastern Philippine Sea. Available data suggest that the LDM appear not to have been associated with frontal zone, and no dissolved silicon from the Southern Ocean described as the silicic acid leakage hypothesis promoted the blooming of Ethmodiscus rex in the eastern Philippine Sea.
引文
Abrantes, F., 2001. Assessing the Ethmodiscus ooze problem: new perspective from a study of an eastern equatorial core. Deep-Sea Research I 48, 125-135.
    Achterberg, E.P., van den Berg, C.M.G., Boussemart, M., et al., 1997. Speciation and cycling of trace metals in Esthwaite water: a productive English lake with seasonal deep-water anoxia. Geochimica et Cosmochimica Acta 61, 5233-5253.
    Addy, S.K., 1979. Rare earth element patterns in manganese nodules and micronodules from northwest Atlantic. Geochimica et Cosmochimica Acta 43, 1105-1115.
    Algeo, T.J., Maynard, J.B., 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology 206, 289-318.
    Algeo, T.J., Tribovillard, N., 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology 268, 211-225.
    Alibo, D.S., Nozaki, Y., 1999. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation. Geochimica et Cosmochimica Acta 63 (3/4), 363-372.
    Alleman, L.Y., Cardinal, D., Cocquyt, C., et al, 2005. Silicon isotopic fractionation in Lake Tanganyika and its tributaries. Journal of Great Lakes Research 31 (4), 509-519.
    Altabet, M.A., Francois, R., 1994. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Global Biogeochemical Cycles 8 (1), 103-116.
    Aoki, S., Kohyama, N., 1991. The vertical change in clay mineral composition and chemical characteristics of smectite in sediment cores from the southern part of the Central Pacific Basin. Marine Geology 98 (1), 41-49.
    Aplin, A.C., Cronan, D.S., 1985. Ferromanganese oxide deposits from the Central Pacific Ocean, I. Encrustations from the Line Islands Archipelago. Geochimica et Cosmochimica Acta 49, 427-436.
    Archer, D., Winguth, A., Lea, D., et a1., 2000. What caused the glacial/interglacial atmospheric pCO2 cycles? Reviews of Geophysics 38 (2), 159-89.
    Arnold, E., Merrill, J., Leinen, M., et al., 1998. The effect of source area and atmospheric transport on mineral aerosol collected over the North Pacific Ocean. Global and PlanetaryChange 18, 137-159.
    Arthur, M.A., Sageman, B.B., 1994. Marine black shales: Depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Sciences 22, 499-551.
    Azmy, K., Sylvester, P., de Oliveira, T.F., 2009. Oceanic redox conditions in the Late Mesoproterozoic recorded in the upper Vazante Group carbonates of S?o Francisco Basin, Brazil: Evidence from stable isotopes and REEs. Precambrian Research 168, 259-270.
    Basile-Doelsch, I., 2006. Si stable isotopes in the Earth’s surface: A review. Journal of Geochemical Exploration 88, 252-256.
    Behl, R.J., Kennett, J.P., 1996. Brief interstadial events in the Santa Barbara Basin, NE Pacific, during the past 60 kyr. Nature 379, 243-246. Benitez-Nelson, C.R., 2000. The biogeochemical cycling of phosphorus in marine systems. Earth-Science Reviews 51, 109-135. Bentaleb, I., Fontugne, M., Descilas-Gros, C., 1996. Organic carbon isotopic composition of phytoplankton and sea-surface pCO2 reconstructions in the Southern Indian Ocean during the last 50,000 yr. Organic Geochemistry 24 (4), 399-410
    Bern, C.R., Brzezinski, M.A., Beucher, C., et al., 2010. Weathering, dust, and biocycling effects on soil silicon isotope ratios. Geochimica et Cosmochimica Acta 74, 876-889.
    Bernardez, P., Prego, R., Frances. G., et al., 2005. Opal content in the Ria de Vigo and Galician continental shelf: biogenic silica in the muddy fraction as an accurate paleoproductivity proxy. Continental Shelf Research 25, 1249-1264.
    Beucher, C.P., Brzezinski, M.A., Crosta, X., 2007. Silicic acid dynamics in the glacial sub-Antarctic: Implications for the silicic acid leakage hypothesis. Global Biogeochemical Cycles 21, GB3015, doi: 10.1029/2006GB002746.
    Biscaye, P.E., 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Gological Society of America Bulletin 76, 803-831.
    Bodén, P., Backman, J., 1996. A laminated sediment sequence from northern North Atlantic Ocean and its climatic record. Geology 24, 507-510.
    Boning, P., Brumsack, H.-J., B?ttcher, M.E., et al., 2004. Geochemistry of Peruvian near-surface sediments. Geochimica et Cosmochimica Acta 68, 4429-4451.
    Bradtmiller, L.I., Anderson, R.F., Fleischer, M.Q., et al., 2006. Diatom productivity in the equatorial Pacific Ocean from the last glacial period to the present: A test of the silicic acid leakage hypothesis. Paleoceanography 21, PA4201, doi: 10.1029/2006PA001282.
    Brandriss, M.E., O’Neil, J.R., Edlund, M.B., et al., 1998. Oxygen isotope fractionation between diatomaceous silica and water. Global Biogeochemical Cycles 62 (7), 1119-1125.
    Brewer, T.S., Leng, M.J., Mackay, A.W., et al., 2008. Unravelling contamination signals in biogenic silica oxygen isotope composition: the role of major and trace element geochemistry. Journal of Quaternary Science 23 (4), 321-330.
    Broecker, W., Clark, E., Lynch-Stieglitz, J., et al., 2000. Late glacial diatom accumulation at 9°S in the Indian Ocean. Paleoceanography 15, 348-353.
    Brookins, D.G., 1989. Aqueous geochemistry of rare earth elements. In: Lipin, B.R., McKay, G.A., eds., Geochemistry and Mineralogy of Rare Earth Elements. Mineralogical Society of America, Reviews in Mineralogy, volume 21, 201-225.
    Brumsack, H.J., 1989. Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea. Geologische Rundschau 78, 851-882.
    Brumsack, H.J., 2006. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeography, Palaeoceanography, Palaeoecology 232, 344-361.
    Brunelle, B.G., Sigman, D.M., Cook, M.S., et al., 2007. Evidence from diatom-bond nitrogen isotopes for subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes. Paleoceanography 22, PA1215, doi: 10.1029/2005PA001205.
    Brzezinski, M.A., Pride, C.J., Franck, V.M., et al, 2002. A switch from Si(OH)4 to NO3- depletion in the glacial Southern Ocean. Geophysical Research Letters 29 (12), 1564, doi: 10.1029/ 2001GL014349.
    Bukry, D., 1974. Coccolith and silicoflagellate stratigraphy, Eastern Indian Ocean, Deep Sea Drilling Project Leg 22. In: von der Borch, C.C., Sclater, J.G., Gartner Jr, S,, et al., eds., Initial Reports of the Deep Sea Drilling Project, volume 22. Washington: U.S. Government Printing Office, 601-607.
    Bull, D., Kemp, A.E.S., Weedon, G.P., 2000. A 160-k.y.-old record of El Nino-Southern Oscillation in marine production and coastal runoff from Santa Barbara Basin, California,USA. Geology 28, 1007-1010.
    Caetano, M., Prego, R., Vale, C., et al., 2009. Record of diagenesis of rare earth elements and other metals in a transitional sedimentary environment. Marine Chemistry 116, 36-46.
    Calvert, S.E., Pedersen, T.F., 1993. Geochemistry of recent oxic and anoxic sediments: implications for the geological record. Marine Geology 113, 67-88.
    Calvert, S.E., Pedersen, T.F., 1996. Sedimentary geochemistry of manganese: implications for the environment of formation of manganiferous black shales. Economic Geology 91, 36-47.
    Calvert, S.E., Piper, D.Z., 1984. Geochemistry of ferromanganese nodules from DOMES site a, Northern Equatorial Pacific: multiple diagenetic metal sources in the deep sea. Geochimica et Cosmochimica Acta 48, 1913-1928.
    Calvert, S.E., Price, N.B., 1983. Geochemistry of Namibian shelf sediments. In: Suess, E., Thiede, J., eds., Coastal Upwelling——Its Sediment Record, Part A: Response of the Sedimentary Regime to Present Coastal Upwelling, volume 10. New York: Plenum Press, 337-375.
    Canfield, D.E., 1994. Factors influencing organic carbon preservation in marine sediments. Chemical Geology 114, 315-329.
    Cardinal, D., Alleman, L.Y., Dehairs, F., et al., 2005. Relevance of silicon isotopes to Si-nutrient utilization and Si-source assessment in Antarctic waters. Global Biogeochemical Cycles 19, GB2007, doi: 10.1029/2004GB002364.
    Cardinal, D., Savoye, N., Trull, T.W., et al., 2007. Silicon isotopes in spring Southern Ocean diatoms: Large zonal changes despite homogeneity among size fractions. Marine Chemistry 106, 46-62.
    Cassar, N., Laws, E.A., Bidigare, R.R., et al, 2004. Bicarbonate uptake by Southern Ocean phytoplankton. Global Biogeochemical Cycles 18, GB2003, doi: 10.1029/2003GB002116.
    Chaillou, G., Anschutz, P., Lavaux, G., et al., 2006. Rare earth elements in the modern sediments of the Biscay (France). Marine Chemistry 100, 39-52. Chamley, H., 1989. Clay Sedimentology. Springer, Berlin.
    Colley, S., Thomson, J., Wilson, T.R.S., et al., 1984. Post-depositional migration of elements during diagenesis in brown clay and turbidite sequences in the North East Atlantic. Geochimica et Cosmochimica Acta 48, 1223-1235.
    Coplen, T.B., Hopple, J.A., B?hlke, J.K., 2002. Compilation of Minimum and Maximum IsotopeRatios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents. U. S. Geological Survey, Reston Virginia, 19-29.
    Cortese, G., Gersonde, R., Hillenbrand, C.D., et al., 2004. Opal sedimentation shifts in the World Ocean over the last 15 Myr. Earth and Planetary Science Letters 224, 509-527.
    Crosta, X., Ko?, N., 2007. Diatoms: From micropaleontology to isotope geochemistry. In: Hilaire-Marcel. C., de Vernal, A., eds., Proxies in Late Cenozoic Paleoceanography, Developments in Marine Geology Series, Volume 1. Amsterdam: Elsevier, 327-369.
    Crosta, X., Shemesh, A., 2002. Reconciling down core anticorrelation of diatom carbon and nitrogen isotopic ratios from the Southern Ocean. Paleoceanography 17 (1), 1010, doi: 10.1029/2000PA000565.
    Crosta, X., Shemesh, A., Eltourneau, J., et al., 2005. Nutrient cycling in the Indian sector of the Southern Ocean over the last 50,000 years. Global Biogeochemical Cycles 19, GB3007, doi: 10.1029/2004GB002344.
    Crosta, X., Shemesh, A., Salvignac, M.E., et al., 2002. Late Quaternary variations of elemental ratios (C/Si and N/Si) in diatom-bound organic matter from the Southern Ocean. Deep-Sea Research II 49, 1939-1952.
    Cruse, A.M., Lyons, T.W., 2004. Trace metal records of regional paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black shales. Chemical Geology 206, 319-345.
    Crusius, J., Thomson, J., 2000. Comparative behavior of authigenic Re, Mo and U during reoxidation and subsequent long-term burial in marine sediments. Geochimica et Cosmochimica Acta 64, 2233-2242.
    Davis, J.C., 2002. Statistics and Data Analysis in Geology, 3rd ed. John Wiley & Sons, New York. de Baar, H.J.W., Boyd, P.W., Coale, K.H., et al., 2005. Synthesis of iron fertilization experiments: From the Iron Age in the Age of Enlightenment. Journal of Geophysical Research 110, doi: 10.1029/2004JC002601.
    De Baar, H.J.W., German, C.R., Elderfield, H., et al., 1988. Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochimica et Cosmochimica Acta 52, 1203-1219.
    De Carlo, E.H., 1991. Paleoceanographic implications of rare earth element variability within a Fe-Mn crust from the central Pacific Ocean. Marine Geology 98, 449-467.
    De Carlo, E.H., Green, W.J., 2002. Rare earth elements in the water column of Lake Vanda,McMurdo Dry Valleys, Antarctica. Geochimica et Cosmochimica Acta 66 (8), 1323-1333.
    De Deckker, P., Gingele, F.X., 2002. On the occurrence of the giant diatom Ethmodiscus rex in an 80-ka record from a deep-sea core, southeast of Sumatra, Indonesia: implications for tropical oceanography. Marine Geology 183, 31-43.
    De La Rocha, C.L., Breszinski, M.A, DeNiro, M.J., 1997. Fractionation of silicon isotopes by marine diatoms during biogenic silica formation. Geochimica et Cosmochimica Acta 61 (23), 5051-5056.
    De La Rocha, C.L., Brzezinski, M.A., DeNiro, M., et al., 1998. Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature 395, 680-683.
    De La Rocha, C.L., Brzezinski, M.A., DeNiro, M.J., 2000. A first look at the distribution of the stable isotopes of silicon in natural waters. Geochimica et Cosmochimica Acta 64 (14), 2467-2477.
    Degens, E.T., Mopper, K., 1976. Factors controlling the distribution and early diagenesis of organic material in marine sediments. In: Riely, J.P., Chester, R., eds., Chemical Oceanography. London : Academic Press, 60-113.
    Deines, P., 1980. The isotopic composition of reduced organic carbon. In: Fritz, P., Fontes, J.C., eds., Handbook of Environmental Isotope Geochemistry, volume 1. Amsterdam: Elsevier, 329-406.
    DeMaster, D.J., 1981. The supply and accumulation of the silica in the marine environment. Geochemica et Cosmochimica Acta 45 (10), 1715-1732.
    Desprairies, A., Bonnot-Courtois, C., 1980. Relation entre la composition des smectites d'alteration sous-marine et leur cortege de terres rares. Earth and Planetary Science Letters 48, 124-130.
    Ding, T.P., 2004. Analytical methods for silicon isotope determinations. In: de Groot, P.A., eds., Handbook of Stable Isotope Analytical Techniques, volume 1. Amsterdam: Elsevier, 523-537.
    Ding, T.P., Jiang, S.Y., Wan, D.F. et al., 1996. Silicon Isotope Geochemistry. Geological Publishing House, Beijing.
    Dubinin, A.V., 2004. Geochemistry of rare earth elements in the ocean. Lithology and Mineral Resources 39 (4), 289-307.
    Duce, R.A., Liss, P.S., Merrill, J.T., et al., 1991. The atmospheric input of trace species to theworld Ocean. Global Biogeochemical Cycles 5 (3), 193-259.
    Dugdale, R.C., Wilkerson, F.P., Minas, H.J., 1995. The role of a silicate pump in driving new production. Deep-Sea Research I 42 (5), 697-719.
    Dulski, P., 1994. Interferences of oxide, hydroxide and chloride analyte species in the determination of rare earth elements in geological samples by inductively coupled plasma-mass spectrometry. Fresenius Journal of Analytical Chemistry 350, 194-203.
    Dymond, J., Suess, E., Lyle, M., 1992. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography 7, 163-181.
    Eagle, M., Paytan, A., 2006. Phase associations of barium in marine sediments. Marine Chemistry 100, 124-135.
    Ehrmann, W., 1998. Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology 139, 213-231.
    Elderfield, H., Greaves, M.J., 1981. Negative cerium anomalies in the rare earth element patterns of oceanic ferromanganese nodules. Earth and Planetary Science Letters 55, 163-170.
    Elderfield, H., Greaves, M.J., 1982. The rare earth elements in seawater. Nature 296, 214-219.
    Elderfield, H., Hawkesworth, C.J., Greaves, M.J., et al., 1981. Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments. Geochimica et Cosmochimica Acta 45, 513-528.
    Emerson, S.R., Huested, S.S., 1991. Ocean anoxia and the concentration of molybdenum and vanadium in seawater. Marine Chemistry 34, 177-196.
    Erickson, B.E., Helz, G.R., 2000. Molybdenum(VI) speciation in sulfidic waters: stability and lability of thiomolybdates. Geochimica et Cosmochimica Acta 64, 1149-1158.
    Erickson, D.J., Hernandez, J.L., Ginoux, P., et al., 2003. Atmospheric iron delivery and surface ocean biological activity in the Southern Ocean and Patagonian region. Geophysical Research Letter 30 (12), 1609, doi: 10.1029/2003GL017241.
    Esquevin, J., 1969. Influence de la composition chimique des illites surcristallinite. Bulletin du Centre de Recherches Pau-SNPA 3, 147-153.
    Fagel, N., Clay, Minerals., 2007. Deep Circulation and Climate. In: Hillaire-Marcel, C., de Vernal, A., eds., Proxies in Late Cenozoic Paleoceanography. Amsterdam: Elsevier, 139-184.
    Falkpwski, P., Scholes, R.J., Boyle, E., et al., 2000. The global carbon cycle: A test of our knowledge of earth as a system. Science 290, 291-296.
    Feng, D., Chen, D.F., Peckmann, J., 2008. Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps. Terra Nova 21 (1), 49-56.
    Fernex, F., Février, G., Bena?m, J., et al., 1992. Copper, lead and zinc trapping in Mediterranean deep-sea sediments: probable coprecipitation with Mn and Fe. Chemical Geology 98, 293-306.
    Filippelli, G. M., 2001. Carbon and phosphorus cycling in anoxic sediments of the Saanich Inlet, British Columbia. Marine Geology 174, 307-321.
    Francois, R., Altabet, M.A., Burckle, L.H., 1992. Glacial to interglacial changes in surface nitrate utilization in the Indian sector of the Southern Ocean as recorded by sedimentδ15N. Paleoceanography 7 (5), 589-606.
    Fran?ois, R., Honjo, S., Manganini, S.J., et al., 1995. Biogenic barium fluxes to the deep sea: implications for paleoproductivity reconstruction, Global Biogeochemical Cycles 9, 289-303.
    Freiser, H., Nancollas, G.H., 1987. Compendium of Analytical Nomenclature, 2nd ed. Blackwell Science, Oxford.
    Fripiat, F., 2009. Isotopic approaches of the silicon cycle: The Southern Ocean case study. Ph.D. thesis, UniversitéLibre de Bruxelles, Brussels, Belgium.
    Fripiat, F., Cardinal, D., Tison, J. L., et al., 2007. Diatom-induced silicon isotopic fractionation in Antarctic sea ice. Journal of Geophysical Research 112, G02001, doi: 10.1029/2006JG000244.
    Gallego-Torres, D., Martinez-Ruiz, F., Paytan, A., et al., 2007. Pliocene-Holocene evolution of depositional conditions in the eastern Mediterranean: role of anoxia vs. productivity at time of sapropel deposition. Palaeogeography, Palaeoclimatology, Palaeoecology 246, 424-439.
    Gardner, J.V., Burckle, L.H., 1975. Upper Pleistocene Ethmodiscus rex oozes from the eastern equatorial Atlantic. Micropaleontology 21, 236-242.
    German, C.R., Elderfield, H., 1989. Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. Geochimica et Cosmochimica Acta 53, 2561-2571.
    German, C.R., Elderfield, H., 1990. Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography 5 (5), 823-833.
    German, C.R., Holliday, B.P., Elderfield, H., 1991. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochimica et Cosmochimica Acta 55, 3553-3558.
    Gingele, F.X., 1996. Holocene climatic optimum in Southwest Africa——evidence from marine clay mineral record. Palaeogeography, Palaeoclimatology, Palaeoecology 122, 77-87.
    Gingele, F.X., De Deckker, P., Hillenbrand, C.D., 2001. Clay mineral distribution in surface sediments between Indonesia and NW Australia——source and transport by ocean currents. Marine Geology 179 (3-4), 135-146.
    Gingele, F.X., De Deckker, P., Girault, A., et al., 2002. History of the south java current over the past 80 ka. Palaeogeography, Palaeoclimatology, Palaeoecology 183, 247-260.
    Gingele, F.X., Schmieder, F., 2001. Anomalous South Atlantic lithologies confirm global scales of unusual mid Pleistocene climate excursion. Earth Planetary Science Letter 186, 93-101.
    Girard, C., Lécuyer, C., 2002. Variations in Ce anomalies of conodonts through the Frasnian/Famennian boundary of Poland (Kowala-Holy Cross Mountains): implications for the redox state of seawater and biodiversity. Palaeogeography, Palaeoclimatology, Palaeoecology 181, 299-311.
    Goldman, J.C., 1993. Potential role of large oceanic diatoms in new primary production. Deep-Sea Research I 40, 159-168.
    Goldman, J.C., McGillicuddy Jr, D.G., 2003. Effect of large marine diatoms growing at low light on episodic new production. Limnology and Oceanography 48 (3), 1176-1182.
    Griffin, J.J., Windom, H., Goldberg, E.D., 1968. The distribution of clay minerals in the world ocean. Deep-sea Research 15 (4), 433-459.
    Grigorov, I., Pearce, R.B., Kemp, A.E.S., 2002. Southern Ocean laminated diatom ooze: mat deposits and potential for palaeo-flux studies, ODP leg 177, Site 1093. Deep-Sea Research II 49, 3391-3407.
    Guichard, F., Church, T.M., Treuil, M., et al., 1979. Rare earth in barites: distribution and effects on aqueous partitioning. Geochimica et Cosmochimica Acta 43, 983-997.
    Haley, B.A., Klinkhammer, G.P., Mcmanus, J., 2004. Rare earth elements in pore waters of marine sediments. Geochimica et Cosmochimica Acta 68 (6), 1265-1279.
    Harrison, K., 2000. Role of increased marine silica input on paleo-pCO2 levels. Paleoceanography 15, 292-298.
    Hatte, C., Hodgins, G., Jull, A.J.T., et al., 2008. Marine chronology based on 14C dating on diatoms proteins. Marine Chemistry 109, 143-151.
    Helz, G.R., Miller, C.V., Charnock, J.M., et al., 1996. Mechanisms of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta 60, 3631-3642.
    Hetzel, A., B?ttcher, M.E., Wortmann, U.G., et al., 2009. Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeography, Palaeoclimatology, Palaeoecology 273, 302-328.
    Hewitt, C.D., Stouffer, R.J., Broccoli, A.J., et al., 2003. The effect of ocean dynamics in a coupled GCM simulation of the Last Glacial Maximum. Climate Dynamics 20, 203- 218.
    Holser, W., 1997. Evaluation of the application of rare-earth elements to paleoceanography. Palaeogeography, Palaeoclimatology, Palaeoecology 132, 309-323.
    Huerta-Diaz, M.A., Morse, J.W., 1992. Pyritization of trace metals in anoxic marine sediments. Geochimica et Cosmochimica Acta 56, 2681-2702.
    Ingall, E. D., Bustin, R. M., Van Cappellen, P., 1993. Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochimica et Cosmochimica Acta 57, 303-316.
    Ingall, E.D., Jahnke, R.A., 1994. Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen-depleted waters. Geochimica et Cosmochimica Acta 58, 2571-2575.
    Jacot Des Combes, H., Esper, O., De La Rocha, C.L., et al, 2008. Diatomδ13C,δ15N, and C/N since the Last Glacial Maximum in the Southern Ocean: Potential impact of Species Composition. Paleoceanography 23, PA4209, doi: 10.1029/2008PA001589.
    Jahn, B.M., Gallet, S., Han, J.M., 2001. Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: eolian dust provenance and paleosol evolution during the last 140 ka. Chemical Geology 178, 71-94.
    Ji, J.F., Chen, J., Lu, H.Y., 1999. Origin of illite in the loess from the Luochuan area, Loess Plateau, Central China. Clays and Clay Minerals 34, 525-532.
    Jiang, S.Y., Zhao, H.X., Chen, Y.Q., et al., 2007. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain ofNanjing, Jiangsu province, China. Chemical Geology 244, 584-604.
    Jickells, T.D., An, Z.S., Andersen, K.K., et al., 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67-71.
    Johannesson, K.H., Hawkins Jr, D.L., Cortés, A., 2006. Do Archean chemical sediments record ancient seawater rare earth element patterns? Geochimica et Cosmochimica Acta 70, 871-890.
    Johnson, K.M., Grimm, K.A., 2001. Opal and organic carbon in laminated diatomaceous sediments: Saanich Inlet, Santa Barbara Basin and the Miocene Monterey Formation. Marine Geology 174, 159-175.
    Juillet-Leclerc, A., 1986. Cleaning process for diatomaceous samples. In: Ricard, M., eds., Proceedings of the 8th Diatom Symposium. Koenigstein: Koeltz Scientific Books, 733-736.
    Juillet-Leclerc, A., Labeyrie, L., 1987. Temperature dependence of the oxygen isotopic fractionation between diatom silica and water. Earth and Planetary Science Letters 84, 69-74. Kakuwa, Y., Matsumoto, R., 2006. Cerium negative anomaly just before the Permian and Triassic boundary event——The upward expansion of anoxia in the water column. Palaeogeography, Palaeoclimatology, Palaeoecology 229, 335-344.
    Karig, D.E., 1975. Basin genesis in the Philippine Sea. In: Karig, D.E., Ingle Jr, J.C., et al., eds., Initial Reports of the Deep Sea Drilling Project, volume 31. Washington: U.S. Government Printing Office, 857-879.
    Karsh, K.L., Trull, T.W., Lourey, M.J., et al., 2003. Relationship of nitrogen isotope fractionation to phytoplankton size and iron availability during the Southern Ocean Iron Release Experiment (SOIREE). Limnology and Oceanography 48 (3), 1058-1068.
    Kato, Y., Nakao, K., Isozaki, Y., 2002. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: implications for an oceanic redox change. Chemical Geology 182, 15-34.
    Kawabe, M., Fujio, S., Yanagimoto, D., 2003. Deep-water circulation at low latitudes in the western North Pacific. Deep-Sea Research I 50, 631-656.
    Kemp, A.E.S., Baldauf, J.G., 1993. Vast Neogene laminated diatom mat deposits from the eastern equatorial Pacific Ocean. Nature 362, 141-143.
    Kemp, A.E.S., Pearce, R.B., Grigorov, I., et al., 2006. Production of giant marine diatoms andtheir export at oceanic frontal zones: implications for Si and C flux from stratified oceans. Global Biogeochemical Cycles 20, GB4S04, doi: 10.1029/2006GB002698.
    Kemp, A.E.S., Pike, J., Pearce, R.B., et al., 2000. The“Fall Dump”——a new perspective on the role of a“shade flora”in the annual cycle of diatom production and exportation. Deep-Sea Research II 47, 2129- 2154.
    Kidder, D.L., Krishnaswamy, R., Mapes, R.H., 2003. Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis. Chemical Geology 198, 335-353.
    Kienast, M., Calvert, S.E., Pelejero, C., 2001. A critical review of marine sedimentary δ13Corg-pCO2 estimates: New palaeorecords from the South China Sea and a revisit of other low-latitudeδ13Corg-pCO2 records. Global Biogeochemical Cycles 15 (1), 113-127.
    Kienast, S.S., Kienast, M., Jaccard, S., et al., 2006. Testing the silicic acid leakage hypothesis with sedimentary opal records from the eastern equatorial Pacific over the last 150 kyrs. Geophysical Research Letter 33, L15607, doi: 10.1029/2006GL026651.
    King, S.C., Murray, J.W., Kemp, A.E.S., 1998. Palaeoenvironments of deposition of Neogene laminated diatom mat deposits from the eastern equatorial Pacific from studies of benthic foraminifera (Sites 844, 849, 851). Marine Micropalaeontology 35, 161-177.
    Kitoh, A., Murakami, S., Koide, H., 2001. A simulation of the last glacial maximum with a coupled atmosphere-ocean GCM. Geophysical Research Letters 28, 2221-2224.
    Klinkhammer, G.P., Palmer, M.R., 1991. Uranium in the oceans: where it goes and why. Geochimica et Cosmochimica Acta 55, 1799-1806.
    Kolla, V., Nadler, L., Bonatti, E., 1980. Clay mineral distributions in surface sediments of the Philippine Sea. Oceanologica Acta 3 (2), 245-250.
    Koschinsky, A., Halbach, P., 1995. Sequential leaching of marine ferromanganese precipitates: genetic implications. Geochimica et Cosmochimica Acta 59, 5113-5132.
    Kroenke, L., Scott, R. B., Balshaw, K., et al., 1981. Site 449: west side of the Parece Vela Basin. In: Kroenke, L., Scott, R. B., Balshaw, K., et al., eds., Initial Reports of the Deep Sea Drilling Project, volume 59. Washington: U.S. Government Printing Office, 321-353.
    Kroger, N., Deutzmann, R., Sumper, M., 1999. Polycationic peptides from diatom biosilica that direct silica nannosphere formation. Science 286, 1129-1132.
    Kuhn, T., Bau, M., Blum, N., et al., 1998. Origin of negative Ce anomalies in mixed hydrothermal-hydrogenetic Fe-Mn crusts from the Central Indian Ridge. Earth and Planetary Science Letters 163, 207-220.
    Labeyrie, L.D., 1974. New approach to surface seawater paleotemperatures using 18O/16O ratios in silica of diatom frustules. Nature 248, 40-42.
    Labeyrie, L.D., Juillet, A., 1982. Oxygen isotopic exchangeability of diatom valve silica; interpretation and consequences for palaeoclimatic studies. Geochimica et Cosmochimica Acta 46, 967-975.
    Lacan, F., Jeandel, C., 2001. Tracing Papua New Guinea imprint on the central Equatorial Pacific Ocean using neodymium isotopic compositions and rare earth element patterns. Earth and Planetary Science Letters 186, 497-512.
    Lamb, A.L., Brewer, T.S., Leng, M.J., et al., 2007. A geochemical method for removing the effect of tephra on lake diatom oxygen isotope records. Journal of Paleolimnology 37, 499-516.
    Lamb, A.L., Leng, M.J., Sloane, H.J., et al., 2005. A comparison of the palaeoclimatic signals from diatom oxygen isotope ratios and carbonate oxygen isotope ratios from a low latitude crater lake. Palaeogeography, Palaeoclimatology, Palaeoecology 223, 290-302.
    Lamb, A.L., Wilson, G.P., Leng, M.J., 2006. A review of coastal palaeoclimate and relative sea-level reconstructions usingδ13C and C/N ratios in organic material. Earth-Science Reviews 75, 29-57.
    Lea, D.W., 2002. The Glacial tropical Pacific——not just a west side story. Science 297, 202-203.
    Lea, D.W., Pak, D.K., Spero, H.J., 2000. Climate impact of late Quaternary Equatorial Pacific sea surface temperature variations. Science 289, 1718-1724.
    Lewan, M.D., Maynard, J.B., 1982. Factors controlling the enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochimica et Cosmochimica Acta 46, 2547-2560.
    Li, T., Masuzawa, T., Kitagawa, H., 2004. Seasonal variations in settling fluxes of major components in the oligotrophic Shikoku Basin, the western North Pacific: coincidence of high biogenic flux with Asian dust supply in spring. Marine Chemistry 91, 187-210.
    Liu, Y.G., Miah, M.R.U., Schmitt, R.A., 1988. Cerium: A chemical tracer for paleo-oceanic redox conditions. Geochimica et Cosmochimica Acta 52, 1361-1371.
    Liu, Z.F., Tuo, S.T., Colin, C., et al., 2008. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Marine Geology 255, 149-155.
    Loubere, P., Siedlecki, S.A., Bradtmiller, L.I., 2007. Organic carbon and carbonate fluxes: Links to climate change. Deep-Sea Research II 54, 437-446.
    MacLeod, K.G., Irving, A.J., 1996. Correlation of cerium anomalies with indicators of paleoenvironment. Journal of Sedimentary Research 66 (5), 948-955.
    MacRae, N.D., Nesbitt, H.W., Kronberg, B.I., 1992. Development of a positive Eu anomaly during diagenesis. Earth and Planetary Science Letters 109, 585-591.
    Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1, 493-509.
    Martin, J.H., 1990. Glacial-interglacial CO2 change: The iron hypothesis. Paleoceanography 5, 1-13.
    Martínez-Ruiz, F., Kastner, M., Paytan, A., et al., 2000. Geochemical evidence for enhanced productivity during S1 sapropel deposition in the eastern Mediterranean. Paleoceanography 15, 200-209.
    Martinez-Ruiz, F., Ortega-Huertas, M., Palomo, I., 1999. Positive Eu anomaly development during diagenesis of the K/T boundary ejecta layer in the Agost section (SE Spain): implications for trace-element remobilization. Terra Nova 11 (6), 290-296.
    Martini, E., 1981. Pliocene and Quaternary diatoms, silicoflagellates, sponge spicules, and endoskeletal dinoflagellates from the Philippine Sea, Deep Sea Drilling Project Legs 59 and 60. In: Hussong, D.M., Uyeda, S., Blanchet. R., et al, eds., Initial Reports of the Deep Sea Drilling Project, volume 60. Washington: U.S. Government Printing Office, 565-574.
    Maslin, M.A., Swann, G.A., 2006. Isotopes in marine sediments. In: Leng, P.A., eds., Isotopes in Palaeoenvironmental Research, volume 10. Dordrecht: Springer, 227-290.
    Matheney, R.K., Knauth, L.P., 1989. Oxygen-isotope fractionation between marine biogenic silica and seawater. Geochimica et Cosmochimica Acta 53, 3207-3214.
    Matsumoto, K., Sarmiento, J.L., 2008. A corollary to the silicic acid leakage hypothesis. Paleoceanography 23, PA2203, doi: 10.1029/2007PA001515.
    Matsumoto, K., Sarmiento, J.L., Brzezinski, M.A., 2002. Silicic acid leakage from the SouthernOcean: A possible explanation for glacial atmospheric pCO2. Global Biogeochemical Cycles 16 (3), doi: 10.1029/2001GB001442.
    Mazumdar, A., Banerjee, D.M., Schidlowski, M., et al., 1999. Rare-earth elements and stable isotope geochemistry of early Cambrian chert-phosphorite assemblages from the Lower Tal Formation of the Krol Belt (Lesser Himalaya, India). Chemical Geology 156, 275-297.
    McCave, I.N., Manighetti, B., Beveridge, N.A.S., 1995. Circulation in the glacial North Atlantic inferred from grain-size measurements. Nature 374, 149-152.
    McManus, J., Berelson, W.M., Klinkhammer, G.P., et al., 1998. Geochemistry of barium in marine sediments: implications for its use as a paleoproxy. Geochimica et Cosmochimica Acta 62, 3453-3473.
    McManus, J., Berelson, W.M., Klinkhammer, G.P., et al., 2005. Authigenic uranium: relationship to oxygen penetration depth and organic carbon rain. Geochimica et Cosmochimica Acta 69, 95-108.
    Meyers, P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114, 289-302.
    Mikkelsen, N., 1977. On the origin of Ethmodiscus ooze. Marine Micropaleontology 2, 35-46. Mikkelsen, N., Labeyrie, L., Berger, W.H., 1978. Silica oxygen isotopes in diatoms: a 20,000 yr record in deep-sea sediments. Nature 271, 536-538.
    Milligan, A.J., Varela, D.E., Brzezinski, M.A., et al., 2004. Dynamics of silicon metabolism and silicon isotopic discrimination in a marine diatom as a function of pCO2. Limnology and Oceanography 49 (2), 322-329.
    Moore, D. M., Reynolds, R.C., 1997. X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford.
    Morad, S., Felitsyn, S., 2001. Identification of primary Ce-anomaly signatures in fossil biogenic apatite: implication for the Cambrian oceanic anoxia and phosphogenesis. Sedimentary Geology 143, 259-264.
    Morford, J.L., Emerson, S., 1999. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta 63, 1735-1750.
    Morford, J.L., Russell, A.D., Emerson, S., 2001. Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediments,Saanich Inlet, BC. Marine Geology 174, 355-369.
    Morley, D.W., Leng, M.J., Mackay, A.W., et al., 2004. Cleaning of lake sediment samples for diatom oxygen isotope analysis. Journal of Paleolimnology 31, 391-401.
    Morley, D.W., Leng, M.J., Mackay, A.W., et al., 2005. Late Glacial and Holocene environmental change in the Lake Baikal region documented by oxygen isotopes from diatom silica. Global and Planetary Change 46, 221-233.
    Morse, J.W., Luther, G.W., III, 1999. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta 63, 3373-3378.
    Mort, H.P., Adatte, T., Follmi, K.B., et al., 2007. Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2. Geology 35, 483-486.
    Mortlock, R.A., Froelich, P.N., 1989. A simple method for the rapid-determination of biogenic opal in pelagic marine-sediments. Deep-Sea Research I 36, 1415-1426.
    Moschen, R., Lucke, A., Parplies, J., 2005. Transfer and early diagenesis of biogenic silica oxygen isotope signals during settling and sedimentation of diatoms in a temperate freshwater lake (Lake Holzmaar, Germany). Geochimica et Cosmochimica Acta 70, 4367-4379.
    Moschen, R., Lucke, A., Schleser, G., 2005. Sensitivity of biogenic silica oxygen isotopes to changes in surface water temperature and palaeoclimatology. Geophysical Research Letters 32, L07708, doi: 10.1029/2004GL022167.
    Muller, P.J., Schneider, R., 1993. An automated leaching method for the determination of opal in sediments and particulate matter. Deep-Sea Research I 40 (3), 425-444.
    Munksgaard, N.C., Lim, K., Parry, D.L., 2003. Rare earth elements as provenance indicators in Norh Australian estuarine and coastal marine sediments. Estuarine, Coastal and Shelf Science 57, 399-409.
    Murdmaa, I.O., Demidenko, Y.L., Kurnosov, V.B., et al., 1977. Composition and rates of accumulation of clayey sediments in the Philippine Sea. Oceanology 17, 318-321.
    Murray, R.W., Buchholtz ten Brink, M.R., Brumsack, H.J., et al., 1991. Rare earth elements in Japan sea sediments and diagenetic behavior of Ce/Ce*: results from ODP Leg 127. Geochimica et Cosmochimica Acta 55, 2453-2466.
    Murray, R.W., Leinen, M., 1996. Scavenged excess Al and its relationship to bulk Ti in biogenic sediment from the central equatorial Pacific Ocean. Geochimica et Cosmochimica Acta 60,3869-3878.
    Murray, R.W., Leinen, M., Isern, A.R., 1993. Biogenic flux of Al to sediment in the central equatorial Pacific Ocean: evidence for increased productivity during glacial periods. Paleoceanography 8, 651-670.
    Nagel, U., Muller, G., Schumann, D., et al., 1981. Mineralogy of sediments cored during Deep Sea Project Leg 58-60 in the North and South Philippine Sea: Results of X-ray Diffraction Analyses. In: Hussong, D.M., Uyeda, S., Blanchet, R., et al., eds., Initial Reports of the Deep Sea Drilling Project, volume 60. Washington: U.S. Government Printing Office, 415-435.
    Nameroff, T.J., Balistrieri, L.S., Murray, J.W., 2002. Suboxic trace metal geochemistry in the eastern tropical North Pacific. Geochimica et Cosmochimica Acta 66, 1139-1158.
    Nath, B.N., Balaram, V., Sudhakar, M., et al., 1992. Rare earth element geochemistry of ferromanganese deposits from the Indian Ocean. Marine Chemistry 38, 185-208.
    Nechaev, V.P., 1991. Evolution of the Philippine and Japan Seas from the clastic sediment record. Marine Geology 97, 167-190.
    Nelson, D.M., Tréguer, P., Brzezinski, M.A., et al., 1995. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles 9 (3), 359-372.
    Nozaki, Y., 2009. Rare earth elements and their isotopes. In: Steele, J., Thorpe, S., Turekian, K., eds., Encyclopedia of ocean sciences. New York: Academic Press, 653-665.
    Nozaki, Y., Yamamoto, Y., 2001. Radium 228 based nitrate fluxes in the eastern Indian Ocean and the South China Sea and a silicon-induced‘‘alkalinity pump’’hypothesis. Global Biogeochemical Cycles 15 (3), 555-567.
    Palmer, M.R., 1985. Rare earth elements in foraminifera tests. Earth and Planetary Science Letters 73, 285-298.
    Palmer, M.R., Elderfield, H., 1986. Rare earth elements and neodymium isotopes in ferromanganese oxide coatings of Cenozoic foraminifera from the Atlantic Ocean. Geochimica et Cosmochimica Acta 50, 409-417.
    Parsons, T.R., Stephens, K., Strickland, J.D.H., 1961. On the chemical composition of eleven species of phytoplankters. Journal of the Fisheries Research Board of Canada 18, 1001-1016.
    Pattan, J.N., Banakar, V.K., 1997. Diagenetic remobilization of rare earth elements in a sedimentcore from the central Indian Basin. Indian Journal of Marine Sciences 26, 341-344.
    Pattan, J.N., Pearce, N.J.G., 2009. Bottom water oxygenation history in southeastern Arabian Sea during the past 140 ka: results from redox-sensitive elements. Palaeogeography, Palaeoclimatology, Palaeoecology 280, 396-405.
    Pattan, J.N., Pearce, N.J.G., Mislankar, P.G., 2005. Constraints in using Cerium-anomaly of bulk sediments as an indicator of paleo bottom water redox environment: A case study from the Central Indian Ocean Basin. Chemical Geology 221, 260-278.
    Pattan, J.N., Shane, P., 1999. Excess aluminum in deep sea sediments of the Central Indian Basin. Marine Geology 161, 247-255.
    Paytan, A., Griffith, E.M., 2007. Marine barite: Recorder of variations in ocean export productivity. Deep-Sea Research II 54, 687-705.
    Petschick, R., Kuhn, G., Gingele, F., 1996. Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Marine Geology 130, 203-229.
    Pettke, T., Halliday, A.N., Hall, C.M., et al., 2000. Dust production and deposition in Asia and the north Pacific Ocean over the past 12 Myr. Earth and Planetary Science Letters 178, 397-413.
    Pichevin, L.E., Reynolds, B.C., Ganeshram, R.S., et al., 2009. Enhanced carbon pump inferred from relaxation of nutrient limitation in the glacial ocean. Nature 459, 1114-1118.
    Piepgras, D.J., Jacobsen, S.B., 1992. The behavior of rare earth elements in seawater: Precise determination of variations in the North Pacific water column. Geochimica et Cosmochimica Acta 56, 1851-1862.
    Pike, J., 2000. Backscattered electron imagery analysis of Early Pliocene laminated Ethmodiscus ooze, Site 1010. In: Lyle, M., Koizumi, I., Richter, C., et al., eds., Proceedings of the Ocean Drilling Program, Scientific Results, volume 167. Texas (Ocean Drilling Program): College Station, 207-212.
    Pike, J., Kemp, A.E.S., 1999. Diatom mats in Gulf of California sediments: implications for the paleoenvironmental interpretation of laminated sediments and silica burial. Geology 27, 311-314.
    Piper, D.Z., 1974a. Rare earth elements in ferromanganese nodules and other marine phases. Geochimica et Cosmochimica Acta 38, 1007- 1022.
    Piper, D.Z., 1974b. Rare earth elements in the sedimentary cycle: a summary. Chemical Geology14, 285-304.
    Piper, D.Z., Baedecker, P.A., Crock, J.G., et al., 1988. Rare-earth elements in the phosphatic-enriched sediment of the Peru Shelf. Marine Geology 80, 269-285.
    Piper, D.Z., Perkins, R.B., Rowe, H.D., 2007. Rare-earth elements in the Permian Phosphoria Formation: Paleo proxies of ocean geochemistry. Deep-Sea Research II 54, 1396-1413.
    Popp, B.N., Laws, E.A., Bidigare, R.R., et al., 1998. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochimica et Cosmochimica Acta 62 (1), 69-77.
    Popp, B.N., Trull, T., kenig, F., et al., 1999. Controls on the carbon isotopic composition of Southern Ocean phytoplankton. Global Biogeochemical Cycles 13 (4), 827-843.
    Pudsey, C.J., Howe, J.A., 1998. Quaternary history of the Antarctic Circumpolar Current: evidence from the Scotia Sea. Marine Geology 148, 83-112.
    Qiu, B., 2001. Kuroshio and Oyashio currents. In: Steele, J.H., eds., Encyclopedia of Ocean Sciences. New York: Academic Press, 1413-1425.
    Ragueneau, O., Treguer, P., Leynaert, A., et al., 2000. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change 26, 317-365.
    Rau, G.H., Takahashi, T., Des Marais, D.J., 1989. Latitudinal variations in planktonδ13C: implications for CO2 and productivity in past oceans. Nature 341, 516-518.
    Reimann, C., Filzmoser, P., Garrett, R.G., 2002. Factor analysis applied to regional geochemical data: Problems and possibilities. Applied Geochemistry 17, 185-206.
    Reynolds, B.C., Frank, M., Halliday, A.N., 2006. Silicon isotope fractionation during nutrient utilization in the North Pacific. Earth and Planetary Science Letters 244, 431-443.
    Reynolds, B.C., Frank, M., Halliday, A.N., 2008. Evidence for a major change in silicon cycling in the subarctic North Pacific at 2.73 Ma. Paleoceanography 23, PA4219, doi: 10.1029/2007PA001563.
    Rings, A., Lucke, A., Schleser. G.H., 2004. A new method for the quantitative separation of diatom frustules from lake sediments. Limnology and Oceanography: Methods 2, 25-34.
    Robinson, R.S., Brunelle, B.G., Sigman, D.M., 2004. Revisiting nutrient utilization in the glacial Antarctic: Evidence from a new method for diatom-bound N isotopic analysis.
    Paleoceanography 19, PA3001, doi: 10.1029/2003PA000996.
    Robinson, R.S., Sigman, D.M., DiFiore, P.J., et al., 2005. Diatom-bound 15N/14N: New support for enhanced nutrient consumption in the ice age subantarctic. Paleoceanography 20, PA3003, doi: 10.1029/2004PA001114.
    Robinson, S.G., 1986. The late Pleistocene palaeoclimatic record of North Atlantic deep-sea sediments revealed by mineral-magnetic measurements. Physics of the Earth and Planetary Interiors 42, 22-47.
    Romero, O., Schmieder, F., 2006. Occurrence of thick Ethmodiscus oozes associated with a terminal Mid-Pleistocene Transition event in the oligotrophic subtropical South Atlantic.
    Palaeogeography, Palaeoclimatology, Palaeoecology 235, 321-329.
    Rosenthal, Y., Boyle, E.A., Labeyrie, L., et al., 1995a. Glacial enrichment of authigenic Cd and U in Subantarctic sediments: a climatic control on the elements’oceanic budget? Paleoceanography 10, 395-413.
    Rosenthal, Y., Dahan, M., Shemesh, A., 2000. Southern Ocean contribution to glacial-interglacial changes of atmospheric pCO2: An assessment of carbon isotope records in diatoms. Paleoceanography 15 (1), 65-75.
    Rosenthal, Y., Lam, P., Boyle, E.A., et al., 1995b. Authigenic cadmium enrichments in suboxic sediments: precipitation and postdepositional mobility. Earth and Planetary Science Letters 132, 99-111.
    Russell, A.D., Morford, J.L., 2001. The behavior of redox-sensitive metals across a laminated-massive-laminated transition in Saanich Inlet, British Columbia. Marine Geology 174, 341-354.
    Sarnthein, M., Winn, K., Duplessy, J.C., et al., 1988. Global variations of surface ocean productivity in low and mid-latitudes: Influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years. Paleoceanography 3 (3), 361-399.
    Schenau, S.J., Reichart, G.J., De Lange, G.J., 2005. Phosphorus burial as a function of paleoproductivity and redox conditions in Arabian Sea sediments. Geochimica et Cosmochimica Acta 69, 919-931.
    Schijf, J., de Baar, H.J.W., Millero, F.J., 1995. Vertical distributions and speciation of dissolved rare earth elements in the anoxic brines of Bannock Basin, eastern Mediterranean Sea. Geochimica et Cosmochimica Acta 59 (16), 3285-3299.
    Schmidt, M., Botz, R., Rickert, D., et al., 2001. Oxygen isotope of marine diatoms and relations to opal-A maturation. Geochimica et Cosmochimica Acta 65 (2), 201-211.
    Schmidt, M., Botz, R., Stoffers, P., et al., 1997. Oxygen isotopes in marine diatoms: a comparative study of analytical techniques and new results on the isotopic composition of recent marine diatoms. Geochimica et Cosmochimica Acta 61 (11), 2275-2280.
    Schmieder, F., von Dobeneck, T., Bleil, U., 2000. The Mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: initiation, interim state and terminal event. Earth Planetary Science Letter 179, 539-549.
    Schrader, H. J., 1974. Cenozoic marine planktonic diatom stratigraphy of the tropical Indian Ocean. In: Fischer, R.L., Bunce, E.T,, Cernock, P.J., et al., eds., Initial Reports of the Deep Sea Drilling Project, volume 24. Washington: U.S. Government Printing Office, 887-967.
    Scott, R.B., Kroenke, L., Zakariadze, G., et al., 1980. Evolution of the south Philippine Sea: Deep Sea Drilling Project Leg 59 results. In: Kroenke, L., Scott, R.B., Balshaw, K., et al., eds., Initial Reports of the Deep Sea Drilling Project, volume 59. Washington: U.S. Government Printing Office, 803-815.
    Shemesh, A., Burckle, L.H., Hays, J.D., 1994. Meltwater input to the Southern Ocean during the Last Glacial Maximum. Science 266, 1542-1544.
    Shemesh, A., Burckle, L.H., Hays, J.D., 1995. Late Pleistocene oxygen isotope records of biogenic silica from the Atlantic sector of the Southern Ocean. Paleoceanography 10 (2),
    179-96. Shemesh, A., Hodell, D., Crosta, X., et al., 2002. Sequence of events during the last deglaciation in Southern Ocean sediments and Antarctic ice cores. Paleoceanography 17 (4), 1056, doi: 10.1029/2000PA000599.
    Shemesh, A., Macko, S.A., Charles, C.D., 1993. Isotopic evidence for reduced productivity in the glacial Southern Ocean. Science 262, 407-410.
    Shemesh, A., Mortlock, R.A., Smith, R.J., et al., 1988. Determination of Ge/Si in marine siliceous microfossils: separation, cleaning and dissolution of diatoms and radiolarian. Marine Chemistry 25, 305-323.
    Shemesh, A., Charles, C.D., Fairbanks, R.G., 1992. Oxygen isotopes in biogenic silica: global changes in ocean temperature and isotopic composition. Science 256, 1434-1436.
    Shields, G., Stille, P., 2001. Diagenetic constraints on the use of cerium anomalies as paleoseawater redox proxies: an isotope and REE study of Cambrian phosphorites. Chemical Geology 175, 29-48.
    Shimada, C., Sato, T., Toyoshima, S., et al., 2008. Paleoecological significance of laminated diatomaceous oozes during the middle-to-late Pleistocene, North Atlantic Ocean (IODP Site U1304). Marine Micropaleontology 69, 139-150.
    Sholkovitz, E.R., 1988. Rare earth elements in the sediments of the North Atlantic Ocean, Amazon Delta, and East China Sea: reinterpretation of terrigenous input patterns to the oceans. American Journal of Science 288, 236-281.
    Sholkovitz, E.R., Elderfield, H., 1988. Cycling of dissolved rare earth elements in Chesapeake Bay. Global Biogeochemical Cycles 2 (2), 157-176.
    Sholkovitz, E.R., Landing, W.M., Lewis, B.L., 1994. Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochimica et Cosmochimica Acta 58 (6), 1567-1579.
    Sholkovitz, E.R., Shaw, T.J., Schneider, D.L., 1992. The geochemistry of rare earth elements in the seasonally anoxic water column and porewaters of Chesapeake Bay. Geochimica et Cosmochimica Acta 56, 3389-3402.
    Siedler, G., Holfort, J., Zenk, W., et al., 2004. Deep-water flow in the Mariana and Caroline Basins. Journal of Physical Oceanography 34, 566-581.
    Sigman, D.M., Altabet, M.A., Francois, R., et al., 1999a. The isotopic composition of diatom-bound nitrogen in Southern Ocean sediments. Paleoceanography 14 (2), 118-134.
    Sigman, D.M., Altabet, M.A., McCorkle, D.C., et al., 1999b. Theδ15N nitrate in the Southern Ocean: consumption of nitrate in surface waters. Global Biogeochemical Cycles 13 (4), 1149-1166.
    Sigman, D.M., Boyle, E.A., 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859-869.
    Singer, A.J., Shemesh, A., 1995. Climatically linked carbon isotope variation during the past 430,000 years in Southern Ocean Sediments. Paleoceanography 10 (2), 171-177.
    Slomp, C.P., Van der Gaast, S.J., Van Raaphorst, W., 1996. Phosphorus binding by poorly crystalline iron oxides in North Sea sediments. Marine Chemistry 52, 55-73.
    Smetacek, V.S., 2000. The giant diatom dump. Nature 406, 574-575.
    Stabell, B., 1986. Variations of diatom flux in the eastern equatorial Atlantic during the last 400,000 years (“Meteor”cores 13519 and 13521). Marine Geology 72, 305-323.
    Stott, L., Poulsen, C., Lund, S., 2002. Super ENSO and global climate oscillations at millennial time scales. Science 297, 222-226.
    Sverjensky, D.A., 1984. Europium redox equilibria in aqueous solution. Earth and Planetary Science Letters 67, 70-78.
    Swann, G.E.A., Leng, M.J., 2009. A review of diatomδ18O in palaeoceanography. Quaternary Science Reviews 28 (5-6), 384-398.
    Swann, G.E.A., Leng, M.J., Sloane, H.J., et al., 2007. Diatom oxygen isotopes: evidence of a species effect in the sediment record. Geochemistry Geophysics Geosystems 8 (6), Q06012, doi: 10.1029/2006GC001535.
    Swann, G.E.A., Leng, M.J., Sloane, H.J., et al., 2008. Isotope offsets in marine diatomδ18O over the last 200 ka. Journal of Quaternary Science 23, 389-400.
    Swann, G.E.A., Maslin, M.A., Leng., M.J., et al., 2006. Diatomδ18O evidence for the development of the modern halocline system in the subarctic northwest Pacific at the onset of major Northern Hemisphere glaciation. Paleoceanography 21, PA1009, doi: 10.1029/2005 PA001147.
    Takahashi, Y., Shimizu, H., Usui, A., et al., 2000. Direct observation of tetravalent cerium in ferromanganese nodules and crusts by X-ray-absorption near-edge structure (XANES). Geochimica et Cosmochimica Acta 64 (17), 2929-2935.
    Takebe, M., 2005. Carriers of rare earth elements in Pacific deep-sea sediments. The Journal of Geology 113, 201-215.
    Tanaka, K., Akagawa, F., Yamamoto, K., et al., 2007. Rare earth element geochemistry of Lake Baikal sediment: its implication for geochemical response to climate change during the Last Glacial/Interglacial transition. Quaternary Science Reviews 26, 1362-1368.
    Taylor, S.R., McClennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.
    Thomson, J., Higgs, N.C., Colley, S., 1996. Diagenetic redistributions of redox-sensitive elements in NE Atlantic glacial/ interglacial sediments. Earth and Planetary Science Letters 139,365-377.
    Thomson, J., Higgs, N.C., Croudace, I.W., et al., 1993. Redox zonation of elements at an oxic/post-oxic boundary in deep-sea sediments. Geochimica et Cosmochimica Acta 57, 579-595.
    Thomson, J., Higgs, N.C., Wilson, T.R.S., et al., 1995. Redistribution and geochemical behavior of redox-sensitive elements around S1, the most recent eastern Mediterranean sapropel. Geochimica et Cosmochimica Acta 59, 3487-3501.
    Thomson, J., Nixon, S., Croudace, I.W., et al., 2001. Redox-sensitive element uptake in north-east Atlantic Ocean sediments (Benthic Boundary Layer Experiment sites). Earth and Planetary Science Letters 184, 535-547.
    Thomson, J., Wallace, H.E., Colley, S., et al., 1990. Authigenic uranium in Atlantic sediments of the last glacial stage——a diagenetic phenomenon. Earth and Planetary Science Letters 98, 222-232.
    Timothy, D.A., Calvert, S.E., 1998. Systematics of variations in excess Al and Al/Ti in sediments from the central equatorial Pacific. Paleoceanography 13, 127-130.
    Tlig, S., Steinberg, M., 1982. Distribution of rare earth elements (REE) in size fractions of recent sediments of the Indian Ocean. Chemical Geology 37, 317-333.
    Toggweiler, J.R., 1999. An ultimate limited nutrient. Nature 400, 511-512.
    Toyoda, K., Masuda, A., 1991. Chemical leaching of pelagic sediments: Identification of the carrier of Ce anomaly. Geochemical Journal 25, 95-119.
    Toyoda, K., Nakamura, Y., Masuda, A., 1990. Rare earth elements of Pacific pelagic sediments. Geochimica et Cosmochimica Acta 54, 1093-1103.
    Tréguer, P., 2002. Silica and the cycle of carbon in the ocean. Comptes Rendus Geoscience 334, 3-11.
    Tréguer, P., Nelson, D.M., van Bennekom, A.J., et al., 1995. The balance of silica in the world ocean: a reestimate. Science 268, 375-379.
    Tréguer, P., Pondaven, P., 2000. Silica control of carbon dioxide. Nature 406, 358-359.
    Tribovillard, N., Algeo, T., Lyons, T., et al., 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology 232, 12-32.
    Tribovillard, N., Bout-Roumazeilles, V., Algeo, T.J., et al., 2008. Paleodepositional conditions inthe Orca Basin as inferred from organic matter and trace metal contents. Marine Geology 254, 62-72.
    Tribovillard, N., Riboulleau, A., Lyons, T., et al., 2004. Enhanced trapping of molybdenum by sulfurized organic matter of marine origin in Mesozoic limestones and shales. Chemical Geology 213, 385-401.
    Tyson, R.V., 1995. Sedimentary Organic Matter: Organic Facies and Palynofacies. Chapman and Hall, London.
    van der Weijden, C.V., 2002. Pitfalls of normalization of marine geochemical data using a common divisor. Marine Geology 184, 167-187.
    van Os, B.J.H., Middelburg, J.J., de Lange, G.J., 1991. Possible diagenetic mobilization of barium in sapropelic sediment from the eastern Mediterranean. Marine Geology 100, 125-136.
    van Santvoort, P.J.M., de Lange, G.J., Thomson, J., et al., 1996. Active postdepositional oxidation of the most recent sapropel (S1) in sediments of the eastern Mediterranean Sea. Geochimica et Cosmochimica Acta 60, 4007-4024.
    Varela, D.E., Pride, C.J., Brzezinshi, M.A., 2004. Biological fractionation of silicon isotopes in southern ocean surface waters. Global Biogeochemical Cycles 18, Gb1047, doi: 10.1029 /2003 GB002140.
    Veum, T., Jansen, E., Arnold, M., et al., 1992. Water mass exchange between the North Atlantic and the Norwegian Sea during the past 28,000 years. Nature 356, 783-785.
    Villareal, T.A., Altabet, M.A., Culver-Rymsza, K., 1993. Nitrogen transport by vertically migrating diatom mats in the North Pacific Ocean. Nature 363, 709-712.
    Villareal, T.A., 1991. Nitrogen-fixation by the cyanobacterial symbiont of the diatom genus Hemiaulus. Marine Ecology Progress Series 76, 201-204.
    Villareal, T.A., 1992. Buoyancy properties of the giant diatom Ethmodiscus. Journal of Plankton Research 14 (3), 459-463.
    Villareal, T.A., 1993. Abundance of the giant diatom Ethmodiscus in the Southwest Atlantic Ocean and Central Pacific Gyre. Diatom Research 8, 171-177.
    Villareal, T.A., Joseph, L., Brzezinski, M.A., et al., 1999a. Biological and chemical characteristics of the giant diatom Ethmodiscus (Bacillariophyceae) in the central North Pacific Gyre. Journal of Phycology 35, 896-902.
    Villareal, T.A., Lipschultz, F., 1995. Internal nitrate concentrations in single cells of large phytoplankton from the Sargasso Sea. Journal of Physiology 31, 689-696.
    Villareal, T.A., Pilskaln, C., Brzezinski, M., 1999b. Upward transport of oceanic nitrate by migrating diatom mats. Nature 397, 423-425.
    Vorlicek, T.P., Kahn, M.D., Kasuza, Y., et al., 2004. Capture of molybdenum in pyrite-forming sediments: role of ligand-induced reduction by polysulfides. Geochimica et Cosmochimica Acta 68, 547-556.
    Wallace, H.E., Thomson, J., Wilson, T.R.S., et al., 1988. Active diagenetic formation of metal-rich layers in N.E. Atlantic sediments. Geochimica et Cosmochimica Acta 52, 1557-1569.
    Wan, S.M., Li, A.C., Xu, K.H., et al., 2008. Characteristics of clay minerals in the northern South China Sea and its implications for evolution of East Asian Monsoon since Miocene. Earth Science——Journal of China University of Geosciences 19(1), 23-37.
    Wang, C.H., Yeh, H.W., 1985. Oxygen isotope compositions of DSDP Site 480 diatoms: implications and applications. Geochimica et Cosmochimica Acta 49, 1469-1478.
    Wang, P.X., Tian, J., Cheng, X.R., et al., 2003. Exploring cyclic changes of the ocean carbon reservoir. Chinese Science Bulletin 48 (23), 2536-2548.
    Wang, Y.L., Liu, Y.G., Schmitt, R.A., 1986. Rare earth geochemistry of south Atlantic deep sediments: Ce anomaly change at ~54 My. Geochimica et Cosmochimica Acta 50, 1337-1355.
    Warning, B., Brumsack, H.J., 2000. Trace metal signatures of eastern Mediterranean sapropels. Palaeogeography, Palaeoclimatology, Palaeoecology 158, 293-309.
    Webster, P.J., 1994. The role of hydrological processes in ocean-atmosphere interaction. Reviews of Geophysics 32, 427-476.
    Weiss, R.F., 1974. Carbon dioxide in water and seawater: the solubility of a non-idea gas. Marine Chemistry 2, 203-215.
    Windom, H.L., 1976. Lithogenous material in marine sediments. In: Riley J P, Chester R, eds., Chemical oceanography, Volume 5. New York: Academic Press, 103-135.
    Wischmeyer, A. G., De La Rocha, C.L., Maier-Reimer, E., et al., 2003. Control mechanisms for the oceanic distribution of silicon isotopes. Global Biogeochemical Cycles 17 (3), 1083, doi: 10.1029/2002GB002022.
    Wiseman, J.D.H., Hendey, N.I., 1953. The significance and diatom content of a deep-sea floor sample from the neighbourhood of the greatest oceanic depth. Deep-Sea Research 1, 47-59.
    Xu, Z.K., Li, A.C., Jiang, F.Q., et al., 2008. Geochemical character and material source of sediments in the eastern Philippine Sea. Chinese Science Bulletin 53 (6), 923-931.
    Yang, J.D., Sun, W.G., Wang, Z.H., et al., 1999. Variations in Sr and C isotopes and Ce anomalies in successions from China: evidence for the oxygenation of Neoproterozoic seawater? Precambrian Research 93, 215-233.
    Yoder, J.A., Ackleson, S.G., Barber, R.T., et al., 1994. A line in the sea. Nature 371, 689-692.
    Young, R.W., Carder, K.L., Betzer, P.R., et al., 1991. Atmosphere iron inputs and primary productivity: Phytoplankton responses in the North Pacific. Global Biogeochemical Cycles 5 (2), 119-134.
    Yuan, W., Zhang, J., 2006. High correlations between Asian dust events and biological productivity in the western North Pacific. Geophysical Research Letters 33, L07603, doi: 10.1029/2005G L025174.
    Zhai, B., Li, T.G., Chang, F.M., et al., 2009. Vast laminated diatom mat deposits from the west low-latitude Pacific Ocean in the last glacial period. Chinese Science Bulletin 54, 4529-4533.
    Zheng, Y., Anderson, R.F., Froelich, N.P., et al., 2002. Challenges in radiocarbon dating organic carbon in opal-rich marine sediments. Radiocarbon 44 (1), 123-136.
    Zheng, Y., Anderson, R.F., van Geen, A., et al., 2000. Authigenic molybdenum formation in marine sediments: a link to pore water sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta 64, 4165-4178.
    Zheng, Y., Anderson, R.F., van Geen, A., et al., 2002. Preservation of non-lithogenic particulate uranium in marine sediments. Geochimica et Cosmochimica Acta 66, 3085-3092.
    Ziegler, K., Chadwick, O.A., Brzezinski, M.A., 2005. Natural variations of delta Si-30 ratios during progressive basalt weathering, Hawaiian Islands. Geochimica et Cosmochimica Acta 69 (19), 4597-4610.
    金性春, 1995.大洋钻探与西太平洋构造.地球科学进展10 (3), 234-239.
    靳宁,李安春,刘海志,等, 2007.帕里西维拉海盆西北部表层沉积物中粘土矿物的分布特征及物源分析.海洋与湖沼38 (6), 504-511.
    李常珍,李乃胜,林美华, 2000.菲律宾海的地势特征.海洋科学24 (6), 47-51.
    李国刚, 1990.中国近海表层沉积物中粘土矿物的组成、分布及其地质意义.海洋学报12 (4), 470-479.
    刘顺琼,吕泽娥,陈永欣,等, 2007.微波消解–等离子体发射光谱法测定锰矿石中硅铝铁磷. 岩矿测试26 (3), 241-242. 刘昭蜀,于珏, 1989.菲律宾海地质.北京:海洋出版社, 1-250.
    彭淑贞,郭正堂, 2007.风成三趾马红土与第四纪黄土的粘土矿物组成异同及其环境意义. 第四纪研究27 (2), 277-285.
    秦蕴珊,赵一阳,陈丽蓉,等, 1987.东海地质.科学出版社,北京.
    任建业,李思田, 2000.西太平洋边缘海盆地的扩张过程和动力学背景.地学前缘7 (3), 203-213.
    石学法,陈丽蓉,李坤业,等, 1995.西菲律宾海西部海域粘土沉积物的成因矿物学研究.海洋地质与第四纪地质15 (2), 61-71.
    宋小年,冯天培, 2006.电感耦合等离子体发射光谱法测定键合用硅铝丝中硅铁铜.岩矿测试25 (2), 189-190.
    孙守勋,滕军, 2003.菲律宾海的气候特征.海洋预报20 (3), 31-39.
    汪品先,翦知湣,刘志飞, 2006.地球圈层相互作用中的深海过程和深海记录(II):气候变化的热带驱动与碳循环.地球科学进展21 (4), 338-345.
    徐兆凯,李安春,蒋富情,等, 2007.东菲律宾海深水铁锰结壳发育站位沉积物的粒度及黏土矿物学特征.海洋学报29 (2), 150-155.
    叶曦雯,刘素美,张经, 2003.生物硅的测定及其生物地球化学意义.地球科学进展18 (3), 420-426.
    张德玉, 1993.马里亚纳海槽和西菲律宾海盆更新世以来沉积物中的粘土矿物.沉积学报11 (1), 111-120.
    张德玉, 1994.马里亚纳海槽区粘土矿物组成及分布特征.黄渤海海洋12 (2), 32-39.
    张泉,李岩松, 2005. ICP-AES法测定铜合金中微量硅.有色矿冶21 (2), 50-51.
    张弦,俞慕耕,江伟,等, 2004.菲律宾海及其邻近海区的水文特征.海洋通报23 (1), 8-14.
    钟志光,黄勇,张海峰,等, 2007.微波消解-DUO-ICP-AES测定电子电气产品塑料中的铅、镉、铬和汞的方法研究.塑料36 (1), 96-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700