用户名: 密码: 验证码:
掺Ho~(3+)氟氧化物微晶玻璃近—中红外发光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2-3μm波段的激光在对人眼安全的激光雷达、遥感化学传感器、地形测量、空气污染控制、激光医疗手术刀等方面有着重要的应用价值,一直以来备受人们的关注。为了实现高效率、高功率的激光输出,人们从20世纪60年代起就开始了对Ho3+和Tm3+掺杂的各类固体激光器的研制,基质材料主要涉及激光晶体和玻璃。近年来,随着激光二极管泵浦技术和光纤工艺的完善,光纤激光器以其光束质量好、能量转换效率高、散热性能好、成本低、体积小、易于集成等优点在激光领域占据着重要地位。目前,2.0μm光纤激光器的基质材料多为石英玻璃和氟化物玻璃,二者各有优缺点。就石英基质而言,其较高的声子能量(1100cm-1)限制了激光器的能量转换效率,基质的本征吸收限制了2.0μm波段以后的中红外激光输出。然而,氟化物玻璃又存在着化学稳定性差,制备工艺复杂等诸多问题。合理的基质材料选择是实用、高性能2-3μm波段光纤激光器发展的基础。透明氟氧化物微晶玻璃兼具了氧化物玻璃和氟化物晶体的优点,具有较高的发光效率和环境适应能力,是一种新型的高性能光学材料。本课题旨在探索透明氟氧化物微晶玻璃的组成和晶化工艺,研究该基质材料中2.0μm波段Ho3+发光性能,为发展低成本、高效率的2.0μm光纤激光器奠定基础。
     本论文共分五章。论文第一章综述了2-3μm光纤激光器和微晶玻璃的研究进展,介绍了稀土掺杂光纤激光器的结构及工作原理、稀土离子的光谱性质和跃迁特性。
     论文第二章介绍了样品的制备工艺和性能测试方法,并对计算稀土离子光谱参数的相关理论进行了阐述。针对Ho3+缺少与商用半导体激光器相匹配的泵浦吸收带这一缺陷,论文第三、四章系统地研究了Tm3+/Ho3+和Yb3+/Ho3+双掺体系,分别在808nm和980nm LD泵浦下的发光特性,借助Tm3→Ho3+和Yb3+→Ho3+的能量传递,实现了对Ho3+:5I7能级的间接泵浦,从而获得了2.0μm的荧光发射。重点分为以下几个方面:
     (1)首先研究了Tm3+/Ho3+共掺的60SiO2-20ZnO-20BaF2和50SiO2-26.4Al2O3-10.6Na2O-13LaF3玻璃的析晶性能。在此基础上,通过适当的晶化热处理,分别制备出了含BaF2和LaF3纳米晶的透明微晶玻璃。通过荧光探针Eu3+的荧光光谱分析及Tm3+和Ho3+的J-O强度参数计算,研究了稀土离子周围的配位场环境,对比发现,晶化后Tm3+和Ho3+对应的Ω2数值显著降低,其吸收峰有些许蓝移和Stark劈裂,表明部分Tm3+、Ho3+进入了BaF2晶体,使得稀土离子周围的配位环境发生了改变。研究了Tm3+/Ho3+共掺的玻璃和微晶玻璃样品在808nm LD泵浦下的红外发光性能,并对Tm3+→Ho3+能量传递过程进行了详细讨论,发现60SiO2-20ZnO-20BaF2微晶玻璃中Ho3+的2.0μm波段的发光较比母体玻璃获得了近6倍的增强,并且发射峰呈现明显的Stark劈裂。探讨了热处理时间和Tm3+掺杂浓度对其上转换和2.0μm波段发光性能的影响,发现热处理时间的延长有利于降低上转换发光强度,增强2.0μm波段的发光。这主要得益于氟化物晶体中相邻Tm3+离子间交叉弛豫过程(3H4,3H6→3F4,3F4)及Tm3+、Ho3+间能量传递过程(Tm3+:3F4+Ho3+:5I8→Tm3+:3H6+Ho3+:5I7)几率增加。运用Dexter理论,计算了Tm3+/Ho3+共掺体系的正向和反向能量传递的微观参数,得出Tm3+→Ho3+的能量传递系数约为反向能量传递系数的26倍,表明Tm3+→HO3+.能量传递过程占明显优势且效率较高。
     (2)主要探讨了980nm LD激发下,Yb3+/Ho3+共掺60Sio2-20ZnO-20BaF2玻璃和微晶玻璃的光谱性能和能量传递机理。采用J-O理论计算了Ho3+在母体玻璃和微晶玻璃中的光谱参数,得出微晶玻璃中Ho3+:5I7→18跃迁的峰值发射截面为6.43×10-21cm2,Yb3+的吸收截面最大值为1.2×10-20cm2,结果表明敏化剂Yb3+在开发商用半导体激光器泵浦的结构紧凑型、高效激光器件方面具有较大的潜力。980nm LD泵浦Yb3+/Ho3+共掺的微晶玻璃,探测到了1.2和2.0μm波段的发光,证实了Yb3+→Ho3+能量传递的存在。上转换及能量传递机理分析得出,微晶玻璃的低声子能量环境有利于上转换和1.2μm的发光,不利于2.0μm发光的增强。运用声子边带理论估算了Yb3+→Yb3+和Yb3+-Ho3+之间能量传递的微观参数,发现Yb3+→Ho3+的正向能量传递占绝对优势,是由单声子和双声子共同协助完成。其中,单声子发射辅助的贡献率约占89.314%。
     论文第五章研制出了50GeO2-22A12O3-13LaF3-15LiF体系的微晶玻璃,系统研究了Ho3+单掺体系的发光性能。研究发现,Ho3+吸收一个紫外或者可见的光子(300-560nm)后,可以通过两步近红外级联发射过程,产生1013nm和1190nm的近红外光子,其发光量子效率约为110%。对比研究了Ho3+掺杂的母体玻璃和微晶玻璃在1.37μm和1.45μm波段的发光性能,并对相应的受激发射截面、吸收截面及增益系数进行了评估,结果表明,微晶玻璃在E-波段光通信领域可作为良好的候选基质材料。
Laser operating in the2~3μm wavelength region has attracted considerable interest due to its potential applications in eye-safe laser radar, remote chemical sensing, topographic surveying, atmospheric monitoring and laser medicine surgery. Since1960s, considerable research efforts have been made to develop various solid state lasers activated by Tm3+and Ho3+. The host involves various laser crystals and glasses. Benefited from the great success in laser diodes and optical fibers, fiber laser has recently become the main direction of solid state lasers due to its outstanding merits such as excellent beam quality, high energy conversion efficiency, lower thermal effects, low cost, compactness and easy to integrate. At present, most of2.0μm fiber laser hosts are limited to silica and fluoride glass. However, there still exist some issues in the practical application. On one hand, higher phonon energy (1100cm-1) of silica glass results in low energy conversion efficiency, and suppresses laser output beyond2.0μm region. On the other hand, poor chemical stability of fluoride glass has limited its application. Besides, the manufacture process is complex and expensive. Therefore, the choice of suitable host is the key factor for developing economic and efficient2~3μm fiber laser. Nowadays, transparent oxyfluoride GC is considered as a novel excellent optical material due to the combined properties of oxide glass and precipitated fluoride nanocrystals. In this case, it exhibits both high luminescent efficiency and environmental suitability. In the present work, a series of crystallization processes and compositions were studied to fabricate transparent GC. The particular attention was given to the2.0μm emission of Ho3+in GC This work would lay a basis for the development of economic and efficient2.0μm fiber laser.
     This dissertation is composed of five chapters. In chapter1, the research progress in2~3μm fiber lasers and GC was reviewed. Additionally, we briefly introduced the structure and operating principles of RE ions doped fiber laser as well as the spectroscopic properties and transition characteristics of RE ions.
     In chapter2, the experiment methods and theory background are introduced, including sample preparation procedures, physical and spectroscopic properties measurements, and the spectroscopic parameters calculation using J-O theory and McCumber theory.
     To circumvent the drawback of Ho3+, i. e., lack of pumping bands matched with commercial laser diode, we developed Tm3+/Ho3+and Yb3+/Ho3+-codoped systems and systematically investigated their luminescent properties upon excitation of808nm and980nm LD. Intense2.0μm fluorescence originating from Ho3+:5I7→5I8transition was achieved through ET processes from Tm3+and/or Yb3+ions to Ho3+ions. Emphasis is given to
     (1) The first investigation is conducted on the crystallization properties of Tm3+/Ho3+-codoped60SiO2-20ZnO-20BaF2and50SiO2-26.4Al2O3-10.6Na2O-13LaF3glass. Based on DSC results, transparent GCs containing BaF2and LaF3nanocrystals were developed by controlled crystallization. The local environment of RE ions in PG and GC was investigated via optical spectra of Eu3+, which acts as the fluorescence probe and the calculation of J-O parameters for Tm3+and Ho3+, respectively. It is found that crystallization gives rise to the remarkable decrease in Ω2, the blue shift and Stark splits of absorption bands. These results indicate the structural change of the sites of Tm3+and Ho3+resulted from the partition of RE ions into BaF2nanocrystals. We investigated the properties of2.0μm emission along with ET process in Tm3+/Ho3+-codoped glass and GCs under808nm excitation. After excitation of808nm LD, Tm3+/Ho3+-codoped GCs give rise to intense2.0μm emission band featured by obvious Stark splits. The integrated intensity of2.0μm emission increases by a factor of about6as compared with that of PG. We discussed the influence of heat-treatment time and Tm3+content on emission intensity. It is found that the prolongation of heat treatment facilitates2.0μm emission while suppresses the upconversion luminescence. This could be attributed to more efficient CR (3H4,3H6→3F4,3F4) process of Tm3+-Tm3+pairs and ET process from Tm3+(3F4) to Ho3+(5I7), benefited from the reduced distance between RE ions. The microscopic parameters for Tm3+→Ho3+ET and backward process were evaluated using the Dexter's model. The ET constant for Tm3+→Ho3+process was determined to be26times as large as that of backward process, which indicates that Tm3+→Ho3+ET is dominant and quite efficient.
     (2) We investigated the spectroscopic properties and ET process in Yb3+/Ho3+-codoped glass and GC under980nm excitation. The spectroscopic parameters of Ho3+in PG and GC were evaluated using J-O theory. In the case of GC, the peak emission cross section for Ho3+5I7→5I8transition was determined to be6.43×10-21cm2. The large absorption cross section of Yb3+(1.2×10-20cm2) would provide better potential for designing compact and efficient laser systems pumped by commercially available high-power InGaAs LD. Efficient1.2and2.0μm emissions have been achieved in Yb3+/Ho3+-codoped GCs under980nm excitation, demonstrating the occurrence of ET from Yb3+to Ho3+. Analysis on the upconversion and ET mechanism reveals that the low-phonon-energy environment in GCs facilitates the upconversion and1.2μm emissions. However, the expected enhancement of2.0μm emission is hardly observed. The microscopic parameters of ET processes between Yb3+and Ho3+ions were evaluated using phonon sideband theory. It is found that the Yb3+→Ho3+forward ET is efficient and dominant, and mainly assisted by one-phonon emission with the contribution rate of89.314%.
     In chapter5, a series of RE-doped oxyfluoride germanate GCs were developed from50GeO2-22Al2O3-13LaF3-15LiF glass. It is demonstrated that Ho3+ions can generate two NIR photons at1013and1190nm via two-step sequential transitions after the absorption of one incident photon within the300-560nm region. The quantum efficiency is estimated to be about110%。The1.37μm and1.45μm luminescent properties of Ho3+-doped PG and GC were compared. Calculated excited states absorption and stimulated emission cross sections as well as estimated spectral gain coefficients have demonstrated the great potential of GC as a host for E-band optical amplification.
引文
[1]Polhau M., Jackson S. D. Mid-infrared fiber laser [J]. Appl. Phy.,2003,89:215
    [2]Sorokina I. T., Vodopyyanov K. L. Solid-state mid-infrared laser-sources [J]. Appl. Phy.,2003,89:255
    [3]A. R. Jha, Infrared technology [M]. Zhang Xiao-lin, Chen Shi-da, Shu Yu-wen, transl. lth ed. Beijing:Chemical Industry Press,2004
    [4]任国光,黄裕年.用激光红外干扰系统保护军用和民航机[J].激光与红外,2006,36(1):1-6
    [5]高倩,倪汉昌,王恒霖.掺杂稀土的玻璃纤维作为红外辐射源用于景像仿真[J].飞航导弹,2004,(1):57-59
    [6]Vodopyanov K. L., Shori R., Stafsudd O. M. Generation of Q-switched Er:YAG laser pulses using evanescent wave absorption in ethanol [J]. Appl Phys Lett.,1998,72(18):2211-2213
    [7]陆燕玲,王俊,孙宝德.2μm波段激光晶体研究进展[J].无机材料学报,2005,20(3):513-521
    [8]干福熹.2-5μm超长波段红外光纤通信的发展[J].红外与毫米波学报,1991,10(6):415-425
    [9]曹念文,刘文清.固体激光器发展趋势[J].光电子技术与信息,1997,10(4):25-27
    [10]郭玉彬,霍佳雨.光纤激光器及其应用[M].北京:科学出版社,2008:24-31
    [11]陈敢新.Tm3+/Ho3+和Yb3+/Ho3+共掺碲酸盐激光玻璃的光谱性能研究[D].广州:华南理工大学,2008
    [12]Johnson L. F., Boyd G. D., Nassau K. Optical maser characteristics of Ho3+in CaWO4. Proc IRE1962,50:87-89
    [13]Johnson L. F., Geusic J. E., Van Uitert L. G. Efficient, high-power coherent emission from Ho3+ions in yttrium aluminum garnet, assisted by energy transfer [J]. Appl. Phys. Lett.,1966,8(8):200-202
    [14]Antipenko B. M., Glebov A. S., Kiseleva T. I, et al.2.12μm Ho:YAG laser [J]. Sov. Tech. Phys. Lett.,1985,11:284
    [15]Duczynski E. W., Huber G, Ostroumov V. G, et al. CW double cross pumping of the5I7-5I8laser transition in Ho3+-doped garnets [J]. Appl. Phys. Lett.,1986,48(23):1562-1563
    [16]Quarles G. J., Rosenbaum A., Abella I. D., et al. Efficient room-temperature operation of Cr3+-sensitized, flashlamp-pumped,2μm lasers [J]. Optical and Quantum Electronic.,1990,22:141-152
    [17]魏瑞.掺铥光纤激光器研究[D].北京:北京交通大学,2007
    [18]Fan T. Y, Huber G, Byer R. L. Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG [J]. J. Quant. Electron.,1988,24(6):924-932
    [19]刘沛沛,白杨,任兆玉,等.2μm光纤激光器的研究进展[J].红外与激光工程,2009,38(1):45-49
    [20]Brierley M. C., France P. W., Millar C. A. Lasing at2.08μm and1.38μm in a holmium doped fluorozirconate fiber laser [J]. Electron. Lett.,1988,24(9):539-540
    [21]Hanna D. C., Percival R. M., Smart R. G, et al. Continuous-wave oscillation of holmium-doped silica fibre laser [J]. Electron. Lett.,1989,25(9):593-594
    [22]Sumiyoshi T., Sekita H. Dual wavelength (3μm and2μm) CW cascade oscillation of a holmium-doped double-clad fiber laser [C]. LEOS.1997,2:534-535
    [23]Sumiyoshi T., Sekita H., Arai T., et al. High-power continuous-wave3-and2-μm cascade Ho:ZBLAN fiber laser and its medical application [J]. J. Selected Topics Quant. Electron.,1999,5(4):936-943
    [24]Jackson S. D.2.7-W Ho3+-doped silica fibre laser pumped at1100nm and operating at2.1μm [J]. Appl. Phys. B,2003,76(7):793-795
    [25]Ozen G, Salihoglu S. Tm3+-to-Ho3+resonant and nonresonant energy transfer in LiYF4[J]. Opt. Commun.,2000,180(4):323-328
    [26]Allain J. Y, Monerie M., Poignant H. High-efficiency CW thulium-sensitised holmium-doped fluoride fibre laser operating at2.04μm [J]. Electron. Lett.,1991,27(17):1513-1515
    [27]Oh K., Morse T. F., Kilian A., et al. Continuous-wave oscillation of thulium-sensitized holmium-doped silica fiber laser [J]. Opt. Lett.,1994,19(4):278-280
    [28]Jackson S. D.8.8W diode-cladding-pumped Tm3+, Ho3+-doped fluoride fibre laser [J]. Electron. Lett.,2001,37(13):821-822
    [29]Jackson S. D., Sabella A., Hemming A., et al. High-power83W holmium-doped silica fiber laser operating with high beam quality [J]. Opt. Lett.,2007,32(3):241-243
    [30]Jackson S. D., King T. A. CW operation of a1.064μm pumped Tm-Ho-doped silica fiber laser [J]. J. Quant. Electron.,1998,34(9):1578-1587
    [31]Taniguchi A., Kuwayama T., Shirakawa A., et al.1212nm pumping of2μm Tm-Ho-codoped silica fiber laser [J]. Appl. Phys. Lett.,2002,81(20):3723-3725
    [32]Jackson S. D. Efficient Tm3+, Ho3+-co-doped silica fibre laser diode pumped at1150nm [J]. Opt. Commun.,2008,281(14):3837-3840
    [33]Jackson S. D., Mossman S. Diode-cladding-pumped Yb3+, Ho3+-doped silica fiber laser operating at2.1-μm [J]. Appl. Opt.,2003,42(18):3546-3549
    [34]Jackson S. D. High power diode-pumped triply doped fibre laser [J]. Appl. Phys. B,2004,78(3):269-272
    [35]Jackson S. D., King T. A., Pollnau M. Diode-pumped1.7W erbium3-μm fiber laser [J]. Opt. Lett.,1999,24(16):1133-1135
    [36]Choi Y. G, Kim K. H., Lee B. J., et al. Emission properties of the Er3+:4I11/2→4I13/2transition in Er3+-and Er3+/Tm3+-doped Ge-Ga-As-S glasses [J]. J. Non-Cryst. Solids,2000,278(1):137-144
    [37]Jagosich F. H., Gomes L., Tarelho L. V. G, et al. Deactivation effects of the lowest excited states of Er3+and Ho3-introduced by Nd3+ions in LiYF4crystals [J]. J. Appl. Phys.,2002,91(2):624-632
    [38]Jackson S. D.210mW2.84μm Ho3+, Pr3+-doped fluoride fibre laser [J]. Electron. Lett.2003,39(10):772-773
    [39]Zhu X. S., Jain R.10-W-level diode-pumped compact2.78μm ZBLAN fiber laser [J]. Opt. Lett.,2007,32(1):26-28
    [40]程金树,李宏,汤李缨,等.微晶玻璃[M].北京:化学工业出版社,2005:1-2
    [41]肖汉宁,彭文琴,邓春明.微晶陶瓷的制备技术,性能及用途[J].中国陶瓷,2000,36(5):31-33
    [42]赵彦钊,殷海荣主编.玻璃工艺学[M].北京:化学工业出版社,2006:7-8
    [43]周曦亚,曾群.烧结法制备微晶玻璃材料[J].陶瓷科学与艺术,2003,5:55-58
    [44]程慷果,万菊林.氧化锆增韧微晶玻璃的制备[J].硅酸盐学报,1998,26(3):365-368
    [45]陈大钦.纳米复合结构透明玻璃陶瓷的结构调控与发光特性研究[D].福州:中国科学院福建物质结构研究所,2007
    [46]Tick P. A., Borrelli N. F., Cornelius L. K., et al. Transparent glass ceramics for1300nm amplifier applications [J]. J. Appl. Phys.,1995,78(11):6367-6374
    [47]张军杰,段忠超,何冬兵,等.频率上转换掺稀土氧氟纳米微晶玻璃的研究进展[J].激光与光电子学进展,2005,42(6):2-7
    [48]Chen D. Q., Wang Y. S., Bao F., et al. Broadband near-infrared emission from Tm3+/Er3+co-doped nanostructured glass ceramics [J]. J. Appl. Phys.,2007,101(11):113511
    [49]张常建,肖卓豪,卢安贤.透明微晶玻璃的研究现状与展望[J].材料导报,2009,23(7):38-43
    [50]Chen D. Q., Wang Y. S., Yu Y. L., et al. Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:β-YF3nanocrystals embedded glass ceramic [J]. Appl. Phys. Lett.,2007,91(5):0519201-3
    [51]Hirao K., Tanaka K., Makita M. et al. Preparation and optical properties of transparent glass-ceramics containing β-PbF2:Tm3+[J]. J. Appl. Phys.,1995,78(5):3445-3450
    [52]Dantelle G, Mortier M., Vivien D., et al. Nucleation efficiency of erbium and ytterbium fluorides in transparent oxyfluoride glass-ceramics [J]. J. Mater. Res.,2005,20(02):472-481
    [53]Wang Y, Ohwaki J. New transparent vitroceramics codoped with Er3+and Yb3+for efficient frequency upconversion [J]. Appl. Phys. Lett.,1993,63(24):3268-3270
    [54]Kukkonen L. L., Reaney I. M., Furniss D., et al. Nucleation and crystallisation of transparent, erbium Ⅲ-doped, oxyfluoride glass-ceramics [J]. J. Non-Cryst. Solids,2001,290(1):25-31
    [55]Tikhomirov V. K., Furniss D., Seddon A., et al. Er3+doped ultra-transparent oxy-fluoride glass-ceramics for application in the1.54μm telecommunication window [J]. J. Mater. Sci. Lett.,2002,21(4):293-295
    [56]Hayashi H., Tanabe S., Hanada T.,1.4μm band emission properties of Tm3+ions in transparent glass ceramics containing PbF2nanocrystals for S-band amplifer [J]. J. Appl. Phys.,2001,89(2):1041-1045
    [57]Tikhomirov V. K., Mendez-Ramos J., Rodriguez V. D., et al. Laser and gain parameters at2.7μm of Er3+-doped oxyfluoride transparent glass-ceramics [J]. Opt. Mater.,2006,28(10):1143-1146
    [58]Lahoz F., Martin I. R., Calvilla-Quintero J. M. Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics [J]. Appl. Phys. Lett.,2005,86(5):1106-1108
    [59]Tick P. A., Borrelli N. F., Reaney I. M. The relationship between structure and transparency in glass-ceramic materials [J]. Opt. Mater.,2000,15(1):81-91
    [60]Samson B. N., Tick P. A., Borrelli N. F. Efficient neodymium-doped glass-ceramic fiber laser and amplifier [J]. Opt. Lett.,2001,26(3):145-147
    [61]Dejneka M. J. The luminescence and structure of novel transparent oxyfluoride glass-ceramics [J]. J.Non-Cryst. Solids,1998,239(1):149-155
    [62]Dejneka M. J. Rare-earth fluorescence in novel oxyfluoride glasses and glass-ceramics [C]. Optoelectronics and High-Power Lasers&Applications:International Society for Optics and Photonics,1998,3280:132-137
    [63]Hu Z. J., Wang Y. S., Bao F., et al. Crystallization behavior and microstructure investigations on LaF3containing oxyfluoride glass ceramics [J]. J. Non-Cryst. Solids,2005,351(8):722-728
    [64]Ye S., Zhu B., Luo J., et al. Enhanced cooperative quantum cutting in Tm3+-Yb3+codoped glass ceramics containing LaF3nanocrystals [J]. Opt. Express,2008,16(12):8989-8994
    [65]Chen D. Q., Wang Y S., Ma E., et al. Spectroscopic and stimulated emission characteristics of Nd3+in transparent glass ceramic embedding β-YF3nanocrystals [J]. J. Appl. Phys.,2007,102(2):023504-023506
    [66]Chen D. Q., Wang Y, Yu Y L., et al. Structure and optical spectroscopy of Eu-doped glass ceramics containing GdF3nanocrystals [J]. J. Phys. Chem.C,2008,112(7):18943-18947
    [67]乔旭升.镧系掺杂碱土氟硅酸盐透明发光微晶玻璃的制备与性能研究[D].杭州:浙江大学,2007
    [68]臧竞存.新型晶体材料[M].北京:化学工业出版社,2006:29
    [69]Fu J., Parker J. M., Flower P. S., et al. Eu2+ions and CaF2-containing transparent glass-ceramics [J]. Mater. Res. Bull.,2002,37(11):1843-1849
    [70]Qiao X. S., Fan X. P., Wang J., et al. Luminescence behavior of Er3+ions in glass-ceramics containing CaF2nanocrystals [J]. J. Non-Cryst. Solids,2005,351(5):357-363
    [71]Chen D. Q., Wang Y S., Yu Y, et al. Crystallization and fluorescence properties of Nd3+-doped transparent oxyfluoride glass ceramics [J]. Mater. Sci. Eng. B,2005,123(1):1-6
    [72]Hu Z. J., Wang Y S., Ma E., et al. Crystallization and spectroscopic properties investigations of Er3+doped transparent glass ceramics containing CaF2[J]. Mater. Res. Bull.,2006,41(1):217-224
    [73]Chen D. Q., Wang Y S., Ma E., et al. Partition, luminescence and energy transfer of Er3+/Yb3+ions in oxyfluoride glass ceramic containing CaF2nano-crystals [J]. Opt. Mater.,2007,29(12):1693-1699
    [74]秦冠仕,秦伟平,陈宝玖,等.Tm3-和Er3-共掺杂氟氧化物玻璃陶瓷材料结构和 上转换发光性质的研究[J].发光学报,2001,22(4):397-400
    [75]Qiao X. V, Fan X. P., Wang J., et al. Judd-Ofelt analysis and luminescence behavior of Er3-ions in glass ceramics containing SrF2nanocrystals [J]. J. Appl. Phys.,2006,99(7):0743021-0743028
    [76]Murakami T., Tanabe S. Preparation and1.3.μm.emission of Pr3+doped transparent nano-glass ceramics containing SrF2[J]. J. Ceram. Soc. Jpn.,2007,115(10):605-607
    [77]潘儒宗,邓永茜.透红外氟化物玻璃的研制[J].红外技术,1991,13(2):17-22
    [78]陈国荣,程继健.重金属氧化物玻璃进展[J].硅酸盐通报,1995,14(5):41-45
    [79]Mortier M., Patriarche G, Oxide glass used as inorganic template for fluorescent fluoride nanoparticles synthesis [J]. Opt. Mater.,2006,28(12):1401-1404
    [80]Dantelle G, Mortier M., Patriarche G, et al. Er3--doped PbF2:Comparison between nanocrystals in glass-ceramics and bulk single crystals [J]. J. Solid State Chem.,2006,179(5):1995-2003
    [81]Mortier M., Goldner P., Chateau C., et al. Erbium doped glass-ceramics:concentration effect on crystal structure and energy transfer between active ions [J]. J. Alloy Compd.,2001,323-324:245-249
    [82]Mortier M., Monteville A., Patriarche G, et al. New progresses in transparent rare-earth doped glass-ceramics [J]. Opt. Mater.,2001,16(1):255-267
    [83]Mortier M., Auzel F. Rare-earth doped transparent glass-ceramics with high cross-sections [J]. J. Non-Cryst. Solids,1999,256-257:361-365
    [84]Wu D., Tang B., Laurent C., et al. Upconversion Luminescence of Er3+ions in transparent germanate glass ceramics containing CaF2nanocrystals [J]. Chin. Phys. Lett,2010,27(6):0678041-4
    [85]张德亮,伍冬,袁新强,等.Yb3+/Er3+共掺锗酸盐氧氟微晶玻璃的白光输出[J].硅酸盐学报,2010,38(11):2071-2074
    [86]张若桦.稀土元素化学[M].天津:天津科学技术出版社,1987:1-78
    [87]张希艳,卢利平,柏朝晖,等.稀土发光材料[M].北京:国防工业出版社,2005:4-5
    [88]孙家跃,杜海燕,胡文祥.固体发光材料[M].北京:化学工业出版社,2003:52
    [89]Carnall W. T. Handbook on the Physics and Chemistry of Rare Earths [M]. Eyring(?) North-Holland Publishing Company,1979:171-208
    [90]Nugent L. J., Baybarz R. D., Burnett J. L., et al. Electron-transfer and f-d absorption bands of some lanthanide and actinide complexes and the standard (Ⅱ-Ⅲ) oxidation potential for each member of the lanthanide and actinide series [J]. J. Phys. Chem.,1973,77(12):1528-1539
    [91]Ryan J. L., J(?)rgensen C. K. Absorption spectra of octahedral lanthanide hexahalides [J]. J. Phys. Chem.,1966,70(9):2845-2857
    [92]干福熹.玻璃的光学和光谱性质[M].上海:上海科学技术出版社,1992:220-230
    [93]张欣.光通信系统中掺铒光纤激光器的研究[D].兰州:兰州大学,2007
    [94]干福熹,邓佩珍.激光材料[M].上海:上海科学技术出版社,1996:88-106
    [95]Miyakawa T., Dexter D. L. Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids [J]. Phys. Rev. B,1970,1(7):2961-2969
    [96]Judd B. R. Optical absorption intensities of rare-earth ions [J]. Phys. Rev.,1962,127(3):750-761
    [97]Ofelt G.. S. Intensities of crystal spectra of rare-earth ions [J]. J. Chem. Phys.,1962,37(3):511-520
    [98]Krupke W. F. Optical absorption and fluorescence intensities in several rare earth-doped Y2O3and LaF3single crystals [J]. Phys. Rev.,1966,145(3):325-337
    [99]Weber M. J., Probabilities for radiative and nonradiative decay of Er3+in LaF3[J]. Phys. Rev.,1967,157(2):262-272
    [100]Krupke W. F. Radiative transition probabilities with the4f ground configuration of Nd: YAG.[J]. IEEE J. Quan. Electron.,1971,7(4):153-159
    [101]Pappalardo R. Calculated quantum yields for photon-cascade emission (PCE) for Pr3+and Tm3+in fluoride hosts [J]. J. Lumin.,1976,14(3):159-193
    [102]Tanabe S., Ohyagi T., Soga N., et al. Compositional dependence of Judd-Ofelt parameters of Er3+ions in alkali-metal borate glasses [J]. Phys. Rev. B,1992,46(6):3305-3310
    [103]Takebe H., Morinaga K., Izumitani T. Correlation between radiative transition probabilities of rare-earth ions and composition in oxide glasses [J]. J. Non-Cryst. Solids.,1994,178:58-63
    [104]Tanabe S. Optical transitions of rare earth ions for amplifiers:how the local structure works in glass [J]. J. Non-Cryst. Solids.,1999,259(1-3):1-9
    [105]Weber M. J. Radiative and Multiphonon Relaxation of Rare-Earth Ions in Y2O3[J]. Phys. Rev.,1968,171(2):283-291
    [106]Tanimura K., Shinn M. D., Sibley W. A., et al. Optical transitions of Ho3+ions in fluorozirconate glass [J]. Phys. Rev. B,1984,30(5):2429-2437
    [107]Shi D. M., Zhang Q. Y, Yang G. F., et al. Spectroscopic properties and energy transfer in Ga2O3-Bi2O3-PbO-GeO2glasses codoped with T3+and Ho3+[J]. J. Non-Cryst. Solids,2007,353(16):1508-1514
    [108]McCumber D. E. Theory of Phonon-Terminated Optical Masers [J]. Phys. Rev.,1964,134(2A)A299-306
    [109]Schweizer T., Hewak D. W., Samson B. N., et al. Spectroscopic data of the1.8-,2.9-, and4.3-μm transitions in dysprosium-doped gallium lanthanum sulfide glass [J]. Opt. Lett.,1996,21(19):1594-1596
    [110]Zou X. L., Toratani H. Spectroscopic properties and energy transfers in Tm3+singly-and Tm3+/Ho3+doubly-doped glasses [J]. J. Non-Cryst. Solids,1996,195(1):113-124
    [111]Louchev O. A., Urata Y, Yumoto M., et al. Thermo-optical modeling of high power operation of2μm codoped Tm, Ho solid-state lasers [J]. J. Appl. Phys.,2008,104(3):0331141-9
    [112]Tsang Y, Richards B., Binks D., et al. Tm3+/Ho3codoped tellurite fiber laser [J]. Opt. Lett.,2008,33(11):1282-1284
    [113]Lee C. J., Han G, Barnes N. P. Ho:Tm lasers. Ⅱ. Experiments [J]. IEEE J. Quantum Electron.,1996,32(1):104-111
    [114]Percival R., Szebesta D., Davey S., et al. Thulium sensitised holmium-doped cw fluoride fibre laser of high efficiency [J]. Electron. Lett.,1992,28(24):2231-2232
    [115]Qian G J., Baccaro S., Falconieri M., et al. Photoluminescent properties and Raman spectra of ZnO-based scintillating glasses [J]. J. Non-Cryst. Solids,2008,354(40-41):4626-4629
    [116]Cheng J. S., Deng W., Wang M. T., Structure of Na2O·MO·SiO2·CaF2(M=Mg, Ca) oxyfluoride glasses [J]. Physica B,2012,407(14):2778-2783
    [117]Iguchi Y, Kashio S., Goto T., et al. Raman spectroscopic study on the structure of silicate slags [J]. Can. Metall. Q.,1981,20(1):51-56
    [118]Kolesov B.A., Geiger C.A. Raman spectra of silicate garnets [J]. Phys. Chem. Miner.,1998,25:142-151
    [119]余华,孙健,刘宝荣,等.Eu3+离子在微晶玻璃研究中的探针作用[J].物理学报,2006,55(11):6152-6156
    [120]Chen D. Q., Yu Y L., Huang P., et al. Optical spectroscopy of Eu and Tb doped glass ceramics containing LiYbF nanocrystals [J]. Appl. Phys. Lett.,2009,94(4):0419091-3
    [121]Qiao X. S., Luo Q., Fan X. P., et al. Local vibration around rare earth ions in alkaline earth fluorosilicate transparent glass and glass ceramics using Eu3+probe [J]. J. Rare Earths,2008,26(6):883-888
    [122]Mattarelli M., Tikhomirov V. K., Seddon A. B., et al. Tm3+-activated transparent oxy-fluoride glass-ceramics:structural and spectroscopic properties [J]. J. Non-Cryst. Solids,2004,345-346:354-358
    [123]Lahoz F., Almenara J. M., Rodriguez-Mendoza U. R., et al. Dopant partitioning influence on the near-infrared emissions of Tm in oxyfluoride glass ceramics [J]. J. Appl. Phys.,2006,99:0531031-7
    [124]Wang J. G., Zhang Z. G., Xu J. Z., et al. Spectroscopic investigation on the properties of visible and near infrared emissions in Tm3+, Ho3+Co-doped YV04crystals [J]. Chinese Phys.,2000,9(3):0210
    [125]Dexter D. L. A theory of sensitized luminescence in solids [J]. J. Chem.Phys.,1953,21(5):836-850
    [126]Neikirk D. P., Powell R. C. Laser time-resolved spectroscopy studies of host-sensitized energy transfer in Bi4Ge3O12:Er3+crystals [J]. J. Lumin.,1979,20(3):261-270
    [127]Moine B., Brenier A., Pedrini C. Fluorescence dynamics of Er3+and Ho3+ions and energy transfer in some fluoride glasses [J]. IEEE J. Quantum Electron.,1989,25(1):88-96
    [128]Armagan G., Buoncristiani A. M., Di Bartolo B. Excited state dynamics of thulium ions in yttrium aluminum garnets [J]. Opt. Mater.,1992,1(1):11-20
    [129]Choi Y. G., Kim K. H., Heo J. Spectroscopic Properties of and Energy Transfer in PbO-Bi2O3-Ga2O3Glass Doped with Er2O3[J]. J. Am. Ceram. Soc.,2004,82(10):2762-2768
    [130]董淑福,陈国夫,王贤华,等.Tm3+:Ho3+共掺石英光纤激光器的实验研究[J].光子学报,2004,33(2):129-132
    [131]Kurkov A. S., Dianov E. M., Medvedkov O. I., et al. Efficient silica-based Ho3+fibre laser for2μm spectral region pumped at1.15μm [J]. Electron. Lett.,2000,36(12):1015-1016
    [132]Jackson S. D., Bugge F., Erbert G Diode-cladding-pumped singly Ho3+-doped silica fibre laser [J]. Electron. Lett.,2007,43(18):965-966
    [133]Percival R., Szebesta D., Davey S., et al. High-efficiency CW operation of890nm pumped holmium fluoride fibre laser [J]. Electron. Lett.,1992,28(22):2064-2066
    [134]Tsang Y, Richards B., Binks D., et al. A Yb3+/Tm3+/Ho3+triply-doped tellurite fibre laser [J]. Opt. Express,2008,16(14):10690-10695
    [135]Velazquez J. J., Yanes A. C., Del Castillo J., et al. Optical properties of Ho3+-Yb3+co-doped nanostructured SiO2-LaF3glass-ceramics prepared by sol-gel method [J]. Phys. Stat. Sol.(a),2007,204(6):1762-1768
    [136]De la Rosa E., Salas P., Desirena H., et al. Strong green upconversion emission in ZrO2: Yb3+-Ho3+nanocrystals [J]. Appl. Phys. Lett.,2005,87(24):2419121-3
    [137]Boyer J. C., Vetrone F., Capobianco J. A., et al. Yb3+ion as a sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+[J]. Chem. Phys. Lett.,2004,390(4):403-407
    [138]Osiac E., Sokolska I, Kiick S. Avalanche-like mechanisms and up-conversion processes under infrared pumping in Ho3+, Yb3+:YAlO3[J]. J. Lumin.,2001,94-95:289-92
    [139]Ryba-Romanowski W., Golab S., Dominiak-Dzik G, et al. Conversion of infrared radiation into red emission in YVO4:Yb, Ho [J]. Appl. Phys. Lett.,2001,79(19):3026-3028
    [140]Kir'yanov A. V, Aboites V, Belovolov A. M., et al. Visible-to-near-IR luminescence at stepwise up-conversion in Yb, Ho:GGG under IR diode pumping [J]. J. Lumin.,2003,102-103:715-721
    [141]Yang L. M., Song H. W., Yu L. X., et al. Unusual power-dependent and time-dependent upconversion luminescence in nanocrystals Y2O3:Ho3+/Yb3+[J]. J. Lumin.,2006,116(1):101-106
    [142]Yang X., Xiao S., Liu Z., et al. Sensitizer-dependent up-conversion of Ho3+in nanocrystalline Y2O3[J]. Appl. Phys. B,2007,86(1):77-82
    [143]Walti R., Luthy W., Weber H. P., et al. Yb3+/Ho3+energy exchange mechanisms in Yb: Ho:YAG crystals for2μm or540nm lasing [J]. J. Quant. Spectrosc. Radiat. Transfer,1995,54(4):671-681
    [144]Digonnet M. J. F. Rare-Earth-Doped Fiber Lasers and Amplifiers [M]. Inc., New York, Basel,2001:144-145
    [145]Ratnakaram Y C., Srihari N. V, Naidu D. T., et al. Spectroscopic investigations on Ho3+doped mixed alkali phosphate glasses [J]. Opt. Mater.,2008,30(10):1635-1643
    [146]Choi Y G, Curry R. J., Park B. J., et al. Controlling fluorescence lifetime of rare-earth element in amorphous inorganic solids via very small compositional adjustments [J]. J. Appl. Phys.,2005,98(2):0235231-6
    [147]Chung W. J., Kim K. H., Park B. J., et al. Radiative Emission at Mid-Infrared Wavelengths from Rare-Earth Ions Via Nanocrystal Formation in Oxyfluoride Glasses [J]. J. Am. Ceram. Soc.,2010,93(10):2952-2955
    [148]Zhou B., Pun E. Y. B., Lin H., et al. Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses [J]. J. Appl. Phys.,2009,106(10):1031051-9
    [149]Gouveia-Neto A. S., Da Costa E. B., Bueno L. A., et al. Intense red upconversion emission in infrared excited holmium-doped PbGeO3-PbF2-CdF2transparent glass ceramic [J]. J. Lumin.,2004,110(1-2):79-84
    [150]Guo H.,Dong N., Yin M., et al. Green and red upconversion luminescence in Er3+-doped and Er3+/Yb3+-codoped SrTiO3ultrafine powders [J]. J. Alloys Compd,2006,415(1-2):280-283
    [151]Balda R., Fernandez J., Arriandiaga M. A., et al. Infrared to visible upconversion of Er3+and Er3+/Yb3+codoped lead-niobium-germanate glasses [J]. Opt. Mater.,2004,25(2):157-163
    [152]Miniscalco W. J., Quimby R. S. General procedure for the analysis of Er3+cross sections [J]. Opt. Lett.,1991,16(4):258-260
    [153]Peng B., Izumitani T. Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+and Tm3+-Ho3+doped near-infrared laser glasses, sensitized by Yb3+[J]. Opt. Mater.,1995,4(6):797-810
    [154]Chen G X., Zhang Q. Y, Yang G F., et al. Mid-Infrared Emission Characteristic and Energy Transfer of Ho3+-Doped Tellurite Glass Sensitized by Tm3+[J]. J. Fluoresc.,2007,17(3):301-307
    [155]Yin H. B., Deng P. Z., Zhang J. Z., et al. Determination of emission cross section of Yb3+in glasses by the reciprocity method [J]. Mater. Lett.,1997,30(1):29-33
    [156]Tarelho L. V. G, Gomes L., Ranieri I. M. Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals [J]. Phys. Rev. B,1997,56(22):14344-14351
    [157]Moizan V, Nazabal V, Troles J., et al. Er3+-doped GeGaSbS glasses for mid-IR fibre laser application:Synthesis and rare earth spectroscopy [J]. Opt. Mater.,2008,31(1):39-46
    [158]Ma J. Y, Xu F., Kamran M., et al. Temperature dependent phonon modes and ionicity of LiGaCO2single crystal [J]. Chin. Phys. B,2008,17(9):3313-3317
    [159]Martino D. D., Santos L. F., Marques A. C., et al. Vibrational spectra and structure of alkali germanate glasses [J]. J. Non-cryst Solids,2001,293-295:394-401
    [160]Sigaev V. N., Gregora I., Pernice P., et al. Structure of lead germanate glasses by Raman spectroscopy [J]. J. Non-cryst Solids,2001,279(2):136-144
    [161]郑伟宏,林墨洲,程金树,等.氟对锂铝硅系统玻璃结构及析晶的影响[J].材料工程,2010(004):22-25
    [162]Sakamoto A., Sato F., Yamamoto S. Structural relaxation and optical properties in transparent nanocrystalline β-quartz glass-ceramic [J]. J Non-Cryst Solids,2006,352(6):514-518
    [163]Sekita M., Haneda H., Yanagitani T., et al. Induced emission cross section of Nd:Y3Al5O12ceramics [J]. J. Appl Phys.,1990,67(1):453-458
    [164]楼贤春.锂铝硅系统透明微晶玻璃的研制[D].武汉:武汉理工大学,2005
    [165]Berthier T., Fokin V. M., Zanotto E. D. New large grain, highly crystalline, transparent glass-ceramics [J]. J Non-Cryst Solids,2008,354(15-16):1721-1730
    [166]Pang R., Li C. Y, Shi L. L., et al. A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+, Y3+[J]. J. Phys. Chem. Solids,2009,70(2):303-306
    [167]Layne C. B., Lowdermilk W. H., Weber M. J. Multiphonon relaxation of rare-earth ions in oxide glasses [J]. Phys. Rev. B,1977,16(1):10-20
    [168]Yu Y. L., Weng F. Y, Chen D. Q., et al. Optical spectroscopy investigation on distribution of Eu3+in nanostructured glass ceramics [J]. J. Appl. Phys.,2010,107(9):093504
    [169]Choi Y G, Park B. J., Kim K. H.1.6-μm emission from Ho3+-doped fluoride glasses [J]. Opt. Lett.,2003,28(8):622-624
    [170]Driesen K., Tikhomirov V. K., Gorller-Walrand C., et al. Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission [J]. Appl. Phys. Lett.2006,88(7):073111
    [171]Sangeetha N. M., van Veggel F. C. J. M. Lanthanum Silicate and Lanthanum Zirconate Nanoparticles Co-Doped with Ho3+and Yb3+:Matrix-Dependent Red and Green Upconversion Emissions [J]. J. Phys. Chem. C,2009,113(33):14702-14707
    [172]Choi YG, Park. B. J., Kim K. H. Ho3+:(5S2,5F4)→5I5transition in fluoride glasses [J]. Chem. Phys. Lett.,2002,354(1):69-74
    [173]Lee T. H., Heo J., Choi Y G, et al. Optimized combination of Ho3+and sulfide glass for U-band fiber-optic amplifiers [J]. Chem. Phys. Lett.,2004,384(1):16-19
    [174]Heo J., Kim K. Y, Kwon Y K. Populations and Emission Properties of the5I6and5I7Levels in Ho3+Doped into PbO-Bi2O3-Ga2O3Glasses [J]. J. Am.Ceram Soc.,2008, 91(3):938-941
    [175]Zhou B., Lin H., Yang D. L., et al. Emission of1.38μm and gain properties from Ho3+-doped low-phonon-energy gallate bismuth lead oxide glasses for fiber-optic amplifiers [J]. Opt. lett.,2010,35(2):211-213
    [176]Carnall W. T., Fields P. R., Rajnak K. Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+[J]. J. Chem. Phy.,1968,49(10):4412-4423
    [177]Rai S. B., Singh A. K., Singh S. K. Spectroscopic properties of Ho3+ions doped in tellurite glass [J]. Spectrochimica Acta Part A,2003,59(14):3221-3226
    [178]Reisfeld R., Jorgensen C. K. Excited state phenomena in vitreous materials. In: Handbook on the Physics and Chemistry of Rare Earths [M]. Amsterdam:North-Holland publishing Company,1987,9(chapter58):1-90
    [179]Tanabe S., Ohyagi T., Todoroki S., et al. Relation between the Q.6intensity parameter of Er3+ions and the151Eu isomer shift in oxide glasses [J]. J. Appl. Phys.,1993,73(12):8451-8454
    [180]Goerller-Walrand Ch., Binnemans K. Spectral intensities of f-f transitions. In: Handbook on the Physics and Chemistry of Rare Earths [M]. Amsterdam:Elsevier Science Publisher B.V.,1998,25:101
    [181]Chen D. Q., Wang Y. S., Yu Y L., et al. Improvement of Er3+emissions in oxyfluoride glass ceramic nano-composite by thermal treatment [J]. J. Solid State Chem.,2006,179(5):1445-1452
    [182]McDougall J. P., Hollis D. B., Payne J. P. Judd-Ofelt parameters of rare earth ions in ZBLALi, ZBLAN and ZBLAK fluoride glasses [J]. Phys. Chem. Glass,1994,35:258-259
    [183]Reisfeld R., Hormadaly J., Muranevich A. Absorption and emission of Ho3+in germanate glasses [J]. J.Non-cryst. Solids,1978,29(3):323-332
    [184]Zhang W. J., Zhang Q. Y, Chen Q. J., et al. Enhanced2.0μm emission and gain coefficient of transparent glass ceramic containing BaF2:Ho3+, Tm3+nanocrystals [J]. Opt. Express,2009,17(23):20952-20958
    [185]Zhou B., Yang D. L., Lin H., et al. Emissions of1.20and1.38μm from Ho3+-doped lithium-barium-bismuth-lead oxide glass for optical amplifications [J]. J. Non-Cryst. Solids,2011,357(11):2468-2471
    [186]Gonzalez-Perez S., Martin I. R., Rivera-Lopez F, et al. Temperature dependence of Nd3+→Yb3+energy transfer processes in co-doped oxyfluoride glass ceramics [J]. J.Non-Cryst.Solids,2007,353:1951-1955
    [187]Van Dijk J. M. F., Schuurmans M. F. H. On the nonradiative and radiative decay rates and a modified exponential energy gap law for4f-4f transitions in rare-earth ions [J]. J. Chem. Phys.,1983,78(9):5317-5323
    [188]Yu D. C., Ye S., Peng M. Y, et al. Efficient near-infrared downconversion in Dy3+phosphors for enhancing the photo-response of solar cells [J] Sol. Energy Mater. Sol. Cells,2011,95(7):1590-1593
    [189]Caspers H., Rast H., Fry J. Absorption, fluorescence, and energy levels of Ho3+in LaF3[J]. J. Chem. Phys.,1970,53(8):3208-3216
    [190]Ebendorff-Heidepriem H., Szabo I., Rasztovits Z. E. Crystallization behavior and spectroscopic properties of Ho3+-doped ZBYA-fluoride glass [J]. Opt. Mater.,2000,14(2):127-136
    [191]Ohta K., Saito H., Obara M. Spectroscopic characterization of Tm3+:YVO4crystal as an efficient diode pumped laser source near2000nm [J]. J. Appl. Phys.,1993,73(7):3149-3151
    [192]Lee T. H., Heo J., Choi Y G, et al. Emission properties of Ho3+/Tb3+Co-doped in GeGaAsS glass [J]. J. Appl. Phys.,2004,96:4827-4832
    [193]Ganem J., Crawford J., Schmidt P., et al. Thulium cross-relaxation in a low phonon
    energy crystalline host [J]. Phys. Rev. B,2002,66(24):2451011-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700