用户名: 密码: 验证码:
金属氧化物一维纳米材料制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,纳米尺度结构的氧化物,尤其是纳米管、纳米线、纳米棒、纳米带等形貌特征的金属氧化物,因拥有奇异的性能特征,引起了科技领域的广泛关注。一维纳米材料在物理、生命、工程等交叉学科领域应用前景广阔,因此备受关注。
     本文提供了3种实验体系进行了一维纳米结构的金属氧化物的制备研究,合成了各种形貌特征的带状一维纳米结构。
     利用SiO2材料为衬底,高分子金属络合物为前躯体,经过一系列热处理工艺,成功的合成了包括ZnO、MgO、NiO、PbO、Mn_2O_3、Co_2O_3、CuO、Fe_2O_3在内的8种一维纳米结构金属氧化物。分析了前驱体溶液的混合浓度、混合均匀程度、热处理温度、热处理时间、衬底种类等因素对合成一维纳米结构的金属氧化物的影响。
     本文报道了一种新的制备工艺―“熔点法”。在600℃温度下,利用金属Zn一步合成了长度大约10μm,厚度30~50nm的ZnO针状纳米带结构。并分析了热处理温度、保温时间、升温速度、升温方式对产物形貌的影响。研究表明热处理目标温度600℃,升温方式为渐进式升温为一步合成ZnO针状纳米带结构的最佳方案。
     利用表面覆盖ZnO纳米晶的金属Zn片作为衬底,以Zn~(2+)和PVA组成的高分子络合物(MMC)为前躯体,经过一步法600℃热处理2h,成功合成了形貌特征均匀的纳米草状结构。并通过AFM进行了一维纳米结构ZnO力学性能初步的探索,发现了一维纳米结构不同于宏观物体的奇特力学特性。
     利用PL谱表征分析,研究了不同方法制备出的各种形貌带状ZnO一维纳米结构的光学特性,发现本文尝试的3种实验方法制备出的ZnO一维纳米材料,在激光的激发下发出的光均为绿光。
     使用3D软件,简单地讨论了一维纳米材料的生长机理,并构想了ZnO一维纳米材料工业化生产的流水线模型。
In recent years, oxide nanostructures, especially one-dimension metal oxides including nanotubes, nanowires, nanorods, nanoribbons and nanobelts have attracted considerable attention in scientific research and technological applications due to their novel properties. The field of one-dimensional(1D) nanotechnology represents an exciting and rapidly expanding research area that crossed the borders between physical, life and engineering sciences.
     Using three different experimental methods, many shapes like belts of one dimensional structured metal oxides were prepared.
     Including ZnO、MgO、NiO、PbO、Mn_2O_3、Co_2O_3、CuO、Fe_2O_3,8 kinds of one dimensional structured metal oxides were produced,with SiO_2 as substrate materials and macromolecular metal complex(MMC) as precursors. Such as mixing concentration, mixing uniform level, thermal treatment temperature, thermal treatment time and substrate materials, many influencing factor in the synthesis process had been studied.
     In this research, we show a new method to prepare one dimensional structured metal oxides. It was named as melting point method. By one step thermal treatment process, metal zinc transformed to zinc oxide(ZnO) nanoblets like needle were composited at 600℃, the length is about 10μm,and the thickness is about 30~50nm. Results show that 600℃is the best thermal treatment temperature point and progressive thermal treatment process is the most appropriate.
     Such as thermal treatment temperature, thermal treatment time and heating-up rate and heating-up way, many influencing factor in the synthesis process had been researched. Using mental Zn coated by ZnO nano-crystals as substrate materials and precursors composited by zinc ion and PVA, after one step thermal treatment process at 600℃for about 2h, nanograss structured ZnO with uniform shapes were prepared successfully. By operating AFM, we have done some preliminary research work to study the mechanical property of single one dimensional structured ZnO. Many special mechanical properties, being different to macroscopic structures, were showed to us.
     Luminescent properties of the ZnO nano-materials in many shapes made by this method showed in this paper were researched by photoluminescence spectra. But every production examples prepared by 3 different ways shows the same green lighting color.
     In the presence of 3D softwares, the reaction mechanism of synthesis of one dimensional structured metal oxides was discussed. After that, we show a production-line model to product one dimensional structured ZnO.
引文
[1] 张立德,牟季美等,纳米材料与纳米结构,科学出版社,2002.
    [2] G.E. Moore, Cramming more components onto integrated circuits, Proc. IEEE, 1998,86 :82~85.
    [3] 张金中,王中林,刘俊,陈少伟,刘刚玉著,曹茂盛,曹传宝译,自组装纳米结构,北京:化学工业出版社,2005:106~137
    [4] Yang.Liu,Zhou.Jian-er,Andre.Larbot, et al., Preparation and characterization of nano-zinc oxide, Journal of Materials Processing Technology, 2007, 189(1-3): 379~383.
    [5] C.N.R. Rao, F.L. Deepak, G. Gundiah, A. Govindaraj, Inorganic nanowires, Prog. Solid State Chem. 2003,31: 5~9.
    [6] A.Bachtold, P.Hadley, T.Nakanishi, et al., Logic circuits based on carbon nanotubes, Science, 2003, 6(1):42~46.
    [7] L.F.Dong, J.Jiao, D.W.Tuggle, J.M.Petty, Appl.Phys.Let., 2003, 82:1096~1102.
    [8] W.I.Park, Y.H.Jun, S.W.Jung, G.C.Yi, Appl.Phys.Let., 2003,82:964~968.
    [9]S.Y. Bae, H.W. Seo, J.H. Park, Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition, J. Phys. Chem. B 2004,108: 5206~5210.
    [10] Y.J. Chen, J.B. Li, Y.S. Han, X.Z. Yang, J.H. Dai, The effect of Mg vapor source on the formation of MgO whiskers and sheets, J. Cryst. Growth ,2002, 245:163~167.
    [11] J.M.Wu, H.C. Shih, W.T. Wu, Y.K. Tseng, I.C. Chen, Thermal evaporation growth and the luminescence property of TiO2 nanowires, J. Cryst. Growth,2005 281:384~389.
    [12] Z.R. Dai, J.L. Gole, J.D. Stout, Z.L. Wang, Tin oxide nanowires, nanoribbons, and nanotubes, J. Phys. Chem. B,2002,106:1274~1279.
    [13] L. Dai, X.L. Chen, J.K. Jian, M. He, T. Zhou, B.Q. Hu, Fabrication and characterization of In2O3 nanowires, Appl.Phys. A Mater. Sci. Process. , 2002,75:687~693.
    [14] P.C. Chang, Z.Y. Fan, W.Y. Tseng, A. Rajagopal, J.G. Lu, beta-Ga2O3 nanowires: synthesis, characterization, and p-channel field-effect transistor, Appl. Phys. Lett., 2005,87:222102~222113.
    [15] P.D. Yang, H.Q. Yan, S. Mao, et al., Controlled growth of ZnO nanowires and their optical properties, Adv. Funct.Mater.,2002,12:323~327.
    [16] X.D. Wang, C.J. Summers, Z.L. Wang, Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nanooptoelectronics and nanosensor arrays, Nano Lett.,2004,4:423~426.
    [17] Y.K. Tseng, I.N. Lin, K.S. Liu, T.S. Lin, I.C. Chen, Low-temperature growth of ZnO nanowires, J. Mater. Res. 2003,18:714~716.
    [18] H.B. Huang, S.G. Yang, J.F. Gong, et al., Controllable assembly of aligned ZnO nanowires/belts arrays, J. Phys. Chem.B,2005,109: 20746~20751.
    [19] A. M. Morales, C. M. Lieber. A laser ablation method for the synthesis of crystalline semiconductor nanowires [J].Science,1998,279(5348):208~211.
    [20] W.S.Shi,Y.F.zheng,N.Wang,et al. A general synthetic route to Ill-V compound semiconductor nanowires [J].Adv.Mater.2001,13(8):591~594.
    [21] R.S.Wagner, W.C.Ellis. Vapor-liquid-solid mechanism of single crystal growth [J].Appl.Phys. Lett. 1994,4(5):89~90
    [22]Y.Y.Wu,P.D.Yang. Direct observation of vapor-liquid-solid nanowire growth J.A m.Chem. Soc.2001,123(13):3165~3166
    [23] Q. Zhao, X. Xu, H. Zhang, Y. Chen, J. Xu, D. Yu, Catalyst-free growth of single-crystalline alumina nanowire arrays, Appl. Phys. A Mater. Sci. Process. 2004,79:1721~1725.
    [24] A. Umar, S.H. Kim, Y.S. Lee, K.S. Nahm, Y.B. Hahn, Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor–solid growth mechanism: structural and optical properties, J. Cryst. Growth ,2005, 282:131~139.
    [25] A. Sekar, S.H. Kim, A. Umar, Y.B. Hahn, Catalyst-free synthesis of ZnO nanowires on Si by oxidation of Zn powders, J. Cryst. Growth. 2005,277: 471~475.
    [26] Y. Sun, G.M. Fuge, M.N.R. Ashfold, Growth mechanisms for ZnO nanorods formed by pulsed laser deposition, Superlattices Microstruct. 2006,39:33~37.
    [27] N. Cabrera, W.K. Burton, Crystal growth and surface structure. 2, Discuss. Faraday Soc. 1949 :40~46.
    [28] G.W. Sears, A mechanism of whisker growth, Acta Metallurgica,1955,3: 367~369.
    [29] J.M. Blakely, K.A. Jackson, Growth of crystal whiskers, J. Chem. Phys. 1962,37:428~431.
    [30]Z. L.Wang, R. P.Gao, P. Poncharal, et al., Mechanical and electrostatic properties of carbon nanotubes and nanowires, Materials Science and Engineering, 2001, 16(1-2): 3~10
    [31]R .H .Baughman, C .X .Cui, H. Eckhardt, et al., The vibrational properties and defect structures in vinylene-linked low-band-gap conducting polymers , Science, 1991,43(1): 3413~3415
    [32] J.C. Hulteen, C.R. Martin, A general template-based method for the preparation of nanomaterials, J. Mater. Chem., 1997,7:1075~1081.
    [33] D.S. Xue, L.Y. Zhang, A.B. Gui, X.F. Xu, Fe3O4 nanowire arrays synthesized in AAO templates, Appl. Phys. A Mater. Sci. Process. 2005,80:439~446.
    [34] M.J. Zheng, L.D. Zhang, G.H. Li, W.Z. Shen, Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique, Chem. Phys. Lett. 2002,363:123~129.
    [35] K.Y. Shi, B.F. Xin, Y.J. Chi, H.G. Fu, Assembling porous Fe2O3 nanowire arrays by electrochemical deposition inmesoporous silica SBA-16 films, Acta Chim. Sin. 2004,62:1859~1863.
    [36] X.M. Liu, Y.C. Zhou, Electrochemical deposition and characterization of Cu2O nanowires, Appl. Phys. A Mater. Sci.Process. 2005,81:685~689.
    [37] T.S. Mintz, Y.V. Bhargava, S.A. Thorne, et al., Electrochemical synthesis of functionalized nickel oxide nanowires, Electrochem. Solid State Lett. 2005,8:26~27.
    [38] Y.H. Chen, X.T. Zhang, Z.H. Xue, Z.L. Du, T.J. Li, Preparation of SnO2 nanowires by AC electrodeposition in anodicalumina template and its deposition conditions, J. Inorg. Mater. 2005,20:59~63.
    [39] Y. Li, G.S. Cheng, L.D. Zhang, Fabrication of highly ordered ZnO nanowire arrays in anodic alumina membranes, J.Mater. Res. 2000,15:2305~2311.
    [40] Y.W. Chen, Y.C. Liu, S.X. Lu, et al., Optical properties of ZnO and ZnO: In nanorods assembled by sol–gel method, J.Chem. Phys. 2005,123: 134701~ 134706.
    [41] X.Y. Wang, X.Y. Wang, W.G. Huang, P.J. Sebastian, S. Gamboa, Sol-gel template synthesis of highly ordered MnO2 nanowire arrays, J. Power Sources , 2005,140:211~218.
    [42] H. Xu, D.H. Qin, Z. Yang, H.L. Li, Fabrication and characterization of highly ordered zirconia nanowire arrays by sol-gel template method, Mater. Chem. Phys. 2003,80:524~530.
    [43] M. Zhang, Y. Bando, K. Wada, Sol-gel template preparation of TiO2 nanotubes and nanorods, J. Mater. Sci. Lett. 2001,20:167~171.
    [44] Y.K. Zhou, H.L. Li, Sol–gel template synthesis and structural properties of a highly ordered LiNi0.5Mn0.5O2 nanowire array, J. Mater. Chem.,2002,12:681~ 693.
    [45] Z. Yang, Y. Huang, B. Dong, H.L. Li, Fabrication and structural properties of LaFeO3 nanowires by an ethanol–ammonia-based sol–gel template route, Appl. Phys. A Mater. Sci. Process., 2005,81:453~459.
    [46] C.K. Xu, G.D. Xu, Y.K. Liu, G.H. Wang, A simple and novel route for the preparation of ZnO nanorods, Solid State Commun., 2002,122:175~178.
    [47] C.K. Xu, X.L. Zhao, S. Liu, G.H. Wang, Large-scale synthesis of rutile SnO2 nanorods, Solid State Commun., 2003,12:301~307.
    [48] C.K. Xu, G.D. Xu, G.H. Wang, Preparation and characterization of NiO nanorods by thermal decomposition of NiC2O4 precursor, J. Mater. Sci.,2003, 38:779~783.
    [49] Y.L. Cao, D.Z. Jia, L. Liu, J.M. Luo, Rapid synthesis of lead oxide nanorods by one-step solid-state chemical reaction at room temperature, Chin. J. Chem.,2004, 22:1288~1291.
    [50] J.H. Liang, C. Peng, X. Wang, et al., Chromate nanorods/nanobelts: general synthesis, characterization, and properties, Inorg. Chem., 2005,44:9405~9409.
    [51] A. Vantomme, Z.Y. Yuan, G.H. Du, B.L. Su, Surfactant-assisted large-scale preparation of crystalline CeO2 nanorods,Langmuir, 2005,21:1132~1138.
    [52] L.H. Thompson, L.K. Doraiswamy, Sonochemistry: science and engineering, Ind.Eng. Chem. Res. 1999,38:1215~1221.
    [53] R.V. Kumar, Y. Koltypin, X.N. Xu, Y. Yeshurun, A. Gedanken, I. Felner, Fabrication of magnetite nanorods by ultrasound irradiation, J. Appl. Phys.,2001, 89:6324~6327.
    [54] X.L. Hu, Y.J. Zhu, S.W.Wing, Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods,Mater. Chem. Phys., 2004,88:421~426.
    [55] T. Gao, Q.H. Li, T.H. Wang, Sonochemical synthesis, optical properties, and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites, Chem. Mater., 2005,17:887~893.
    [56] B. Liu, H.C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm, J. Am. Chem. Soc., 2003,125:4430~4437.
    [57] J.M. Wang, L. Gao, Wet chemical synthesis of ultralong and straight single- crystalline ZnO nanowires and their excellent UV emission properties, J. Mater. Chem., 2003,13:2551~2558.
    [58] M. Guo, P. Diao, S.M. Cai, Hydrothermal growth of well-aligned ZnO nanorod arrays: dependence of morphology and alignment ordering upon preparing conditions, J. Solid State Chem., 2005,178:1864~1864.
    [59] M.H. Cao, Y.H.Wang, C.X. Guo, Y.J. Qi, C.W. Hu, E.B.Wang, A simple route towards CuO nanowires and nanorods,J. Nanosci. Nanotechnol., 2004,4:824~ 829.
    [60] J. Zhang, Z.G. Liu, C.K. Lin, J. Lin, A simple method to synthesize beta-Ga2O3 nanorods and their photolumine scence properties, J. Cryst. Growth,2005,280: 99~103.
    [61] D.S. Zheng, S.X. Sun, W.L. Fan, et al., One-step preparation of single-crystalline beta-MnO2 nanotubes, J. Phys.Chem. B, 2005,109:16439~16442.
    [62] D.L. Zhu, H. Zhu, Y.H. Zhang, Microstructure and magnetization of single- crystal perovskite manganites nanowires prepared by hydrothermal method, J. Cryst. Growth, 2003,249:172~177.
    [63] K.B. Zhou, X. Wang, X.M. Sun, Q. Peng, Y.D. Li, Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes, J. Catal., 2005,229:206 ~ 211.
    [64] Z.Y. Yuan, B.L. Su, Titanium oxide nanotubes, nanofibers and nanowires, Colloids Surf. A Physicochem. Eng.Aspects, 2004,241:173~177.
    [65] 严瑞瑄,水溶性高分子,北京:化学工业出版社,1998
    [66] 周兴祥,实用塑料包装制品手册,北京:中国轻工出版社,2000
    [67] Andrea Corti, Patrizia Cinelli, Salvatore D'Antone, et al, Biodegradation of poly (vinylalcohol) in soil environment: Influence of natural organic fillers and structural parameters, Macromolecular Chemistry and Physics, 2002,203(10-11): 1526~1531
    [68] 刘白玲,曾祥成,杨金华等,聚乙烯醇生物降解的影响因素,材料研究学 报,2000, 14:108~112.
    [69]Hu J.Q., Li.Q., Wang N.B., et a1. Synthesis of uniform hexagonal prismatic ZnO whiskers . Chem.Mamr.,2002,14(3):1216~1219.
    [70]Lyu S. C.,Zhang Y.,Lee C. J. Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method. Chem.Mater., 2003, 15(17): 3294~3299.
    [71]Wu J. J., Liu S. C. Catalyst-free growth and characterization of ZnO nanorods[J]. Phys. Chem. B,2002,105(37):9546~9551.
    [72]M Seidl,M Schurr,A Brugger,et a1.Zinc oxide thin films prepared by means of langmuir-blodgett multilayers. Applied Physics A,1999,68:8l~85.
    [73]Y Du,M S Zang,J Hong,et a1.Structural and optical properties of nanophase zinc oxide.Applied Physics A,2003,76:171~176.
    [74]李健,李海兰,田野等.掺杂和热处理对纳米ZnO薄膜气敏特性影响.传感器技术,2002, 21(3):61~64。
    [75]Wu Jun, Xie Changsheng, Bai Zikui,et al. Preparation of ZnO-glass Varistor From tetrpod ZnO nanopowders. Materials Science and Engineering,2002,95: 157~161.
    [76]张莉,扬迈之,蔡生民.五甲川箐敏化ZnO纳米结构电极的光电化学行为.化学通报,1999,8: 43~46.
    [77]李卫华,郝彦忠,乔学斌等.纳米结构ZnO/染料/聚毗咯光阳极的光电化学行为.物理化学学报,1999,15(10):905~909
    [78]Run Wu, Jun Wu, changsheng Xie, et al. Morphological characteristic of Zn/ZnO nanopowders and the optical properties. Materials Science and Engineering,2002, 328: 196~200.
    [79] J. F. Li, L. Z.Yao, C.H.Ye, et al. Photoluminescence enhancement of ZnO nanocrystallites with BN capsules. Journal of Crystal Growth, 2001,223:535~ 538.
    [80]许小亮,施朝淑.纳米微晶ZnO及其紫外光.物理学进展,2000,20(12):356~369.
    [81] T.Iwasaki, M.Satoh, T.Masuda, et al. Powder design for UV-attenuating agent with high transparency for visible light.Journal of Materials Science,2000,35: 4025~4029.
    [82]马正先,韩跃新,郑龙熙等.纳米氧化锌的应用研究.化工进展,2002, 21(1): 59~62.
    [83]D.C.Look. Recent advances in ZnO materials and devices.Materials Science and Engineering, 2001,80:383~387.
    [84]Huang M H, Mao S ,Yang P, et al. Room-temperature ultraviolet nanowire nanolasers . Science, 2001, 292(5523): 1897~1899.
    [85] G. Yi, Z. Wu, K. Sreenivas, M. Sayer, C. K. Jen, G. Perluzzo, Ultrasonic experiments with lead zirconate titanate thin-films fabricated by sol-gel processing.Electron Lett.,1989,25(5):307~410.
    [86] L. L. Hench, J. K. West, The sol-gel process.[J]. Chem. Rev. 1990,90(1):33-35.
    [87] Watari Takanori,Nakayeshi Kazumi,Kato Aldo.Preparation of submicron magnesium oxide powders by vapor-phase reaction of magnesium and oxygen. Joumal ofthe Chemical Society of Japan,1984(6):l075~l076
    [88] Olga B,Isabelle Lagsdic,Alexander volodin.Alksline-earth oxide nanoparfcales obtained by aerogel methods.Chemical materials,1997(11):2468~2480
    [89] Chhor K,Boequet J F,Pommier C.Syntheses of submicron magnesiumoxide powders. Materials Chemistry and Physics,1995,40(1):63~68
    [90] Kagawa M,Nagae Tsuneki.Preparation of ultrafine powders by inductively coupled plasma generated with modified conventional induction heater.Science of the Research Institutes,Tohoku University(Series A),1983,31(2):216~224
    [91]汪国忠,程素芳.纳米MgO粉体的合成[J].合成化学,1999(4):300~302
    [92]Qi X. D., Lockman Z., MacManus-Driscoll J. L., Fabrication of YBCO thick films on Nd2CuO4,buffered Ni tapes by liquid phase epitaxy. Physical C.,2002, 372(2):742~746.
    [93]Kilic C., Zunger A. n-type doping of oxides by hydrogen.Appl. Phys. Lett.,2002, 81(1):73~75.
    [94]王文亮,李东升,王振军等.CuO超细粉体的形貌与红外特性研究.无机化学学报,2002,18(8):823~826.
    [95]李东梅,夏熙.水热法合成纳米氧化铜粉体及其性能表征[J].化学研究与应用,2002,14(4):484~486.
    [96]钟晓.可广泛应用的纳米氧化铜抗菌剂.化工新型材料,2003, 12:46~47.
    [97]刘吉平,廖莉玲.无机纳米材料.北京:科学出版社,2003.
    [98]Zheng M. J., Preparation and optical properties of InAs0.4P0.6 nanocrystal alloy embedded in SiO2 thin films.Semicond Sci. Techol,2001,16:507~510.
    [99]Y. Chang, H. C. Zeng, Controlled Synthesis and Self-Assembly of Single- Crystalline CuO Nanorods and Nanoribbons,Cryst.Growth Des.,2004,4:397~402.
    [100]C. Lu, L. Qi, J. Yang, et al.Simple Template-Free Solution Route for the Controlled Synthesis of Cu(OH)2 and CuO Nanostructures.Phys. Chem.B 2004,108:17825~17831.
    [101]X. C. Jiang,T. Herricks, Y. Xia, CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air. Nano Letters,2002,2:1333~1338.
    [102]W. Z. wang, Y. J. Zhan, G. H. Wang, One-step, solid-state reation to the synthesis of copper oxide nanorods in the presence of a suitable surfactant. Chem.Comm.,2001,8:727~728.
    [103]M. H. Cao, C. W. Hu, Y. H. Wang,et al. A controllable synthtic route to Cu,Cu2O,CuO nanotubes and nanorods.Chem.Comm,2003,18:1884~1885.
    [104]B. Liu, H. C. Zeng, Mesoscale Organization of CuO nanoribbons: Fromation of" Dandelions".Am. Chem. Soc.(communications),2004,126:8124~8125.
    [105]H. W. Hou, Y. Xie, Q. Li, Large-Scale Synthesis of Single-Crystalline Quasi_ Aligned Submicrometer CuO Ribbons. Cryst Growth Des.,2005,5:201~205.
    [106]罗元香,汪信,陆路德等,纳米氧化铜的制备及应用研究进展,上海化工,2002,(2):24~28.
    [107]周根陶,刘双怀,郑永正,沉淀转化法制备氧化铜超微粉末的研究,化学物理学报,1997,10(4):381~384.
    [108]洪伟良,刘剑洪,田德余等.室温固相化学反应制备纳米CuO粉体研究,深圳大学学报(理工版),2000,17(1):66~69.
    [109]马正先,韩跃新,郑龙熙等,纳米氧化锌的应用研究,化工进展,2002, 21(1):59~62.
    [110]S. W. Lovesev, Journal of Physics.Condensed Matter,1998,10:2505~25l3.
    [111]Marc Serra, Pilar Salagre,Yolanda Cesteros, et al. Nickel and nickel-magnesia catalysts active in the hydrogenation of 1,4-butanedinitrile,Journal of Catalysis, 2001,197:210~219.
    [112]Salah A Makhlouf, Parker F. T.,Spada F. E., et a1.Magnetic anomalies in NiO nanoparticles. Journal of Applied Physics,1997,81(8):5561~5563.
    [113]王子忱,张丽华,李熙等,胶溶法制备NiO纳米晶热敏材料,高等学校化学学报,1992, 13(10):1287~1290.
    [114]Bodker F., Hansen M. F., Bender Koch C., et al. Particle interaction effects in antiferromagnetic NiO nanoparticles, Mag.Mater.2000, 221:32~36.
    [115]Fahim R.B .,Abu-Shady A .I ., Surface area and pore structure of nickel oxide. Catal,1970, (17) : 10~17.
    [116]Richardson J.T., Yiagas D.T., Turk B., et al. Origin of superparamagnetism in nickel oxide. Appl.Phys. 1991,70(11):6977~6982.
    [117]Lou Bingsuo, Wang Li, Lin Jingu. The electronic structures of NiO nanoparticles coated with stearates, Sol.Stat.Commu, 1995, 94 (10):847~850.
    [118]李亚栋,李成韦,郑化杜等.混合溶剂中纳米级NiO的制备及表征.高等学校 化学学报,1997,18(12):1921~1923.
    [119]Tomczvk P., Sato H., Yamada K., et al.Oxide electrodes in molten carbonates, Elect.Chem: 1995,391(12):125~128.
    [120]Polzot P., Laruelle S., Grugeon S.,et al.Tarascon J -M. Nano-sized transition-metal oxides as negative-electrode materials for Lithium-ion batteries, Nature(London),2000,407(6803):496~499.
    [121]王晓峰,孔祥华,刘庆国等.氧化镍超电容器的研究,电子元件与材料, 2000,19(5):26~28.
    [122]P. Tomezyk, H. P. Sata, K. Yamada, et al. Oxide electrodes in molten carbonates.J.Elect.Chem.,1995,391(12):125~132.
    [123]王军伟,曹国英,胡伟全.CuO-NiO/SiO2催化氧化1-甲氧基-2-丙醇合成甲氧基酮.催化学报,2002,23(4):349~351.
    [124] Z. P. Hao, L. D. An, J. L. Zhou, et a1. Efect of catalyst pretreatment on the oxidation of carbon monoxide over Au/NiO catalyst.Chin.Chem.Lett., 1995, 6(4):345~346.
    [125] Corrie L Carnes, Jennifer Stipp, Kenneth J Klabunde. Synthesis, characterization and adsorption studies of nanocrystalline copper oxide and nickel oxide,Lang-muir,2002,18: 1352~1359.
    [126]俞建群,贾殿赠,郑毓峰等,纳米氧化镍、氧化锌的合成新方法,无机化 学学报,1999,15(1):95~98.
    [127] Xiang L.,Deng X. Y.,Jin Y.,Experimental study on synthesis of NiO nano-particles.Scripta Materialia,2002,47:219~224.
    [128]Wang Weining, Yoshifumi Itoh, Wuled Lenggoro I., et al. Nickel and nickel oxide nanoparticles prepared from nickel nitrate hexahydrate by a low pressure spray pyrolysis. Materials Science and Engineering B,2004,111:69~76.
    [129] Zou Bingsuo, Wang Li, Lin Jingu. The electronic structures of NiO nanoparticles coated with stearates.Solid Slate Communications, 1995,94(10): 847~850.
    [130] Palchik O., Avivi S., Pinkert D., et a1. Preparation and characterization of Ni/NiO composite using microwave irradiation sonication.Nano Structured Materials, 1999, 11(3): 415~420.
    [131]刘胜峰,吴春艳,韩效钊.高分子网络法制备纳米NiO超细粉的研究.无机化学学报,2003,19(6):624~626.
    [132]Bodker F., Hansen M. F., Bender Koch C., et a1. Particle interaction effects in antiferromagnetic NiO nanoparticles.Journal of Magnetism and Magnetic Materials,2000,(221):32~36.
    [133] T.Iwasaki, M.Satoh, T.Masuda, et al. Powder design for UV-attenuating agent with high transparency for visible light. Journal of Materials Science,2000,35: 4025~4029.
    [134] LUO Yi-Min,HUANG Ke-Long.Journal of Inorganic Materials,1994,9(2):239~243
    [135] MA Zhen-Ye,LI Feng-Sheng,CUI Ping,et a1.Chinese Journal of Catalysis,2003.24(10):795~798
    [136] NIU Xin-Shu,DU Wei-Min,JIANG Kai.Electronic Components & Materials,2003,22(5):35~39
    [137] 张立德.纳米材科和纳米结构.北京:科学出版社.(2002):12~28
    [138] 刘恩科,朱秉升,半导体物理学,电子工业出版社(2003):321~347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700