用户名: 密码: 验证码:
基于全寿命设计的混凝土箱梁桥若干理论问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土桥梁生命周期内,受荷载作用、钢筋锈蚀、混凝土碳化和开裂等因素的影响,其全寿命性能始终处于变化状态。本文结合浙江省交通运输厅科技计划项目“预应力混凝土连续箱梁底板开裂原因分析及防治研究”(项目编号2008H38),对施工过程中的裂缝,服役过程中的荷载—环境耦合作用及时变承载力等混凝土箱梁桥全寿命设计理论的若干问题进行探索,并以典型箱梁桥为背景进行应用研究。主要的研究工作如下。
     (1)建立预应力混凝土箱梁桥的空间弹塑性分析的整体和局部模型,对其底板开裂的成因及影响因素进行了详尽的分析研究,表明混凝土箱梁下缘横向应力过大是开裂的直接原因;合龙束孔道对底板截面的削弱及普通受力钢筋配置的不合理,将直接导致底板混凝土横向抗剪不足,是其开裂的根本原因。
     (2)提出了箱梁施工过程中底板开裂除纵向开裂、预应力束局部崩出、底板孔道间混凝土竖向拉裂等三类开裂形态外,横向剪切裂缝也是一种主要开裂形式,并针对不同裂缝形态,提出了相应的抗裂设计方法。
     (3)考虑服役过程中荷载—环境的相互作用,提出锈蚀钢筋的名义弹性模量和锈蚀系数以反映钢筋在锈蚀过程中的变形特征;同时结合已有的锈蚀速率模型,推导了不同锈蚀速率下钢筋的锈蚀系数,通过对锈蚀变形规律的研究,将荷载与环境共同作用下,钢筋变形特征分为加速型和衰减型;在此基础上,构建了锈蚀过程中钢筋的时变本构模型
     (4)提出荷载—环境耦合效应分析的数学模型,推导了混凝土分离式和组合式两种模型中的耦合分析的有限元方程,利用单元内部开裂应变和保护层厚度的比值控制开裂混凝土单元内钢筋的锈蚀;采用Fortran语言编程实现和嵌入上述模型,并给出了计算实例进行验证。
     (5)基于混凝土结构裂缝面的力学特征,推导了开裂混凝土的本构关系矩阵及其工程显式,同时对三维分析时,开裂区单元的屈服准则和加、卸载准则等进行探讨,并编制程序予以实现,通过已有构件试验对模型进行验证。
     (6)综合考虑各种因素及耦合的影响,结合某预应力混凝土连续箱梁桥的工程实例,运用所提出的理论及方法,对服役过程中荷载—环境的耦合效应和时变承载力进行研究,分析表明,在一般大气环境和正常使用荷载下,预应力混凝土连续箱梁桥在服役100年后仍具有较高的超载潜力,从承载力退化的曲线来看,在结构服役的初期,是极限承载力变化最快的时期,其主要原因是混凝土强度快速发展;在服役的中期,承载力退化较为稳定,因为在这一阶段混凝土的强度比较成熟,并且钢筋的锈蚀速率也较小;而在服役的后期,由于多种材料的劣化最终加剧承载力的退化。
The life-cycle performance of concrete bridge varies with external factors, such as load effect, reinforcement bar corrosion, concrete carbonation and cracks, et al. The research project "Cracking mechanism and control measurement of crack in bottom plate of prestressed concrete continuous box girder bridge" has been supported by the scientific and technological plans of Zhejiang communications department. According to the project, this paper focuses on the life-cycle design method for concrete box girder bridge. The cracking mechanism in construction stage, the load-environment coupled effect in service stage and the time-dependent carrying capacity of box girder are investigated in this thesis. The primary work and achievements are as follows.
     (1) The cracking mechanism and parameters study are discussed according to numerical analysis of local and integral module of box girder. The exaggerated transverse stress by the downward radial force leads to the crack in bottom plate. In addition, the shortage of shear capacity due to the ducts and unreasonable reinforcement play crucial roles in the cracking of the bottom plate.
     (2) Transverse shearing crack is one of the most common crack during the construction of the box girder bridge, as well as longitudinal cracking, concrete cover spalling and vertical tensioning crack. And design methods for cracking control are proposed according to the crack patterns.
     (3) Nominal elastic module of corroded reinforced bar and corrosion factor are presented to illustrate the deformation process of steel bar during the service of bridge. According to the existing corrosion rate module, the corrosion factor of bars are deduced and compared. And the deformation characteristics are generally divided into acceleration type and degeneration one. Then, the time-dependent constitutive relation of steel bar is advanced.
     (4) The approach for load-environment coupled effect analysis of concrete bridge is proposed, and the finite element equation for separated element and combined element are deduced respectively. In order to take into account the effect of cracks, the ratio between crack strain and concrete cover depth is used to control the initial corrosion time of cracked element on some assumptions. The above approach is implemented in FORTRAN language, and tested by a reinforced concrete beam test.
     (5) Based on the characteristic of crack plane, the constitutive relation of cracked reinforced concrete is deduced according to the microscopic study of concrete crack. For the convenience of three dimensional problem, yield criterion and loading and unloading criterion are discussed. By compared the numerical result with experiment ones, the promoted method are tested, and well agreement is obtained.
     (6) Combined with project case, the load-environment coupled effect and the time-variable capacity of a continuous box girder bridge are studied by the promoted method. The numerical results indicate that the bridge has preferable overloading capacity after 100 years' service. And from the capacity degeneration curve, early in the service is the fastest-changing period due to rapidest development of concrete strength. During the middle period of the service, the degeneration of capacity becomes stable, because of the stabilized concrete strength and the lower corrosion rate. And in the late time, the capacity has a sharp deterioration caused by various materials degradation.
引文
[1-1]中国土木工程学会.2020年中国土木工程科学和技术发展研究[A].2020年中国科学和技术发展研究暨科学家讨论会(下)[C].北京:中国土木工程学会,2004.
    [1-2]王国亮,谢峻,傅宇方.在用大跨度预应力混凝土箱梁桥裂缝调查研究[J].公路交通科技.2008(8):52-56.
    [1-3]楼庄鸿.论预应力混凝土梁桥的裂缝[J].公路交通科技.2000(6):49-52.
    [1-4]钟新谷.预应力混凝土连续箱梁桥裂缝防治与研究[J].铁道科学与工程学报.2006,3(3):7-14..
    [1-5]Horrigmoe G. Future needs in concrete repair technology [A]. Concrete Technology for a Sustainable Development in the 21st Century[C]. London & New York:E & FN Spon,2000.
    [1-6]Kundsen A, Jensen F M, Klinghoffer O et al. Cost effective enhancement of durability of concrete structures by intelligent use of stainless steel reinforcement[A]. Conference on Corrosion and Rehabilitation of Reinforced Concrete Structures[C]. Florida,1998.
    [1-7]Yunovich M, Thompson N G, Balvanyos T, Lave L. Corrosion cost and preventive strategies in the United States:Appendix D:Highway Bridges[R].2001.
    [1-8]Darwin D. President's Memo:It's time to Invest[J]. Concrete International,2007,29(10):7.
    [1-9]张爱林.基于功能可靠度的结构全寿命设计理论研究综述[J].北京工业大学学报,2000,26(3):55-58.
    [1-10]Farran M. and Zayed T. Comparative Analysis of Life-Cycle Costing for Rehabilitating Infrastructure Systems[J]. Journal of Performance of Constructed Facilities,2009,23(5):320-326.
    [1-11]Ryall M J. Bridge management [M]. London:Butterworth Heinemann,2002.
    [1-12]马军海.基于全寿命的桥梁设计过程及其在混凝土连续梁桥中的应用[D].上海:同济大学博士学位论文,2008.
    [1-13]Frangopol D M, Kong J S, Gharaibeh E S. Reliability-based life-cycle management of highway bridges[J]. Journal of Computing in Civil Engineering,2001,15(1):27-34.
    [1-14]Hassanain M A, Loov R E. Cost optimization of concrete bridge infrastructure[J]. Canadian Journal of Civil Engineering,2003,30(5):841-849.
    [1-15]Lee Y J, Chang L M. Rehabilitation decision analysis and life-cycle costing of the infrastructure system[A]. Construction Research Congress, Winds of Change:Integration and Innovation in Construction, Proceedings of the Congress[C],2003:691-701.
    [1-16]Frangopol D M, Gharaibeh E S, Kong J S, et. al.. Optimal network-level bridge management planning based on minimum expected cost[J]. Journal of the transportation Research Record,2000,2(1696):26-33.
    [1-17]Kong J S, Frangopol D M. Life-cycle reliability-based maintenance cost optimization of deteriorating structures with emphasis on bridges [J]. Journal of Structural Engineering,2003,129(6):818-828.
    [1-18]Kong J S, Frangopol D M. Cost-reliability interaction in life-cycle cost optimization of deteriorating structures[J]. Journal of Structural Engineering.2004,130(11):1704-1712.
    [1-19]Neves L C, Frangopol D M. Condition safety and cost profiles for deteriorating structures with emphasis on bridges[J]. Reliability Engineering and System Safety,2005,89(2):185-198.
    [1-20]吴海军,陈艾荣..寿命周期成本分析方法在桥梁工程中的应用[J].公路,2002,(12):462-465.
    [1-21]邵旭东,彭建新,晏班夫.桥梁全寿命设计方法框架性研究[J].公路,2006,(1):45-49.
    [1-22]马军海,陈艾荣,贺君.桥梁全寿命设计总体框架研究[J].同济大学学报(自然科学版),2007(8):1003-1007.
    [1-23]曹明兰.桥梁维修全寿命经济分析与优化的理论框架研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007.
    [1-24]吴培峰,陈艾荣.基于全寿命设计理念的某长江通道桥概念设计[J].桥梁建设,2007,(6):42-45.
    [1-25]吴培峰,陈艾荣.基于全寿命设计理念的某长江通道桥概念设计[J].桥梁建设,2007,(6):42-45.
    [1-26]陈继松,于群力,胡琦忠.跨海桥梁全寿命周期可靠性管理框架[J].世界桥梁,2008,(3):71-74.
    [1-27]胡江碧,刘妍,高玲玲.桥梁全寿命周期费用折现率分析.公路,2008,7(9):462-469.
    [1-28]叶文华.桥梁全寿命设计有关问题探讨[J].世界桥梁,2008(1):76-79.
    [1-29]金伟良,钟小平.结构全寿命的耐久性与安全性、适用性的关系[J].建筑结构学报.2009(6):1-7.
    [1-30]胡琦忠.工程结构全寿命周期设计理论的核心指标研究[D].杭州:浙江大学博士学位论文,2009.
    [1-31]王金磊.大跨度梁式桥的全寿命若干问题研究[D].长沙:湖南大学硕士学位论文,2010.
    [1-32]项贻强,张婷婷,孙筠.国外桥梁工程项目风险及评估研究综述[J].中外公路.2010(2):153-158.
    [1-33]彭建新,张建仁.RC桥梁碳化腐蚀下的开裂风险、耐久性和全寿命成本分析[J].公路交通科技.2011,(2):37-44.
    [1-34]Sarja A, Vesikari E. Durability Design of Concrete Structures, RILEM Report 14[M]. London:E&FN Spon,1996.
    [1-35]Enright M P, Frangopol D M. Service life prediction of deteriorating concrete structures[J]. Journal of Structure Engineering, ASCE,124(3):309-317.
    [1-36]Thoft-Christensen P, Sorensen J D. Optimal strategy for inspection and repair of structural systems[J]. Civil Engineering Systems,1987, (4):94-100.
    [1-37]Prezzi M, Geyskens P, Monterio P J M. Reliability approach to service life prediction of concrete exposed to marine environments[J]. ACI Material Journal,1996, Nov.-Dec.:544-552..
    [1-38]Maage M, Helland S, Poulsen E, Vennesland O, et al.. Service life prediction of existing concrete structures exposed to marine environment[J]. ACI Material Journal,1996,Nov.-Dec.:602-608.
    [1-39]Frangopol D M, Lin K Y, Estes A reliability of reinforced concrete girders under corrosion attack[J], J. Struct Engrg., ASCE,1997,123(3):286-297..
    [1-40]Engelund S, Sorensen J D, Sorensen B. Evaluation of repair and maintenance strategies for concrete coastal bridges on a probabilistic basis[J]. ACI Materials Journal,1999, March-April:160-166.
    [1-41]赵冬兵.在役钢筋混凝土桥梁承载能力退化数值模拟和维修需求预测[D].上海:同济大学博士学位论文,2005.
    [1-42]王建秀,秦权.考虑氯离子侵蚀与混凝土碳化的公路桥梁时变可靠度分析[J].工程力学.2007(7):86-93.
    [1-43]Melchers R E, Li C Q. Reinforcement corrosion initiation and activation times in concrete structures exposed to severe marine environments [J]. Cement and Concrete Research.2009,39(11):1068-1076.
    [1-44]Bastidas Arteaga E, Bressolette P, Chateauneuf A, et al. Probabilistic lifetime assessment of RC structures under coupled corrosion-fatigue deterioration processes[J]. Structural Safety.2009,31(1):84-96.
    [1-45]Akiyama M, Frangopol D M, Yoshida I. Time-dependent reliability analysis of existing RC structures in a marine environment using hazard associated with airborne chlorides[J]. Engineering Structures.2010, 32(11):3768-3779.
    [1-46]彭建新,邵旭东,张建仁.气候变化、CO2排放及其对碳化腐蚀的钢筋混凝土开裂和时变可靠度的影响[J].土木工程学报.2010(6):74-81.
    [1-47]Lawanwisut W, Li C Q. Reliability based whole life behaviour assessment of corrosion-affected concrete structures [J]. Journal of Structure Engineering, ASCE,124(3):309-317.
    [1-48]Podolny Walter Jr. The Cause of Cracking in Post Tensioned Concrete Box Girder Bridges and Retrofit Procedures. PCI JOURNAL,1985,30(2):82-139.
    [1-49]Chatelain J, Godart B, Duchene J L. Detection, diagnosis, and monitoring of cracked prstressed concrete bridges[A]. Bridge Evaluation and Rehabilitation[C]. Kluwer Academic Publishers,1990.
    [1-50]项贻强.混凝土箱梁桥开裂机理及控制[M].北京:中国水利水电出版社,2010.
    [1-51]Chatelain J, Godart B, Duchene J L. Detection, diagnosis, and monitoring of cracked prstressed concrete bridges[A]. Bridge Evaluation and Rehabilitation[C]. Kluwer Academic Publishers,1990.
    [1-52]Landuyth D V, Breen J E. Tendon breakout failure in bridges. Conc. Int.1997,19(11):41-46.
    [1-53]Moon Do Young, Sim Jongsung, Oh Hongseob. Practical crack control during the construction of precast segmental box girder bridges[J]. Computers & structures,2005,83:2584-2593
    [1-54]黎增丰,涂常卫,钟伟坚等.潭洲大桥箱梁底板砼开裂事故处理[J].中南公路工程,1997,22(4):35-40.
    [1-55]罗文林,唐蓓华,邓飞宇等.连续箱梁(刚构)桥合龙段底板束张拉致底板破坏浅析[J].湖南交通科技,2006,32(4):120-123.
    [1-56]刘家彬,郭正兴,陈岳.某变高度连续刚构桥底板崩裂加固施工[J],施工技术,2007,36(5):35-38,41.
    [1-57]李贞新,李小珍,李俊等.大跨度预应力混凝土连续刚构桥底板开裂原因分析[J].工业建筑,2006,36(12):41-43.
    [1-58]姜海波,赵人达.富力桃园大桥箱梁合龙区域裂缝成因分析及加固[J].桥梁建设,2007,(6):72-74.
    [1-59]王波,谢肖礼,徐丰等.连续刚构桥中跨箱梁底板混凝土局部崩裂分析与加固[J].施工技术,2007,36(8):48-50.
    [1-60]魏乐永,沈旭东,肖汝诚等.预应力混凝土连续箱梁底板崩裂破坏的机理及其对策[J].结构工程 师,2007,23(2):53-57.
    [1-61]潘大荣,赵启林,王景全等.预应力混凝土连续箱梁合龙段底板开裂机理[J].解放军理工大学学报(自然科学版),2008,9(5):552-556.
    [1-62]陈露晔,陈瑶.预应力混凝土连续刚构桥底板外崩及对策研究[J].华东公路,2008,169(1):43-46.
    [1-63]林东.变截面预应力混凝土箱梁底板劈裂的原因和预防措施[J].四川建材,2007,(5):28-29.
    [1-64]舒长征,莫金明,吴先树.连续刚构桥中跨跨中底板崩裂原因分析与加固措施[J].交通科技,2008,227(2):19-21.
    [1-65]李小祥.大跨径预应力混凝土箱梁桥曲线底板破坏机理研究[D].上海:同济大学博士学位论文,2009.
    [1-66]潘钻峰,吕志涛.大跨径连续刚构桥主跨底板合龙预应力束的空间效应研究[J].世界桥梁,2006,(4):36-39.
    [1-67]冯鹏程,吴游宇,杨耀铨等.连续刚构桥底板崩裂事故的评析[J].世界桥梁,2006,(1):66-69.
    [1-68]付克俭,寇海平.多跨大跨径预应力砼连续箱梁桥细节设计[J].武汉理工大学学报,2006,28(11):90-93.
    [1-69]王蒂,庞志华.预应力箱梁底板混凝土崩裂成因分析[J].混凝土,2008,229(11):43-46,61.
    [1-70]孙伟.荷载与环境因素耦合作用小结构混凝土的耐久性与服役寿命[J].东南大学学报,2006,36(SII):7-14.
    [1-71]Metha P K, Schiessl P, Raupach M. Performance and durability of concrete systems[A]. Proceedings of 9th international congress on the chemistry of cement[C],1992.
    [1-72]Adam Neville. Consideration of durability of concrete structures:past, present and future[J]. Materials and Structures,2001,34(3):114-118.
    [1-73]Gjorv O E. Durability and service life of concrete structures[A]. The first fib congress[C]. Tokyo:Japan Prestressed Concrete Engineering Association,2002,
    [1-74]Mehta P K. Durability of concrete-fifty years of progress[A]. G M Idorn International Symposium [C], 1991.
    [1-75]Ostmoen T. Field tests with catholic protection of the oseberg a platform [J]. Ingeniornytt,34 (6): 16-17.
    [1-76]Hasselo J A. Uiiasundet bridge:the life cycle of a concrete structure[A]. Seminar on life cycle management of concrete structures[C]. Trondheim:Department of Building Materials, Norwegian University of Science and Technology-NTNU,1997.
    [1-77]Nilsson L. Repairs of the Oland bridge, experience and results of the first six columns carried out in 1990[R],1991.
    [1-78]Stoltzner E, Sorensen B. Investigation of chloride penetration into the faro bridges[J]. Dansk Beton, 11(1):16-18.
    [1-79]Beslac J, Hranilovic M, Maric Z, Sesar P. The Krk bridge:Chloride corrosion and protection [A]. International conference on repair of concrete structures:From theory to practice in a Marine EnvironmentfC]. Oslo:Norwegian Public Roads Administration,1997.
    [1-80]Wood J G, Crerar J. Tay road bridge:analysis of chloride ingress, variability & prediction of long term deterioration [J]. Construction and Building Materials.1997,11 (4):249-254.
    [1-81]王光远.未确知信息及其数学处理[J].哈尔滨建筑工程学院学报,1990,23(4):1-9.
    [1-82]王玲,田培,姚燕等.北京西直门旧桥混凝土破坏原因分析[A].重点工程混凝土耐久性的研究与工程应用[C],2001.
    [1-83]孙伟.荷载与环境因素耦合作用小结构混凝土的耐久性与服役寿命[J].东南大学学报,2006,36(SII):7-14.
    [1-84]袁承斌,张德峰,刘荣桂等.不同应力状态下混凝土抗氯离子侵蚀的研究[J].河海大学学报(自然科学版),2003,31(1):50-54.
    [1-85]Wang K J, Jansen D C, Shah S P. Permeability study of cracked concrete[J]. Cement and concrete research,1997,27(3):381-393.
    [1-86]Mehta P K. Durability-Critical issues for the future [J] Concrete International,1997,19 (7):69-76.
    [1-87]Goitseone Malumbela, Mark Alexander, Pilate Moyo. Steel corrosion on RC structures under sustained service loads-a critical review[J]. Engineering Structures,2009,31:2518-2525.
    [1-88]Yoon S, Wang K, Weiss J, Shah S. Interaction between loading, corrosion, and serviceability of reinforced concrete[J]. ACI Mater J,2000,97(6):637-644.
    [1-89]Ballim Y, Reid JC. Reinforcement corrosion and deflection of RC beams-an experimental critique of current test methods[J]. Cement Concrete Compost,2003,25(6):625-632.
    [1-90]El Maaddawy T, Soudki K, Topper T. Long-term performance of corrosion-damaged reinforced concrete beams[J]. ACI Struct J,2005,102(5):649-656.
    [1-91]Vidal T, Castel A, Francois R. Corrosion process and structural performance of a 17 year old reinforced concrete beam stored in chloride environment [J]. Cement Concrete Res,2007,37:1551-1561.
    [1-92]Malumbela G, Moyo P, Alexander M. Behavior of RC beams corroded under sustained service loads. [J]. Construction and Building Materials,2009,23:3346-3351.
    [1-93]幕儒.冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D].南京:东南大学博士论文,2000.
    [1-94]金祖权.西部地区严酷环境下混凝土的耐久性与寿命预测[D].南京:东南大学博士论文,2006.
    [1-95]詹炳根.ASR与环境和力学因素协同作用下混凝土的损伤失效过程与机理[D].南京:东南大学博士论文,2007.
    [1-96]陈树东.荷载与环境因素祸合作用下粉煤灰结构混凝土劣化规律与寿命[D].南京:东南大学博士论文,2007.
    [1-97]吴庆,袁迎曙,李洁勇.人工气候环境下锈蚀混凝土梁的结构性能退化研究[J].中国矿业大学学报,2007,36(4):441-445.
    [1-98]何世钦,贡金鑫.负载钢筋混凝土梁钢筋锈蚀及使用性能试验研究[J].东南大学学报(自然科学 版),2004,34(4):474-479.
    [1-99]王明斌,李术才.双向应力加载条件下钢筋锈蚀致混凝土破坏应力分析[J].水利学报,2008,39(2):224-229,234.
    [1-100]Liew J Y R. Implication of using refined plastic analysis for load and resistance factor design [J]. Thin-walled Structure.1994,20:17-47.
    [1-101]李国强,沈祖炎.钢结构框架体系弹性及弹塑性分析与计算理论[M].上海:上海科学技术出版社,1998.
    [1-102]Scordelis A C, Ngo De. Finite element analysis of reinforced concrete beams [J]. ACI Journal,1967, 64 (3):152-163.
    [1-103]Seif S P, Dilger W H. Nonlinear analysis and collapse load of P.C. cable-Stayed bridges[J]. Journal of Structural Engineering,1990,116(3):829-849.
    [1-104]夏桂云.预应力混凝土箱梁承载与裂缝研究[D].长沙:中南大学博士学位论文,2006.
    [1-105]凌道盛,张金江,项贻强,徐兴.虚拟层合单元法及其在桥梁工程中的应用[J].土木工程学报,1998,31(3):22-29.
    [1-106]Ahmad S, Irons BB, Zienkiewicz O C. Analysis of thick and thin shell structures by curved finite elements[J]. International Journal for Numerical Methods in Engineering,1970,2:419-451.
    [1-107]Hughs TJR, Pister K S. Nonlinear finite element analysis of shells:part 2, three-dimensional shells[J]. Computer Methods in Applied Mechanics and Engineering,1981b,26:331-362.
    [1-108]Xu X, Cai R F. A new plate shell element of 16 nodes 40 degree of freedom by relative displacement method[J]. Communications in Numerical Methods in Engineering,1993,1:331-362.
    [1-109]徐兴,凌道盛.实体退化单元系列[J].固体力学学报,2001,22:1-12.
    [1-110]周世军,朱唏.钢筋混凝土箱梁的非线性有限元分析及模型试验研究[J].土木工程学报,1996,29(4):21-30.
    [1-111]向天宇.预应力高强混凝土箱型连续梁结构行为的非线性分析[D].成都:西南交通大学博士学位论文,2002.
    [1-112]张峰.预应力混凝土连续箱梁开裂后的结构行为研究[D].南京:东南大学博士学位论文,2006.
    [1-113]许德胜,肖汝诚,王燕,等.非协调实体退化厚/薄板单元[J].工程力学.2008(8):64-69.
    [1-114]徐文平.既有预应力混凝土梁桥承载能力实桥试验及分析研究[D].南京:东南大学博士学位论文,2006.
    [1-115]龙佩恒,陈惟珍.应用空间嵌入式实体组合单元分析PC桥梁结构[J].同济大学学报,2007,35(4):455-460.
    [1-116]徐兴,郭乙木,沈永兴.非线性有限元及程序设计[M].杭州:浙江大学出版社,1993.
    [1-117]黄宏读.七星桥的极限承载能力分析[D].杭州:浙江大学博士学位论文,2001.
    [1-118]汪劲丰.预应力混凝土斜拉桥施工控制的关键技术研究[D].浙江大学博士学位论文,2003.
    [1-119]程晓东.大跨度钢管混凝土拱桥的三维非线性层合元分析研究[D].杭州:浙江大学博士学位论文,2004.
    [1-120]蔡金标.大跨度悬索桥空间分析的组合单元法[D].浙江大学博士学位论文,2002.
    [1-121]凌道盛,徐小敏,陈云敏.数学网格和物理网格分离的有限单元法(Ⅰ):基本理论[J].计算力学学报-2009(3):401-407.
    [1-122]凌道盛,韩超,陈云敏.数学网格和物理网格分离的有限单元法(Ⅱ):粘聚裂纹扩展问题中的应用[J].计算力学学报.2009(3):408-414.
    [1-123]吴光宇.大跨P.C.桥梁非线性行为的分析理论及其极限承载力计算研究[D].杭州:浙江大学博士学位论文,2006.
    [1-124]汪劲丰,项贻强,徐兴.桥梁空间分析中预应力效应分析方法研究[J].计算力学学报,2007,24(4):459-464.
    [1-125]汪劲丰,吴光宇,林泉等.预应力混凝土曲线桥极限承载能力分析[J].工程力学,2008,25(8):85-91.
    [1-126]汪劲丰,吴光宇,项贻强,等.预应力混凝土桥梁结构非线性仿真研究[J].计算力学学报.2010(5):895-901.
    [1-127]杨万里.简支连续预应力混凝土多箱式桥梁全过程受力性能研究[D].浙江大学博士学位论文,2008.
    [1-128]肖盛燮等.桥梁承载力演变理论及其应用技术[M].北京:科学出版社,2009.
    [1-129]Tuutti. Corrision of steel in concrete. CBI Forskning Research,1982
    [1-130]Li C Q. Life-cycle modeling of corrosion-affected concrete structures:propagation[J]. Journal of Structure Engineering,2003,129(6):753-761.
    [1-131]Thoft Christensen P, Baker M J. Sturctural reliability theory and it's application [M].Berlin: Springer-verlag,1982.
    [1-132]Enright M P, Framgopol D M. Service life prediction of deterioration concrete bridges [J] Journal of Structure Engineering,1998,124(4):309-317.
    [1-133]Clifton J R, Knab L I. Service life of concrete[C]. UNREG/CR-5466, U.S. Nuclear Regulatory Commission, Washington D.C.,1989.
    [1-134]牛荻涛,王庆霖,董振平.服役结构抗力的概率模型极其统计参数[J].西安建筑科技大学学报,1997,29(4):355-359.
    [1-135]Enright M P, Frangopol D M. Probabilistic analysis of resistance degradation of reinforced concrete beams under corrosion[J], Engineering Structures,1998,20(11),960-971.
    [1-136]Bhargavaa Kapilesh, Mori Yasuhiro, Ghosh A K. Time-dependent reliability of corrosion-affected RC beams.Part 2:Estimation of time-dependent failure probability [J]. Nuclear Engineering and Design, (2010), doi:10.1016/j.nucengdes.2010.06.039.
    [1-137]Bhargavaa Kapilesh, Mori Yasuhiro, Ghosh A K. Time-dependent reliability of corrosion-affected RC beams-Part 1:Estimation of time-dependent strengths and associated variability[J]. Nuclear Engineering and Design, (2011),doi:10.1016/j.nucengdes.2011.01.005.
    [1-138]薛鹏飞.预应力混凝土连续刚构桥结构性能退化预测评估研究[D].杭州:浙江大学博士学位论 文,2009.
    [2-1]范立础.预应力混凝土连续梁桥[M].北京:人民交通出版社,1988.
    [2-2]郭自兴,黄金枝,张家春.曲线预应力混凝土桥梁中预应力钢束的力学模型及其工程应用[J].上海交通大学学报,2002,36(3):373-375.
    [2-3]Podolny, Walter Jr. The Cause of Cracking in Post-Tensioned Concrete Box Girder Bridges and Retrofit Procedures. PCI JOURNAL,1985,30(2):82-139.
    [2-4]项贻强,唐国斌,朱汉华等.预应力混凝土箱梁桥底板崩裂破坏机理分析[J].中国公路学报,2010,23(5):70-75.
    [2-5]项贻强,唐国斌等.预应力混凝土连续箱梁底板开裂原因分析及防治研究报告[R].2009.
    [2-6]李权ANSYS在土木工程中的应用[M].北京:人民邮电出版社,2005.
    [2-7]Jiang Haibo. The cause analysis of cracks on key segment of box girder of fuli-taoyuan bridge [A]. International Conference on Transportation Engineering 2007[C]. Washington:ASCE,2007:807-813.
    [2-8]郭丰哲,钱永久,李贞新.预应力混凝土连续刚构桥合龙段底板崩裂原因分析[J].公路交通科技,2005,22(10):68-70.
    [2-9]王蒂,庞志华.预应力箱梁底板混凝土崩裂成因分析[J].混凝土,2008,(11):43-46,61.
    [2-10]JTG D62-2004,公路钢筋混凝土及预应力混凝土桥涵设计规范[s].
    [2-11]周军生,楼庄鸿.大跨径预应力混凝土连续刚构桥的现状和发展趋势[J].中国公路学报,2000,13(1):31-37.
    [3-1]Babu Kurian, Devdas Menon. Correction of Errors in Simplified Transverse Bending Analysis of Concrete Box-Girder Bridges [J]. Journal of Bridge Engineering, ASCE.2005,10(6),650-657.
    [3-2]Hognested E, Honson N W, McHenry D. Concrete stress distribution in ultimate strength design [J]. ACI Journal Proceedings,1955,22 (6):455-479.
    [3-3]Willam K J, Warnke E D. Constitutive model for the triaxial behavior of concrete [J]. International Association for Bridge and Structural Engineering, Seminar on Concrete Structure Subjected to Triaxial Stresses,1975,19:1-30.
    [3-4]Al Manaseer, Philips D V. Numerical Study of Some Post Cracking Material Parameters Affecting Nonlinear Solutions in RC Deep Beams [J]. Canadian Journal of Civil Engineering,1987,14(5):655-666.
    [3-5]Podolny, Walter Jr. The Cause of Cracking in Post Tensioned Concrete Box Girder Bridges and Retrofit Procedures. PCI JOURNAL,1985,30(2):82-139.
    [3-6]王蒂,庞志华.预应力箱梁底板混凝土崩裂成因分析[J].混凝土,2008,(11):43-46,61.
    [3-7]潘大荣,赵启林,王景全等.预应力混凝土连续箱梁合龙段底板开裂机理[J].解放军理工大学学报(自然科学版),2008,9(5):552-556.
    [3-8]彭元诚.连续刚构箱梁底板崩裂原因分析与对策[J].桥梁建设,2008,(03):67-70,78.
    [3-9]李俊,李小珍,卫星等.连续刚构桥底板纵向裂纹原因分析[J].公路,2005,(9):1-5.
    [3-10]虞建成,李旺丰.某连续刚构桥中跨跨中底板纵向裂缝成因分析[J].中外公路,2007,27(1):115-118.
    [3-11]龙佩恒,陈惟珍.温度应力对既有混凝土连续箱梁桥开裂的影响分析[J].公路交通科技.2007(3):68-71.
    [3-12]李小祥.大跨径预应力混凝土箱梁桥曲线底板破坏机理研究[D].上海:同济大学博士学位论文,2009.
    [3-13]付克俭,寇海平.多跨大跨径预应力砼连续箱梁桥细节设计[J].武汉理工大学学报.2006(11):90-93.
    [3-14]彭向荣.变截面预应力混凝土箱梁底板纵向裂缝的防治措施[J].中南公路工程.1999,24(4):42-43.
    [3-15]彭元诚.连续刚构箱梁底板崩裂原因分析与对策[J].桥梁建设.2008(3):67-70..
    [3-16]中华人民共和国交通部.JTG D62-2004.公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004.
    [3-17]American Association of State Highway and Transportation Officials. AASHTO LRFD Bridge Design Specifications [M].3rd ED. Washington D.C.2004.
    [3-18]邵旭东,程翔云,李立峰.桥梁设计与计算[M].北京:人民交通出版社,2007.
    [3-19]徐有邻,程志军,杨建军等.混凝土筒芯楼板受剪承载力试验研究[A].全国现浇混凝土空心楼盖结构技术交流会论文集[C].上海:中国工程建设标准化协会混凝土结构专业委员会,2005:106-112.
    [3-20]CECS175:2004,现浇混凝土空心楼盖结构技术规程[S].
    [3-21]罗旭,李新平.预应力混凝土连续箱梁底板锚下裂缝分析[J].公路交通科技.2005(12):94-97.
    [4-1]Madanat S M, Ibrahim W. Poisson regression models of infrastructure transition probabilities [J]. Journal of Transportation Engineering,1995,121(3):267-272.
    [4-2]Ortiz Garcia J J, Costello S B, Snaith M S. Derivation of transition probability matrices for pavement deterioration modeling [J]. Journal of Transportation Engineering,2006,132(2):141-161.
    [4-3]Yokozeki et al. A rational model to predict the service life of RC structures in marine enviroment[A]. Durability of Concrete ACI SP-170 (Volume 1). Detroit:777-199.
    [4-4]董振平,牛荻涛,刘西芳等.一般大气环境下钢筋开始锈蚀时间的计算方法[J].西安建筑科技大学学报:自然科学版,2006,38(2):204-209.
    [4-5]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003:36.
    [4-6]Yalsyn H, Ergun M. The prediction of corrosion rates of reinforcing steels in concrete[J]. Cement and Concrete Research,1996,26(10):1593-1599.
    [4-7]Kim Anh T Vu, Mark G Stewart. Structural reliability of concrete bridges including improved chloride-induced corrosion models [J]. Structural Safety,2000,22(4):313-333.
    [4-8]Li C Q. Reliability based service life prediction of corrosion affected concrete structures [J]. J. Structure Engineer,2004,130(10):1570-1577.
    [5-1]Wang K J, Jansen D C, Shah S P. Permeability study of cracked concrete[J]. Cement and concrete research,1997,27(3):381-393.
    [5-2]Jaffer S J, Hanssona C M. The influence of cracks on chloride-induced corrosion of steel in ordinary Portland cement and high performance concretes subjected to different loading conditions[J]. Corrosion Science,2008,50(12):3343-3355.
    [5-3]Suzuki K, Ohno Y, Praparntanatorn S, Tamura H. Mechanism of steel corrosion in cracked concrete[A], International Symposium on Corrosion of Reinforcement in Concrete Construction[C]. Wishaw, England: Elsevier Applied Science,1990.
    [5-4]Win P P, Watanabe M, Machida A. Penetration profile of chloride ion in cracked reinforced concrete[J]. Cement and Concrete Research,2004,34(2004):1073-1079.
    [5-5]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003:36.
    [5-6]Edvardsen C. Water permeability and autogenous healing of crack in concrete[J]. ACI materials Journals, 1999,96(4):448-484.
    [5-7]Vidal T, Castel A, Francois R. Corrosion process and structural performance of a 17 year old reinforced concrete beamstored in chloride environment[J]. Cement Concrete Res,2007,37:1551-1561.
    [5-8]ACI Committee 222, ACI-222R. Protection of Metals in Concrete Against Corrosion [M]. Farmington Hills MI, USA:American Concrete Institute,2001.
    [5-9]GowriPalan N, Sirivivatnanon V, Lim C C. Chloride diffusivity of concrete cracked in flexure[J]. Cement and Concrete Research,2000,30(2000):725-730.
    [5-10]Borst R de, Nauta P. Non-orthogonal cracks in smeared finite element model. Engineering Computation,1985,2(3):35-46.
    [5-11]Liu Y P, Weyers R E. Modeling the time to corrosion cracking in chloride contaminated reinforced concrete structures[J]. ACI Materials Journal,1998,95(6):675-681.
    [5-12]Molinaga F J. Cover cracking as a function of bar corrosion:Part Ⅱ-Numerical model[J]. Materials and Structures.1993,26:932-548.
    [5-13]Kapilesh Bhargava, Ghosh A K,Yasuhiro Mori, Ramanujam S. Model for cover cracking due to rebar corrosion in RC structures [J]. Engineering Structures,2006,28:1093-1109.
    [5-14]El Maaddawy T, Soudki K, Topper T. Long-term performance of corrosion-damaged reinforced concrete beams[J]. ACI Struct J,2005,102(5):649-656.
    [5-15]Yoon S, Wang K, Weiss J, Shah S. Interaction between loading, corrosion, and serviceability of reinforced concrete[J]. ACI Mater J,2000,97(6):637-644.
    [5-16]Ballim Y, Reid JC. Reinforcement corrosion and deflection of RC beams—an experimental critique of current test methods[J]. Cement Concrete Compost,2003,25(6):625-632.
    [5-17]Mehta P K, Gerwick B C. Cracking-corrosion interaction in concrete exposed to marine environment [J].Concrete International,1982,4(10):45-51.
    [5-18]Castel A, Francois R, Arliguie G. Mechanical behaviour of corroded reinforced concrete beams-Part 2: bond and notch effects[J]. Materials and Structures/Materiaux et Constructions.2000,33(233):545-551.
    [5-19]全明研.老化和损伤的钢筋混凝土构件的性能[J].工业建筑.1990(2):15-19.
    [5-20]赵羽习.钢筋混凝土结构粘结性能和耐久性的研究[D].杭州:浙江大学博士学位论文,2001.
    [5-21]张伟平.混凝土结构的钢筋锈蚀损伤预测及耐久性评估[D].上海:同济大学博士学位论文.,1999.
    [5-22]Berto L, Simioni P, Saetta A. Numerical modelling of bond behaviour in RC structures affected by reinforcement corrosion[J]. Engineering Structures.2008,30(5):1375-1385.
    [5-23]ekoster M, Buyle-Bodin F, Maurel O, et al. Modelling of the flexural behaviour of RC beams subjected to localised and uniform corrosion[J]. Engineering Structures.2003,25(10):1333-1341.
    [5-24]何雄君,陆爱民.预应力混凝土桥梁因钢束锈蚀的非线性分析[J].公路.2010(2):32-36.
    [5-25]薛鹏飞.预应力混凝土连续刚构桥结构性能退化预测评估研究[D].杭州:浙江大学博士学位论文,2009.
    [5-26]吴光宇.大跨P.C.桥梁非线性行为的分析理论及其极限承载力计算研究[D].杭州:浙江大学博士学位论文,2006.
    [5-27]王勖成,邵敏.有限单元法基本原理和数值方法(第2版)[M].北京:清华大学出版社,1997.
    [5-28]凌道盛,张金江,项贻强,徐兴.虚拟层合单元法及其在桥梁工程中的应用[J].土木工程学报,1998,31(3):22-29.
    [5-29]汪劲丰,项贻强,徐兴.大跨度混凝土桥梁预应力空间效应分析[J].浙江大学学报,2005,39(1):155-159.
    [5-30]吴光宇,汪劲丰,项贻强,徐兴.钢筋混凝土箱形梁极限承载力的计算研究[J].浙江大学学报,2007,41(1):161-165.
    [5-31]杨万里.简支连续预应力混凝土多箱式桥梁全过程受力性能研究[D].杭州:浙江大学博士学位论文,2008.
    [5-32]薛鹏飞,汪劲丰,项贻强.P.C.连续刚构桥施工过程的仿真分析[J].工程力学,2010,27(3):101-106.
    [5-33]何世钦,贡金鑫.负载钢筋混凝土梁钢筋锈蚀及使用性能试验研究[J].东南大学学报(自然科学版),2004,34(4):475-479.
    [5-34]涂林威.混凝土结构钢筋、钢束锈蚀及其力学行为的研究[D].武汉:武汉理工大学硕士学位论文,2006.
    [6-1]Scordelis A C, Ngo De. Finite element analysis of reinforced concrete beams [J]. ACI Journal,1967, 64 (3):152-163.
    [6-2]Yamaguchi E, Chen W F. On micro-mechanics of fracture and constitutive modeling of concrete materials [C]//Desai C S ed. Proceedings Int. Conf. constitutive laws for engineering materials:theory and applications. Tucson:Elsevier,1987:939-947.
    [6-3]Hillerborg A, ModeAer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research,1976,6(6):773-782.
    [6-4]Bazant Z P, Oh B H. Crack band theory for fracture of concrete [J]. Material and Structures.1983,16 (93):155-176.
    [6-5]张楚汉,金峰,侯艳丽等.岩石和混凝土离散—接触—断裂分析[M].北京:清华大学出版社,2008.
    [6-6]Feenstra P H, de Borst R. Constitutive model for reinforced concrete[J]. Journal of Engineering Mechanics.1995,121(5):587-595.
    [6-7]Sluys L J, Deborst R. Failure in plain and reinforced concrete-An analysis of crack width and crack spacing[J]. International Journal of Solids And Structures.1996,33(20-22):3257-3276.
    [6-8]Cervenka J, Papanikolaou V K. Three dimensional combined fracture-plastic material model for concrete[J]. International Journal of Plasticity.2008,24(12):2192-2220.
    [6-9]Walraven J C, Reinhardt H W. Theory and experiments on the mechanical behavior of cracks in plain and reindorced concrete subjected to shear loading.1981, Heron 26, 1(a):5-68.
    [6-10]林洋.混凝土开裂面剪力传递性质的理论与试验研究[M].南京:南京工学院硕士学位论文,1985.
    [6-11]Bazant Z P, Gambarova P. Crack shear in concrete:Crack band microplane model. Journal of Structure Engineering, ASCE,1984,110(9):2015-2035.
    [6-12]Paulay T, Loeber P J. Shear transfer by aggregate interlock[J]. American Concrete Institute, Special Publication SP42,1974:1-15.
    [6-13]Millare S G, Johnson R P. Shear transfer across cracks in reinforced concrete due to aggregate interlock and to dowel action[J]. Magazine of Concrete Research,1984,36(126):9-21.
    [6-14]Soroushian P, Obaseki K, Rojas M C. Bearing strength and stiffness of concrete under reinforcing bars[J]. ACI Material Journal,1987,84(3):179-184.
    [6-15]Del Poli S, Di Prisco M, Gambarova P. Shear response, deformations, and subgrade stiffness of a dowel bar embedded in concrete[J]. ACI Structural Journal,1992,89 (6):665-675.
    [6-16]Borst R de, Nauta P. Non-orthogonal cracks in smeared finite element model. Engineering Computation,1985,2(3):35-46.
    [6-17]CEB-FIP Model Code 1990. Final Draft, Bulletin D'Information N.203,204 and 205 [M]. EFP Lausanne.1991.
    [6-18]Oliver J. A consistent characteristic length for smeared cracking models[J]. International Journal for Numerical Methods in Engineering,1989,28(2):461-474.
    [6-19]Feenstra P H. Computational aspects of biaxial stress in plain and reinforced concrete[D]. The Netherlands:Ph. D. Thesis, Delft University of Technology,1991.
    [6-20]Cervenka V, Pukl R, Ozbolt J,et al. Mesh sensitive effects in smeared finite element analysis of concrete structures[A]. Proceedings of the 2nd International Conference on Fracture Mechanics of Concrete Structures-FraMcos 2,1995:1387-1396.
    [6-21]Hashiguchi K, Tsutsumi S. Gradient plasticity with the tangential-subloading surface model and the prediction of shear-band thickness of granular materials[J]. International Journal of Plasticity,2007,23 (5): 767-797.
    [6-22]吴光宇.大跨P.C.桥梁非线性行为的分析理论及其极限承载力计算研究[D].杭州:浙江大学博士学位论文,2006.
    [6-23]Rots J G, Kusters G M A, Nauta P. Variable reduction factor for the shear resistance of cracked concrete[R]. TNO-report BI-83-83/68.8.2001, Rijswijk, the Netherlands.
    [6-24]于骁中.岩石和混凝土的断裂力学[M].长沙:中南大学出版社,1991.
    [6-25]Elfgren L. Fracture mechanics of concrete structures from theory to applications[M]. London & New York:Chapman and Hall Ltd,1989.
    [6-26]董哲仁.钢筋混凝土非线性有限元法原理与应用[M].北京:中国水利水电出版社,2002.
    [6-27]Soroushian P, Obaseki K, Rojas M C. Bearing strength and stiffness of concrete under reinforcing bars [J]. ACI Material Journal,1987,84(3):179-184.
    [6-28]王勖成,邵敏.有限单元法基本原理和数值方法(第2版)[M].北京:清华大学出版社,1997..
    [6-29]汪劲丰,项贻强,徐兴.大跨度混凝土桥梁预应力空间效应分析[J].浙江大学学报,2005,39(1):154-159.
    [6-30]凌道盛,张金江,项贻强,徐兴.虚拟层合单元法及其在桥梁工程中的应用[J].土木工程学报,1998,31(3):22-29.
    [6-31]汪劲丰,项贻强,徐兴.大跨度混凝土桥梁预应力空间效应分析[J].浙江大学学报,2005,39(1):154-159.
    [6-32]吴光宇,汪劲丰,项贻强,徐兴.钢筋混凝土箱形梁极限承载力的计算研究[J].浙江大学学报,2007,41(1):161-165.
    [6-33]杨万里.简支连续预应力混凝土多箱式桥梁全过程受力性能研究[D].杭州:浙江大学博士学位论文,2008.
    [6-34]薛鹏飞,汪劲丰,项贻强.P.C.连续刚构桥施工过程的仿真分析[J].工程力学,2010,27(3):101-106.
    [6-35]Bangash M Y H. Concrete and concrete structures:numerical modeling and applications[M]. London and New York:Elsevier Applied Science,1989:221-227.
    [6-36]Duddeck H, Griebow G, Schaper G.. Material and time-depended nonlinear behavior of cracked concrete slabs[A]. Nonlinear behavior of reinforced concrete spatial structures[C]. Darmstadt,1978.
    [6-37]汪劲丰,项贻强,徐兴.桥梁空间分析中预应力效应分析方法研究[J].计算力学学报,2007,24(4):459-464.
    [6-38]刘立新,王利平,于秋波等.GRC异形内模预应力箱梁受力性能的试验研究[J].郑州大学学报(工学版),2006,27(4):10-13.
    [7-1]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999.
    [7-2]Bazant Z P, Yu Qiang, Li Guang-Hua. Excessive Long-Time Deflections of Prestressed Box Girders[R], 2009.
    [7-3]吴庆.基于钢筋锈蚀的混凝土构件性能退化预计模型[M].徐州:中国矿业大学出版社,2009.
    [7-4]Allbright K, Parekh K, Miller R, et al. Modal verification of a destructive test of a damaged prestressed concrete beam [J]. Experimental Mechanics,1994,34(4):389-396.
    [7-5]Kent A Harries. Structural testing of prestressed concrete girders from the lake view drive bridge [J]. Journal of bridge engineering.2009,3:78-92.
    [7-6]JTG D60-2004.公路桥涵设计通用规范[S].
    [7-7]凌道盛.非线性有限元及程序[M].杭州:浙江大学出版社,2009.
    [7-8]中华人民共和国交通部.公路桥梁承载能力检测评定规程(报批稿)[S].2004.
    [7-9]朱哲,戚士权等.大洋大桥荷载试验报告[R].2009.
    [7-10]Hosseini M, Jefferson A D. Time-dependent behavior of widened reinforced concrete under-bridge [J]. Materials and Structures.1998,31(214):714-719.
    [7-11]Rafael Manzanarez, Miroslav Olmer. Parrotts Ferry Bridge Retrofit [R].1994.
    [7-12]楼庄鸿.大跨径梁式桥的主要病害[J].公路交通科技.2006(4):84-87.
    [7-13]唐崇钊.混凝土的徐变力学与试验技术研究[M].北京:水利水电出版社,1982.
    [7-14]叶贵如.斜拉桥非线性有限元计算和施工过程分析[D].杭州:浙江大学博士学位论文,2000.
    [7-15]程晓东.大跨度钢管混凝土拱桥的三维非线性层合元分析研究[D].杭州:浙江大学博士学位论文,2004.
    [7-16]汪劲丰,吴光宇,项贻强,等.预应力混凝土桥梁结构非线性仿真研究[J].计算力学学报.2010(5):895-901.
    [7-17]张誉,蒋利学.基于碳化机理的混凝土碳化深度实用数学模型[J].工业建筑,1998,28(1):16-19,47.
    [7-18]Hasselo J A. Uiiasundet bridge:the life cycle of a concrete structure [A]. Seminar on life cycle management of concrete structures[C]. Trondheim:Department of Building Materials, Norwegian University of Science and Technology-NTNU,1997.
    [7-19]牛荻涛.海洋环境下混凝土强度的经时变化模型[J].西安建筑科技大学学报,1995,27(1):49-52.
    [7-20]张平生,卢梅,李晓燕.锈损钢筋的力学性能[J].工业建筑.1995(9):41-44.
    [7-21]曾严红,顾祥林,张伟平,黄庆华.锈蚀预应力筋力学性能研究[J].建筑材料学报,2010,13(2):169-174,200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700