用户名: 密码: 验证码:
水稻大规模增强子捕获系群体的创建与初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻(Oryza sativa L.)是最重要的粮食作物之一,具有较小的基因组(430Mb),与其他禾本科植物的基因组具有良好的共线性,易于体外操作与分化,是研究单子叶植物基因组的模式植物。近年来水稻基因组研究取得了很大进展,构建了遗传图谱和物理图谱,完成了籼稻和粳稻的全基因组草图测序(Yu et al.,2002;Goff et al.,2002),2002年12月18日国际水稻基因组测序计划工作组在东京宣布,国际水稻基因组测序计划已圆满完成,共测定碱基对366,000kb,精确度达到99.99%,并预测遗传基因62,435个。在此基础上,许多实验室开始大规模地、系统地进行水稻基因功能的研究。建立水稻突变体库是功能基因组学研究的有效手段,而高效的水稻转化体系是建立突变体库的重要基础。本研究正是在建立起了高效水稻农杆菌转化体系基础上,构建了一个大规模的水稻增强子捕获群体,并对其进行了分子鉴定,初步建立起适合该群体的扩增T-DNA侧翼序列的PCR-walking技术体系,已扩增了部分突变体基因组中的T-DNA侧翼序列,并对部分侧翼序列进行了测序分析。
     本研究是国家“863”计划项目“水稻突变体库的建立”的一部分,在这两年的研究中,在与实验室全体人员的共同努力下,取得了以下几个方面的进展:
     1.在农杆菌(Agrobacterium)介导的水稻转化中,发现共培养后的愈伤组织在选择培养基上的继代培养的时机对抗性愈伤组织产生和正常生长有很大的影响,最佳的时机是在选择培养10~15天后进行继代培养,这样90%以上的愈伤组织可以产生能健康生长的抗性愈伤组织;发现抗性愈伤组织在选择培养基上的继代培养时间对后边的分化效率有至关重要的影响,抗性愈伤组织继代培养4~12天可以有比较高的分化率,超过16天或少于2天,分化率急剧降低。抗性愈伤组织在选择培养基上培养8天时,分化率最高,达到85%;在胚性愈伤的诱导、共培养侵染菌液的最佳浓度的确定、共培养的时间以及转化不同阶段的最适培养基类型等方面的研究分析基础上,优化建立起一套高效、操作性强、适合水稻粳稻品种日本晴(O.sativa Spp.Japonico)的农杆菌转化方法体系。从愈伤组织诱导到得到水稻转化体只需2.5月左右的时间。
     2.选用增强子捕获质粒(Enhancer-trapping vector)pFX-E24.2-15R,以粳稻日本晴为实验材料,利用农杆菌介导的方法,获得了65,707个增强子捕获T-DNA插入标签系。经PCR和Southern杂交检测,表明95%以上的转化体含有T-DNA插入片段。对T0代植株进行了Southern杂交分析,T-DNA插入片段的单拷贝的植株约占43%,平均拷贝数为1.7。
     3.对11,560株T0代水稻转化植株抽穗期的叶和未成熟种子进行了GUS组织化学染色,GUS基因在抽穗期种子部位和叶部的总表达率为27.23%,在叶部的表达率为10.07%,在胚的不同部位表达率为11.01%,在种皮的表达率为8.28%,在胚乳的表达率为3.42%。筛选出210个在这一生育期表达活性很强的增强子捕获系,取样并提取了DNA,以做进一步的研究。
     4.用PCR Walking扩增了328个筛选出的突变体基因组的T-DNA侧翼序列,对其中82个序列进行了测序,作了初步分析。初步建立起突变体插入序列侧翼序列信息的获得、分析等方法体系,已获得一些有价值的T-DNA插入位点信息。
Rice (Oryza saliva) is one of the most important food crops. It is also a good model for studies of monocot plants because of its relative small genome (430Mb), syntenic relationship with other agronomically important cereal species, the availability of genome resources such as well-defined genetic and physical maps, well-rounded transformation system and the gene draft sequence of Japonica cv. and Indica cv. Moreover, IRGSP has declared on December 18, 2002 at Tokyo that the plan of IRGSP has been finished with 366,000 kb DNA sequenced totally, the accuracy reached at 99.99% and 63,435 genes have been predicted. Large-scale and systematic functional genome studies of rice have been performed in several laboratories based on the above achievements. Construction of rice mutant bank is an efficient tool for functional genome research while efficient transformation system composed the basis for it. In this study, a high efficient Agrobacterium-mediated transformation system has been established and a large-scal
    e rice enhancer trapping population has been generated. Further, molecular definition for this population has been done and PCR-walking adapted to this population for the amplification of T-DNA flanking sequence has been set up, simultaneously, we have analyzed some flanking sequence.
    This study is one part of "rice mutant bank construction" sponsored by The National High-Tech Program (863 program). Several progresses have been achieved with the efforts of all the members of our team within 2 years. Detailed information presented as follows:
    1. tn our studies, we have found that the timing of subculture on selection medium after coculture has prominent effects on the generation of resistant calli and their normal growth. Subculture after 10-15 days selection has been confirmed as the best time and over 90% calli could generate resistant calli under this status which were growing fine. We also found that the subculture interval under selection has momentous effects on the frequency of later differentiation. They have higher frequency of differentiation if 4-12 days subculture on selection medium were chosen while their frequency of differentiation decreased sharply if the subculture interval is over 16 days or less than 2 days. As an example, the frequency of differentiation reached at 85% if resistant calli were subcultured for 8 days on selection medium. We have set up and optimized one set of transformation system with characteristics of high efficiency, easily being performed and adapted O. sativa spp. Japonica. This integrated the achievemen
    ts on the induction of embryogenic calli, the determination of the most optimal concentration of inoculation Agrobacterium solution, the interval of coculture with Agrobacterium and selection of different medium types at different stages. It takes only 2.5 months from induction of calli to generation of transformants.
    2 65,707 T-DNA tagged enhancer-trapping lines have been obtained through Agrobacterium- mediated transformation by applying enhancer-trapping vector pFx-z24.2-15R and employing rice (O. Sativa Spp Japonic) as material. It is indicated that more than 95% transformants harbored T-DNA insertion fragment confirmed by PCR and Southern blot analysis. In all TO transformants, there are about 43% events has one copy of T-DNA insertion and the average copy number of T-DNA insertion is about 1.2 confirmed by Southern Blotting. 3, The histochemical staining of GUS activity has been performed on the leaves and immature seeds of
    
    
    11,560 TO lines at heading stage. The general GUS expression frequency in seeds and leaves are 27.07% while 11.01% in the different parts of embryo, 8.28% in seed capsule and 3.42% in endosperm. 210 enhancer trapping lines with strong expression at this developmental stage have been selected form this population. The samples have been harvested and the DNA has been extracted for further studies.
    4. The T-DNA flanking sequences of 328 mutant lines have been amplified by PCR-walking. 82 lines of this group have been sequenced and analyzed pr
引文
[1] 段晓岚,陈善葆.DNA导入水稻引起性状变异.中国农业科学,1985,18(3):6-9.
    [2] 付永彩,月云,刘新仿,等.抑制衰老的嵌合基因在水稻中的转化.科学通报,1998,43(18):1963-1967.
    [3] 郭岩,张莉,肖岗,等.甜菜碱醛脱氢酶在水稻中的表达及转基因植株的耐盐性研究.中国科学(C辑),1997,27(2):151-155.
    [4] 黄大年,朱冰,杨炜,等.抗菌肽B基因导入水稻及转基因植株的鉴定.中国科学(C辑),1997,27(1):55-62.
    [5] 黄健秋、卫志明、安海龙等,根癌农杆菌介导的水稻高效转化和转基因植株的高频再生.植物学报,2002,42(11):1172-1178
    [6] 贾士荣.T-DNA转移机理.植物生理学通讯,1994,30(4):306-312.
    [7] 江树业.水稻突变体库的构建及功能基因组学.分子植物育种,2003,1(2):137-150.李宝健,曾庆平.植物生物技术原理与方法.湖南:湖南科学技术出版社,1990.201-218.
    [8] 李宝健,欧阳学智,许耀.应用农杆菌Ti质粒系统将外源基因转入籼稻细胞研究.中国科学(B辑),1990,20(2):144-149.
    [9] 李美茹,李洪清,简单高效的根癌农杆菌介导的水稻基因转化方法实验生物学报,August2003,Vol 36,No 4:289-294
    [10] 廖鸣娟,董爱华,王正栋,朱睦元.植物转座子及其在功能基因组学中的应用.遗传,2000,22(5):345-348
    [11] 王关林,方宏筠.植物基因工程.科学出版社,2002.468-475.
    [12] 朱祯,李向辉,孙勇如,等.转基因水稻植株再生及外源人α-干扰素cDNA的表达.中国科学(B辑),1992,22(2):149-155.
    [13] A dkins SW, Shiraishi T, MaComb JA et al., Somaclonal variation in rice-submerged tolerance and other agronomic characters. Physiol Plant, 1990, 80: 647-654.
    [14] Aharoni A, Vorst O. DNA microarray for functional genomics. Plant Mol Biol, 2002, 48:99-118
    [15] Amanda Cottage, Aiping Yang, Heather Maunders, Rosalindc de Lacy and Nicola A. Ramsay. Identification of DNA Sequences Flanking T-DNA Insertions by PCR-Walking. Plant Molecular Biology Reporter 19:321-327, December 2001
    [16] An G, Jeon J S, Lee Set al., Generation of T-DNA insertional tagging lines in rice. Rice genetics Ⅳ. 2001, IRRI SPI, pp: 253-262.
    [17] Antonio BA, Sakata K, Sasaki T. Rice at the forefront of plant genome informatics. Genome Inform Ser Workshop Genome Inform, 2000, 11: 3-11
    [18] Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408:796-815
    [19] Arumuganathan K, Earle ED. Nuclear DNA contents of some important plant species. Plant Mol
    
    Biol Rep, 1991, 9:208-218
    [20] Azpiroz-Leehan R, and Feldmann K A. T-DNA insertion mutagensis in Arabidopsis: going back and forth, Trends Genet, 1997, 13:152-156.
    [21] Ballas N, Citovsky V. Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium Vird2 protein. Proc. Natl. Acad. Sci. USA. 1997, 84: 10723-28.
    [22] Bao PH., Granata s, Castiglione S et al., Evidence for genomic changes in transgenic rice (Oryza sativa)recovered from protoplasts. Transgenic Res, 1996, 5: 97-103.
    [23] Barakat A, Gallois P, Raynal M et al., The distribution of T-DNA in the genomes of trans-genic Arabidopsis and rice. FEBS Lett, 2000, 471: 161-164.
    [24] Barry, G F. The use of the Monsanto draft rice genome sequence in research. Plant Physiol. 2001,125:1164-1165.
    [25] Behringer FJ and Medford JI. A plasmid rescue technique for the recovery of plant DNA disrupted by T-DNA insertion. Plant Mol. Biol. Reptr. 1992, 10: 190-198.
    [26] Bellgard M, Ye J, Gojobori T, et al. The bioinformatics challenges in comparative analysis of cereal genomes-an overview. Funct Integr Genomics, 2004, 4:1-11
    [27] Bennetzen J L, Freeling M. Grasses as a single genetic system: genome composition, collinearity and compatibility. Trends genet, 1993, 9: 259-261.
    [28] Bennetzen J. The rice genome. Opening the door to comparative plant biology. Science, 2002, 296: 60-63
    [29] Breyne, P, Zabeau M. Genome-wide expression analysis of plant cycle modulated genes. Curr. Opin. Plant Biol.2001, 4:136-142.
    [30] Bruskiewich RM, Cosico AB, Eusebio W, et al.. Linking genotype to phenotype: the International Rice Information System (IRIS). Bioinformatics, 2003, 19:163-165
    [31] Bums NG, Rimwade R, Macdonald PB.Large-scale analysis of gene expression, protein localization, and disruption in Saccharomyces cerevisiae. Gene Devel. 1994, 8:1087-1105.
    [32] Caplan A, Herrera-Estrella L, Inze D, Van Haute E, Van Montagu M, Schell J, and Zambryski P. Introduction of genetic material into plant ceils. Science, 1983,222:815-812.
    [33] Chan M T, Chang H H, Ho S L, et al.. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric alpha amylase promoter beta glucuronidase gene. Plant Mol Biol, 1993, 22:491-506.
    [34] Chen M, Presting G, Barbazuk WB, et al.. An integrated physical and genetic map of the rice genome. Plant Cell, 2002, 14: 537-545.
    [35] Chin H G, Choe M S, Lee S H, Park S H, Koo J C, Kim N Y, Lee J J, Oh B G, Yi G H et al.. Molecular analysis of rice plant sharboring an Ac/Ds transposable element mediated gene-trapping system. Plant J., 1999, 19(5): 615-623.
    [36] Chu C-C. The N6 medium and its application to anther culture of ceral crops. In Proc Symp Plant Tissue Clture. Peking: Science Press (1978) pp 43-50.
    
    
    [37] Cluster, ED., O'Dell, M., Metzlaff, M. and Flavell, R.B. Details of T-DNA structural organization from a transgenic Petunia population exhibiting co-suppression. Plant Mol. Biol. 1996. 32: 1197-1203.
    [38] Colbert TG, Till B J, Tompa R et al.. High-throughput screening for induced point mutations. Plant Physiology, 2001,126:480-484.
    [39] Council of the European Communties. Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms and repealing directive, 90/220/EEC OJ 2001, No L 106/1-38
    [40] De Buck, S., De Wilde, C., Van Montagu, M. and Depicker, A. T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium-mediated transformation. Mol. Breed. 2000. 6: 459-468.
    [41] De Buck, S., De Wilde, C., Van Montagu, M. and Depicker, A. T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium-mediated transformation. Mol. Breed. 2000.6: 459-468.
    [42] De Neve, M., De Buck, S., Jacobs, A., Van Montagu, M. and Depicker, A. T-DNA integration pattems in cotransformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J. 1997. 11: 15-29.
    [43] Delsney M. Towards an accurate sequence of the rice genome. Curr Opin Plant Biol, 2003, 6: 101-105.
    [44] Deng XW et al., COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain. Cell, 1992, 74: 757-768.
    [45] Devic, M., S. Albert, M. Delseny, and T.J.Roscoe. Efficient PCR walking on plant genomic DNA. Plant Physiol. Biochem.1997, 35:331-339.
    [46] Devos KM, Beales J, and Nagamura Y, et al.. Arabidopsis-rice: will colinearity allow gene prediction across the eudicot-monocot divide? Genome Res, 1999, 9: 825-829.
    [47] Dubcovsky J, Ramakrishna W, SanMiguel P J, et al.. Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes. Plant Physiol, 2001, 125:1342-1353.
    [48] Durrenberger, F., Crameri, A., Holm, B. and Koukolikova-Nicola, Z. Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. Proc. Natl. Acad. Sci. USA 1989. 86: 9154-9158.
    [49] Earp D, Lowe B, Baker B. Amplification of genomic sequences flanking transposable elements in host and heterologous plants: a tool for transposon tagging and genome characterization. Nucl. Acids Res., 1990, 18: 3271-3279.
    [50] Elomaa, P., Y. Helariutta, RJ Griesbach, M. Kotilainen, P. Seppanen and T. Teeri. Transgene inactivation in Petunia hybrida is influenced by the properties of the foreign gene. Mol Gen Genet, 1995, 248: 649-656.
    [51] Ewing R, Poirot O, Claverie JM. Comparative analysis of the Arabidopsis and rice expressed
    
    sequence tag (EST) sets. In Silico Biol, 1999-2000, 1 : 197-213.
    [52] Ewing RM, Kahla AB, Poirot O, et al.. Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression. Genome Res, 1999, 9: 950-959.
    [53] Feng Q, Zhang Y, Hao P, et al.. Sequence and analysis of rice chromosome 4. Nature, 2002, 420: 316-320.
    [54] Fridborg Ⅰ, Kuusk S, Moritz T and Sundberg E. The Arabidopsis dwarf mutant shi exhibits reduced gibberellin responses conferred by overexpression of a new putative zinc finger protein. The plant cell, 1999, 11:1019-1032.
    [55] Friedrich G, Soriano E Promoter traps in embryonic stem cells: a genetic screen to identify and mutated developmental genes in rice. Genes Dev., 1991, 5:1513-1523.
    [56] Gale M D, Devos K M. Comparative genetics in the grasses. Proc. Natl. Acad. Sci. USA. 1998, 95: 1972-1974.
    [57] Gelvin Stanton B. Agrobacterium and plant involved in T-DNA transfer and integration. Annu. Rev. Plant Physiol. Plant Mol. Biol., 2000,51: 223-256.
    [58] Gheysen, G., Villarroel, R. and Van Montagu, M. Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev. 1991.5: 287-297.
    [59] Goff SA, Ricke D, Lan TH, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002, 296: 92-100.
    [60] Goff SA. Rice as a model for cereal genomics. Curr Opin Plant Biol, 1999, 2: 86-89.
    [61] Gustavo A. de la Riva, Joel Gonz?lez-Cabrera et al., Agrobacterium turnefaeiens: a natural tool for plant transformation. EJB Electronic Journal of Biotechnology. 1998, Vol. 1 No.3, Issue of December15.
    [62] Gynheung An, Jong-Seong Jeong, Sichul Lee et al., Generation of T-DNA insertional tagging lines in rice. Rice Genetics Ⅳ. IRRI & SPI. 2001, P:253-262.
    [63] Harushima Y, Yano M, Shomura A, et al.. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics, 1998, 148: 479-494.
    [64] Hayashi H, Czaja Ⅰ, Lubenow H, Schell J, and Walden R, Activation of a plant gene by T-DNA tagging: auxin-independent growth in vitro. Science, 1992, 258:1350-1353.
    [65] Hedden P. The genes of the green revolution. Trends in Genetics, 2003, 19:5-9.
    [66] Hiei Y, Ohta S, Komari T, and Kumashiro T, Efficient transformation of rice (Oryza sativa L.) mediated by Agrobaterium and sequence analysis of boundaries of the T-DNA. Plant J, 1994, 6:271-282.
    [67] Holtorf H, Guitton M C, and Reski R. Plant functional genomics. Naturwissenschaften, 2002, 89:235-249.
    [68] Holtorf H, Guitton MC, Reski R. Plant functional genomics. Naturwissenschaften. 2002, 89:235-249
    [69] lglesias VA, Moscone EA, Papp Ⅰ, Neuhuber F, Michalowski S, Phelan T, Spiker S, Matzke M, and
    
    Matzke AJ. Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell 1997, 9: 1251-1264.
    [70] Jeon J S, and An G. Gene tagging in rice: a high throughput system for functional genomics. Plant Science, 2002, 161:211-219.
    [71] Jeon J S, Lee S, Jung K H et al., T-DNA insertional mutagenesis for functional genomics in rice. Plant J, 2000, 22:561-570.
    [72] Jeon J, An G. Gene tagging in rice: a high throughput system for functional genomics. Plant Sci, 2001, 161: 211-219.
    [73] Jeong D H, An S, Kang H G, Moon S, Han J J, Park S, Lee S H, An K, and An G, T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol, 2002, 130:1636-1644.
    [74] Jorgensen, R., Snyder, C. and Jones, J.G.D. T-DNA is organized predominantly in inverted repeat structure in plants transformed with Agrobacterium tumefaciens C58 derivatives. Mol. Gen. Genet. 1987. 207: 478-485.
    [75] K.J. Fullner, E.W. Nester, Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens, J. Bacteriol. 178 (1996) 1498-1504.
    [76] Kado CI. Agrobacterium-mediated horizontal gene transfer. Genet Eng, 1998, 20:1-24.
    [77] Kantety RV, La Rota M, Matthews DE, et al.. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol, 2002, 48:501-510.
    [78] Karlowski WM, School H, and Janakiraman V, et al.. MOsDB: an integrated information resource for rice genomics. Nucleic Acids Res, 2003, 31 : 190-192
    [79] Kikuchi S, Satoh K, Nagata T, et al.. Collection, mapping, and annotation o.f over 28,000 cDNA clones from japonica rice. Science, 2003, 301: 376-379.
    [80] Komatsu S, Kojima K, Suzuki K, et al.. Rice Proteome Database based on two-dimensional polyacrylamide gel electrophoresis: its status in 2003. Nucleic Acids Res, 2004, 32: D388-392.
    [81] Kononov, M.E., Bassuner, B. and Gelvin, S.B. Integration of T-DNA binary vector 'backbone' sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J. 1997. 11: 945-957.
    [82] Krizkova, L. and Hrouda, M. Direct repeats of T-DNA integrated in tobacco chromosome: characterization of junction regions. Plant J. 1998. 16: 673-680.
    [83] Krysan P J, Young J C, and Sussman M. R. T-DNA as an insertional mutagen in Arabidopsis. Plant Cell, 1999, 11: 2283-2290.
    [84] Kumar, S. and Fladung, M. Transgene integration in aspen: Structures of integration sites and mechanism of T-DNA integration. Plant J. 2002.31: 543-551.
    [85] Kumar, S. and Fladung, M. Transgene repeats in aspen: molecular characterization suggests simultaneous integration of independent T-DNAs into receptive hotspots in the host genome. Mol. Gen. Genet. 2000. 264: 20-28.
    [86] Kurata N, Umehara Y, Tanoue H, et al.. Physical mapping of the rice genome with YAC clones. Plant
    
    Mol Biol, 1997, 35: 101-113.
    [87] Kyozuka J, Konishi S, Nemoto K, et al.. Down-regulation of RFL the FLO/LFY homolog of rice accompanied with panicle branch initiation. Proc Natl Acad Sci USA, 1998, 95: 1979-1982.
    [88] Lai EM, and Cado CI. The T-pilus of Agrobacberium tumefaciens. Trends Microbiol. 2000,8:361-369.
    [89] Leung H, Wu C, Boraoidan, Bordeos A, Ramos M, Madamba S, Cabauatan P, Veru Cruz C, Portugal A, Reyes G, Bruskiewich R, McLaren G, Lafitte R, Gregorio G, Bennett J, Brar D. Deletion mutatants for functional genomics: progress in phenotyping, sequence assignment, and database development. Rice Genetics Ⅳ, IRRI, SPI, 239-251.
    [90] Lichtenstein, M., Keini, G., Cedar, and H. & BERGMAN, Y. B-cell specific demethylation: a new role for the intronic -chain enhancer sequence. Cell, 1994, 76, 913-923.
    [91] Lindsey K, Wei W, Clarke M C, McArdle HF, Rooke L M, Topping J E Tagging genomic sequences that direct transgene expression by activation of a promoter trap in plants. Transgenic res., 1993, 2: 33-47
    [92] Liu YG, Mitsukawa N, Oosumi T, and Whittier RF. Efficient isolation and mapping of Arabidopsis thalami T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 1995, 8: 457-463.
    [93] Maria Rosa Ponce, Victor Quesada and Jose Luis Micol. Rapid discrimination of sequences flanking and within T-DNA insertions in the Arabidopsis genome. The Planr J. 1998, 14(4): 597-501.
    [94] Mayerhofer, R., Koncz-Kalman, Z., Nawrath, C., Bakkeren, G., Crameri, A., Angelis, K., Redei, G.P., Schell, J., Hohn, B. and Koncz, C. T-DNA integration: a model of illegitimate recombination in plants. EMBO J. 1991.10: 697-704.
    [95] McCouch SR, Chen X, Panaud O, et al.. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol, 1997, 35: 89-99.
    [96] McCouch SR, Teytelman L, Xu Y, et al.. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9: 199-207.
    [97] Meier Ⅰ, Phelan T, Gruissem W, Spiker S, Schneider D. MFP1, a novel plant filament-like protein with affinity for matrix attachment region DNA. Plant Cell. 1996, 8:2105-2115.
    [98] Miao ZH, Lain E. Targeted disruption of the TGA3 locus in Arabidopsis thaliana. Plant J, 1995, 7: 359-365.
    [99] Moore D, Wu JH, Kathir P, Hamilton C M, Ippen-Ihler K. Analysis of transfer genesand gene products within the traB-traC region of the Escherichia coli. Ferrtility factor E J Bacteriol.. 1987, 169: 3994-4002.
    [100] Murashige T, SKoog E A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Plant Physiology, 1962,15:473-479.
    [101] Ooms, G., Bakker, A., Molendijk, L., Wullems, G.J., Gordon, M.P., Nester, E.W. and Schilperoort, R.A. T-DNA organization in homogeneous and heterogeneous octopine-type crown gall tissues of Nicotiana tabacum. Cell. 1982.30: 589-597.
    
    
    [102] Osato N, Yamada H, Satoh K, et al.. Antisense transcripts with rice full-length cDNAs. Genome Biol, 2003, 5(1): R5.
    [103] Pan S Q, Charles T, Jin S, Wu Z L, and Nester E W. Preformed dimeric state of the sensor protein VirA is involved in plant-Agrobacterium signal transduction. Proceedings of the National Academy of Sciences USA, 90: 9939-9943.
    [104] Patrick J Krysan, Jeffery C Young, and Michael R Sussman. T-DNA as an insertional mutagen in Arabidopsis. The plant cell, 1999, 11: 2283-2290.
    [105] Peter Bugert, Sonja Decker, and Harald Kl?te. Improved PCR-Walking for Large-Scale Isolation of Plant-DNA Borders. BioTechniques, 2001, 30:496-504.
    [106] Primrose S, Twyman R, Old B. Principles of Gene Manipulation. Higher Education Press, 2002, P: 225-241.
    [107] Puchta, H. Repair of genomic double-strand breaks in somatic plant cells by one-sided invasion of homologous sequences. Plant J. 1998. 13: 331-339.
    [108] R. Greco, Pieter B.F. Ouwerkerl, Christophe Sallaud, Ajay Kohli, Lucia Colomobo, Pere Puigdomenech, Emmanuel Guiderdoni, Paul Christou, J. Harry C. Hoge, and Andy Pereira. Transposon insertional mutagenesis in rice. Plant Physiology, 2001, 125: 1175-1177.
    [109] Rained D M, Bottin O P, Gordon M P, et al.. Agrobacterium-mediated transformation of rice (Oryza sativa L.). Bio/Technol, 1990, 8:33-38.
    [110] Ramanathan, V. and Veluthambi, K. Transfer of non-T-DNA portions of the Agrobacterium tumefaciens Ti plasmid pTiA6 from the left terminus of TL-DNA. Plant Mol. Biol. 1995. 28: 1149-1154.
    [111] Rie Terada, Hiroko Urawa, Yoshishige Inagaki, Kazuo Tsugane, and Shigeru Lida. Efficient gene targeting by homologus recombination in rice. Nature Biotechnology.2002, http://www.nature.com/naturebiotechnology.
    [112] Saji S, Umehara Y, Antonio BA, et al.. A physical map with yeast artificial chromosome (YAC) clones covering 63% of the 12 rice chromosomes. Genome, 2001, 44:32-37
    [113] Sakata K, Antonio BA, Mukai H, et al.. INE: a rice genome database with an integrated map view. Nucleic Acids Res, 2000, 28:97-101
    [114] Salomon, S. and Puchta, H. Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J. 1998. 17: 6086-6095.
    [115] Sasaki T, Matsumoto T, Baba T, Yamamoto K, Wu K, Katayose Y, and Sakata K. The International Rice Genome Sequencing Project: progress and prospects. Rice Genetics Ⅳ. IRRI & SPI. 2001, P: 189-196.
    [116] Sasaki T, Matsumoto T, Yamamoto K, et al.. The genome sequence and structure of rice chromosome 1. Nature, 2002, 420:312-316.
    [117] Schaffer R, Ramsay N. The late elongated hypocotyls mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell, 1998, 93:1219-1229.
    
    
    [118] Seki M, Narusaka M, Kamiya A, et al.. Functional annotation of a full-length Arabidopsis cDNA collection. Science, 2002, 296: 141-145.
    [119] Shimamoto K, Kyozuka J. Rice as a model for comparative genomics of plants. Annu Rev Plant Biol, 2002, 53:399-419
    [120] Shimamoto K. The molecular biology of rice. Science, 1995, 270:1772-1773.
    [121] Sobral BW, Mangalam H, Siepel A, et al.. Bioinformatics for rice resources. Novartis Found Symp, 2001, 236: 59-81.
    [122] Sorrells ME, La Rota M, Bermudez-Kandianis CE, et al.. Comparative DNA sequence analysis of wheat and rice genomes. Genome Res, 2003, 13: 1818-1827.
    [123] Springer PS. Gene traps: tools for plant development and genomics. The Plant Cell, 2000, 12:1007-1020.
    [124] Stachel SE, Zambryski PC. VirA and virG control the plant-induced activation of the T-DNA transfer process of A. tumefaciens. Cell, 1986, 46: 325-333.
    [125] Stanton B.Gelvin, Agrobacterium and plant genes involved in T-DNA transfer and integration Annu Rev Plant Physiol Plant Mol Bioi, Annu Rev.Plant Physiol Plant Mol Biol, 2000.51:223-256.
    [126] Sung-Ryul Kim, Jinwon Lee, Sung-Hoon Jun, Sunhee Park, Hong-Gyu Kang, Soontae Kwon and Gynheung An. Transgene structures in T-DNA-inserted rice plants. Plant Molecular Biology. 2003, 52: 761-773.
    [127] Tao Q, Chang YL, Wang J, et al.. Bacterial artificial chromosome-based physical map of the rice genome constructed by restriction fingerprint analysis. Genetics, 2001,158:1711-1724.
    [128] Temnykh S, DeClerck G, Lukashova A, et al.. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res, 2001, 11: 1441-1452.
    [129] Temnykh S, Park WD, Ayres N, et al.. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet, 2000, 100:697-712.
    [130] Terada R, Urawa H, Inagaki Y, et al.. Efficient gene targeting by homologous recombination in rice. Nat Biotechnol, 2002, 20: 1030-1034.
    [131] The Rice Chromosome 10 Sequencing Consortium. In-Depth View of Structure, Activity, and Evolution of Rice Chromosome 10. Science, 6 June 2003, 30:1566-1569.
    [132] Tinland, B. The integration of T-DNA into plant genomes. 1996. Trends Plant Sci. 1: 178- 184.
    [133] Tissier A et al., Multiple independent defective Suppressor-mutator transposon insertions in Arabidopsis: A tool for functional genomics. The Plant Cell, 1999, 11: 1841-1852.
    [134] Toki S. Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Mol Biol Rep,1997, 15: 16-21.
    [135] Tyagi AK, Mohanty A. Rice transformation for crop improvement and functional genomics. Plant Sci, 2000, 158: 1-18.
    [136] Ursic, D., Slightom, J.L. and Kemp, J.D. Agrobacterium tumefaciens T-DNA integrates into
    
    multiple sites of the sun- flower crown gall genome. Mol. Gen. Genet. 1983. 190: 494-503.
    [137] van der Graaff, E., den Dulk-Ras, A. and Hooykaas, P.J.J. Deviating T-DNA transfer from Agrobacterium tumefaciens to plants. Plant Mol. Biol. 1996.31:677-681.
    [138] Vida T A, Graham T R, Emr S D. In vitro reconstitutions of inter compartmental protein transport to the yeast vacuole. 1990, J. Cell Biol., 1990, 111: 2871-84.
    [139] Walden R, Fritze K, Hayashi H. Activation tagging: a means of isolating gene implicated as playing a role in plant growth and development. Plant Mol. Biol.26: 1521-1528.
    [140] Waterhouse PM, Helliwell CA. Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet, 2002, 4: 29-38.
    [141] Weigel D, Ahn JH, Balzquez MA. Activation tagging in Arabidopsis. Plant Physiology. 2000,1003-1013.
    [142] Wenck, A., Czako, M., Kanevski,Ⅰ. and Marton, L. Frequent collinear long transfer of DNA nclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol. Biol. 1997.34: 913-922.
    [143] White PT. Rice: The essential harvest. Natl Geogr, 1994, 185: 48-79.
    [144] Wilson K, Long D, Swinburne J and Coupland G.A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. The Plant Cell, 1996, 8:659-671.
    [145] Wolters, A.M.A., Trindade, L.M., Jacobsen, E. and Visser, R.G.E Fluorescence in situ hybridization on extended DNA fibres as a tool to analyse complex T-DNA loci in potato. Plant J. 1998. 13: 837-847.
    [146] Wu C., Li X., Yuan W., Chen G., Kilian A., Li J., Xu C., Zhou DX., Wang S., Zhang Q. Development of enhancer trap lines for functional analysis of the rice genome. The Plant Journal, 2003, 35: 418-427.
    [147] Wu J, Maehara T, Shimokawa T, et al.. A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell, 2002, 14: 525-535.
    [148] Y. Sha, S. Li, L. Luo, Y. Tian, C. He. Generation and flanking sequence analysis of a rice T-DNAtagged population. Theor Appl Genet, 2004 108:306-314.
    [149] Yan Yunxin, An Chengcai, Li Li, Gu Jiayu, Tan Guihong and Chen Zhangliang. T-linker-specific ligation PCR (T-linker PCR): an advanced PCR technique for chromosome walking or for isolation of tagged DNA ends. Nucleic Acids Research, 2003, Vol.31. No. 12 e68.
    [150] Yazaki J, Kojima K, Suzuki K, et al.. The Rice PIPELINE: a unification tool for plant functional genomics. Nucleic Acids Res, 2004, 32: D383-387.
    [151] Yu J, Hu S, Wang J, Wong G. K S et al., A Draft Sequence of the Rice Genome, Oryza sativa L. ssp. Indica. Science, 2002a, 296:79-92.
    [152] Yuan Q, Liang F, Hsiao J, et al.. Anchoring of rice BAC clones to the rice genetic map in silico. Nucleic Acids Res, 2000, 28: 3636-3641.
    
    
    [153] Yuan Q, Ouyang S, Liu J, et al.. The TIGR rice genome annotation resource: annotating the rice genome and creating resources for plant biologists. Nucleic Acids Res, 2003, 31: 229-233
    [154] Zhang HB, Wing RA. Physical mapping of the rice genome with BACs. Plant Mol Biol, 1997, 35: 115-127.
    [155] Zhao Q, Zhang Y, Cheng Z, et al.. A fine physical map of the rice chromosome 4. Genome Res, 2002, 12: 817-823.
    [156] Zhao W, Wang J, He X, et al.. BGI-RIS: an integrated information resource and comparative analysis workbench for rice genomics. Nucleic Acids Res, 2004, 32: D377-382.
    [157] Zhu W, Schlueter SD, Brendel V. Refined annotation of the Arabidopsis genome by complete expressed sequence tag mapping. Plant Physiol, 2003, 132: 469-484.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700