用户名: 密码: 验证码:
水翼法推进机理及仿生系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水翼法推进是水下运载器新型推进方式的探索性研究工作。研究水翼法推进机理与性能,分析理解仿生系统水翼推进操纵方式,为仿生水下运载器研究和应用提供理论和技术支撑,具有重要研究意义和实用价值。
     本文围绕水翼法推进动力学模型、柔性变形、水动力性能等水翼法推进机理进行研究,在此基础上研究了水翼法推进载体技术,并进行了实验研究。
     在生物原型构造特征和运动特性研究基础上,分析了水翼法推进机理。基于拓像法提取水翼和蹼翼的生理参数,作为水翼法推进分析和仿生机构研究的依据。对多目视觉实时监测实验平台获取的图像信息进行分析,以水翼特征角的变化来描述水翼法推进状态,研究了水翼法推进操纵方式。理论分析和流体力学实验相结合,从水翼流体动力作用机制、相似准数和非定常流场作用等角度分析和解析水翼推进机理,研究了水翼法艏向转矩与机动性的关系。
     研究水翼法推进动力学模型。建立了二自由度水翼运动数学模型,通过广义变换矩阵分析和水翼力学雅可比问题研究,得到水翼的运动学方程和动力学模型,在以微元法研究水翼运动水动力基础上,从流体阻尼简化和流体附加质量的角度分析水翼法推进本体水动力,由牛顿-欧拉方程导出水翼法推进本体动力学模型,为水翼法推进姿态控制提供参考,为水翼法推进控制器的研发提供仿真平台。
     针对柔性水翼非性线变形问题,从变形量方程和模态分析两个方面进行水翼柔性变形分析。分析了弦向变形和展向变形,从柔性变形量和击水角度改变引发推进效率变化的角度论证了半骼式柔性水翼模型优于完骼式柔性水翼模型。
     研究水翼法推进的水动力性能,通过水动力数值模拟和流场分析研究水翼运动参数影响规律和尺度律效应。以水翼法推进水动力分析为基础,数值模拟了运动参数变化下的水动力和艏向转矩,仿真实验结果表明了拍旋角速度、位旋角度和位旋旋转时间比对于直航推进的影响规律以及其差动对于艏向的控制作用。通过FLuent软件对水翼运动模型Navier—Stokes方程仿真求解分析了水翼运动非定常流场的演变和作用机理,验证了旋转环流和尾迹捕获等流体作用的理论分析,阐明了水翼展长和弦长对于水翼推进加速度分布和推进力均值的影响规律,为柔性水翼优化设计提供了依据。基于水动力性能分析,提出了一种水翼法仿生推进控制策略。
     为验证水翼法推进机理分析的正确性及水翼法推进的可行性,研制了水翼法推进仿生系统并进行了实验研究。完成了实验载体的感知系统、控制系统、通讯系统和能源系统设计与调试,完成了实验载体的系统集成,并对载体微小型化进行了技术探讨。通过运动部件单肢实验,进行了拍旋和位旋电机角速度分布特性研究。通过系统静态实验、运动性能实验和柔性推进实验,对水翼法推进机理分析、动力学模型、水翼运动参数变化的影响规律以及水翼法推进的可行性等进行了实验验证。水翼运动实验验证了水翼法仿生推进控制策略的有效性,柔性水翼实验结果表明水翼柔性在高速阶段推进效果优于刚性水翼,验证了柔性水翼改善水翼法推进效能的仿真结论。
The hydrofoil propulsion is a exploratory research topic in the new pattern propulsion field for the underwater vehicle. Research on the hydrofoil propulsion principle and performance, analyzing and investigating the hydrofoil propulsion manipulation method of bionic system, then providing both theoretic and technical supports for the research and application of bionic underwater vehicle, have important research meaning and practical value.
     This thesis primarily did the research on the hydrofoil propulsion principle, including the dynamic model of hydrofoil propulsion, flexible distortion, hydrodynamic performance and so on. Furthermore, based on the preceding referred results, the carrier technology of hydrofoil propulsion is investigated, and the theoretic conclusions are validated in the experiments.
     Based on the research of biological prototype structural characteristics and movement characteristics, the hydrofoil propulsion principle was analyzed. Utilizing the rubbings photocopy method, hydrofoil and palmiped's physiological parameters were obtained, as the reference for hydrofoil propulsion analysis and bionic mechanism research. Analyzing the image information which was obtained by the multi-camera vision real-time testing experiment platform, the variation of characteristic angle of the hydrofoil was used to describe the hydrofoil propulsion states, and the hydrofoil propulsion manipulation method was investigated. Combining the theoretical analysis and hydrodynamic experiments, the hydrofoil propulsion principle was analyzed from the aspects of fluid dynamic action mechanism of hydrofoil, similarity criterion, unsteady flow field effect and so on, the relationship between yawing torque and maneuverability of hydrofoil propulsion was studied.
     Research on the dynamics model of hydrofoil propulsion, the thesis established the two DOF mathematical model of hydrofoil motion; through the analysis of general transformation matrix and research on hydrofoil mechanics jacobian matrix, the kinematics equations and dynamic models of hydrofoil were obtained. Based on the research of hydrofoil motion hydrodynamics by use of differential element method, the hydrodynamics of hydrofoil propulsion body was analyzed from the aspects of fluid damping simplified and fluid additional mass. The dynamics model of hydrofoil propulsion body was educed from the Newton-Euler equations, providing a importance reference to the gesture control of hydrofoil propulsion and a simulation platform for the development of hydrofoil propulsion controller.
     For the nonlinear distortion problem of flexible hydrofoil, the deformation analysis of hydrofoil flexible structure was made from the two aspects of deformation equations and modal analysis. The chord-wise distortion and span-wise distortion of flexible hydrofoil were analyzed; and it is demonstrated that the flexible hydrofoil model with half skeleton support was better than the one with entire skeleton support, from the aspects of flexible deformation amount and the change of propulsive efficiency which were caused by the variation of stroke-water angles.
     Studiing on the hydrodynamic performance of hydrofoili propulsion, through the hydrodynamic numerical simulation and flow field analysis, the parameter influence law and scaling law effect of hydrofoil motion were investigated. Based on the hydrodynamics analysis of hydrofoil propulsion, the hydrodynamic forces and yawing moments under the change of movement parameters were numerically simulated. The results of simulation demonstrated that the stroke spin angular velocity, azimuth spin angular velocity and azimuth spin time ratio have an influence on the linear navigation propulsion, and the yawing control effect of their differential. By using of the Fluent software, the simulation solved the Navier-Stokes equations of hydrofoil motion model, analyzed unsteady flow field evolvement and its mechanism of hydrofoil motion, validated the theoretical analysis of fluid action such as eddy circumfluence and capture of wake current, illuminated the influence law that hydrofoil wingspan length and chord length had the effect on the acceleration distribution and propulsion mean value of hydrofoil propulsion, provided the important gists to optimization design of the flexible hydrofoil. Based on the hydrodynamic performance analysis, a control strategy of bionic hydrofoil propulsion was put forward.
     For validating the correctness of the analysis of hydrofoil propulsion principle and the feasibility of hydrofoil propulsion, a bionic system of hydrofoil propulsion was developed and its experments was researched. The design and debug of the perceptual system, control system, communication system and energy system in the carrier were all accomplished, the system integration of experiment carrier was completed, and a technical discussion about the microminiaturization of it was also made. Through the single limb experiments of moving parts, the angular velocity distribution characteristics of both stroke spin and azimuth spin motors were investigated. From the aspects of static texts, the movement performance texts and the flexible propulsion experiments of the system, the analysis of mechanism of hydrofoil propulsion, the dynamic model, the influence law of parameter variation on hydrofoil motion, and the feasibility of hydrofoil propulsion were all verified by experiments. The hydrofoil motion experiments had verified the validity of control strategy of the bionic hydofoil propulsion, and the experimental results of flexible hydrofoil had showed that the propulsion effect of flexible hydrofoil during the high-speed phases was better than the rigid one, and validated the simulation conclusion that flexible hydrofoil could improve the efficiency of hydrofoil propulsion.
引文
[1]徐玉如,苏玉民.关于发展智能水下机器人技术的思考.舰船科学技术.2008,30(4):17-21页
    [2]钦俊德.动物的运动.清华大学出版社,暨南大学出版社.2000:15-32页
    [3]J.Lightill. Note on the swimming of slender fish. Fluid Mech. 1960,9: 305-317P
    [4]J.Lightill. Aquatic animal propulsion of high hydromachanical efficiency. Fluid Mech.1970,44:265-301P
    [5]J.Lightill.Large-amplitude elongated-body theory of fish locomotion. Proc. Roy. Soc. Lond.1971,179:125-138P
    [6]T.Y.Wu. Swimming of a waving plate. Fluid Mech.1961,10:321-344P
    [7]T.Y.Wu. Hydrodynamics of swimming propulsion. Part 1. Swimming of a two-dimension flexible plate at variable forward speeds in an inviscid fluid. Fluid Mech.1971,46(2):337-355P
    [8]T.Y.Wu. Hydrodynamics of swimming propulsion. Part 2.Some optimum shape problems. Fluid Mech.1971,46(3):521-544P
    [9]T.Y.Wu. Hydrodynamics of swimming propulsion. Part 3. Swimming and optiumu movements of slender fish with side fins. Fluid Mech.1971,46(3): 545-568P
    [10]M.S.Triantafyllou,D.K.P.Yue. Hdrodynamics of fishlike swimming. Annual Review of Fluid Mechanics.2000,32:33-53P
    [11]童秉纲,庄礼贤.描述鱼类波状游动的流体力学模型及其应用.自然杂志.1998,20(1):1-7页
    [12]Cheng J. Y, Zhuang L. X, Tong B. G. Analysis of swimming three-dimensional waving plate. J. Fluid. Mech.1991,232:341-355P
    [13]M.G.Chopra. Hydromechanics of lunate-tail swimming propulsion. Fluid Mech.1974,64:375-391P
    [14]M.G..Chopra..Large-amplitude lunate-tail swimming propulsion. Fluid Mech. 1976,74:161-182P
    [15]M.G..Chopra, T.Kambe. Hydromechanics of lunate-tail swimming propulsion. Part 2. Fluid Mech.1977,79:49-69P
    [16]梁建宏,王田苗,魏洪兴.水下仿生机器鱼的研究进展I—鱼类推进机理.机器人.2002,24(2):107-111页
    [17]杨焱,童秉纲.鱼类转弯机动运动机制初探.第十二届全国计算流体力学会议论文.2004:605-610页
    [18]童秉纲,陆夕云.关于飞行和游动的生物力学研究.力学进展,2004,34(1):1-8页
    [19]成巍,苏玉民,秦再白,徐玉如.柔性仿金枪鱼月牙形尾鳍水动力分析.海洋工程.2004,22(4):73-79页
    [20]C.E.Lan. The unsteady quadi-vortex-lattice method with applications to animal propulsion. Fluid Mech.1979,93:747-765P
    [21]P.Liu, N.Bose. Hydrodynamic characteristics of a lunate shape oscillating propulsor. Ocean Eng.1999,26:519-529P
    [22]Cheng J. Y, Blickhan R. Bending moment distribution along swimming fish. J. Theor. Biol.1994,168:337-348P
    [23]Cheng J. Y, Pedley T. J, Altringham J. D. A continuous dynamic beam model for swimming fish. Phil. Trans. Roy. Soc. Lond. B.1998,353:981-997P
    [24]敬军,李晟,陆云夕,尹协振.鲫鱼C形起动的运动学特征分析.实验力学.2004,19(3):276-282页
    [25]Jing J., Yin X. Z., Lu X. Y. Observation and hydrodynamic analysis on fast fast-start od yellow catfish (pelteobagrus fulvidraco). Progress in Nature Science.2005,15(1):34-40P
    [26]Jing J., Yin X. Z., Lu X. Y. The Hydrodynamic analysis of C-start in crucian carp (Carassius auratus). J. Biom. Eng.2004,1(2):102-107P
    [27]胡文蓉.鱼类单向机动运动二维流动特征的数值研究.中国科学院研究生院博士学位论文.2004
    [28]胡文蓉,童秉纲,马晖扬.鱼类机动运动机理初探.空气动力学前沿问题研讨会.2003,228-236页
    [29]M. J. Wolfgang, J. M. Anderson, M. A. Grosenbaugh, D. K. P. Yue, M. S. Triantafyllou. Near-body flow dynamics in swimming fish. J. Experimental Biology.1999,202:2303-2327P
    [30]X. Li, Y. Wu, X. Lu, X. Yin. Measurements of fish's wake by PIV. Optical Technology and Image Processing for Fluids and Solids Diagnositics. SPIE-Beijing 2002
    [31]A. H. Techet, X. Zhang, M. J. Wolfgang, J. M. Kumph, F. S. Hover, D. K. P. Yue, M. S. Triantafyllou, E. J. Anderson, W. R. McGillis, M. A. Grosenbaugh. Flow control of flexible-hull vehicles. Papers of 11th International symposium on UUS technology. Autonomous Undersea Systems Institute.1999:162-171P
    [32]K. Streitlien, G. S. Triantafyllou, M. S. Triantafyllou. Efficient foil propulsion through vortex control. AIAA J.1996,34(11):2315-2319P
    [33]J. M. Anderson. Vorticity control for efficient propulsion. PhD thesis. MIT. 1996
    [34]J. Gray. Studies in animal locomotion. VI. The propulsive powers of the dolphin. J. Experimenal Biology.1936,13:192-199P
    [35]X. M. Li, Y. X. Lu, X. Z. Yin. Visualization on fish's wake. SPIE.2002,4537: 473-476P
    [36]X. M. Li, Y. F. Wu, Y. X. Lu, X. Z. Yin. Measurements of fish's wake by PIV. Proc. SPIE on Optical Technology and Image Processing for Fluids and Solids Diagnostics. Beijing,2002
    [37]Smith.M.J.C. Leading-edge effects with moth wing aerodynamics-Towards the development of flapping-wing technology. AIAA.96-2511,1996
    [38]Smith.M.J.C. Reinstating inquiry into mechanized flapping-wing flight-Realizing the integrity of the ornithopter. AIAA.97-0533,1997
    [39]Tuncer.I.H, Platzer.M.F. Computational study of flapping airfoil aerodynamics. Aircraft.2000,37:514-520P
    [40]Shyy W, Berg M, Ljungqvist D. Flapping and flexible wings for biological and micro vehicle. Progress in Aerospace Science.1999(35):455-506p
    [41]Amamurti.R, Sandberg.W,Lohner.R. Simulation of flow about flapping airfoils using a finite element incompressible flow solver. AIAA. 99-0652, 1999
    [42]Z.Jane Wang,Janms M.Birch,and Michael H.Dickinson. Unsteady forces and flows in low reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. Journal of Experimental Biology.2004,207. 449-460P
    [43]Zbikowski.rafal. On aerodynamic modeling of an insect-like flapping wing in hover for micro air vehicles. Phil Trans R Soc Lond A.2002,360.273-290P
    [44]TONG Binggang. New developments in the unsteady viscous external biofluiddynamics for miniaturized-insect flighe. Journal of Graduate School of the Chinese Academy of Sciences.2002,19(1):1-6P
    [45]孙茂,吴江浩.微型飞行器的仿生流体力学-昆虫前飞时的气动力和能耗.航空学报.2002,23:385-393页
    [46]孙茂,吴江浩.昆虫飞行时的高升力机理和能耗.北京航空航天大学学报.2003,29:970-977页
    [47]Neef M F, Hunmmel D. Euler solutions for a finite-span flapping wing. Conference on fixed, flapping and rotary wing vehicles at very low reynolds numbers. Universitu of Notro Dame, Indiana,2000
    [48]Liu H, Ellington C. P, Kawachi K. A computational fluid dynamics study of hawkmoth hovering. J. Experimenal Biology.1998,201:461-477P
    [49]Yu Y. L, Tong B. G, Lu X. Y. Aerodynamic characteristics of wing flapping with asymmetric stroke-cycles during insect forward flight. In:2nd International Symposium on Aqua Bio-Mechanisms / International Seminar on Aqua Bio-Mechanisms. Tokai University Pacific Center, Honolulu, Hawaii, September 14-17,2003
    [50]Wootton R J. From insect to micro vehicles. Nature.2000,403:144-145P
    [51]Dickinson M. H, Lehmann P. O, Sane S. P. Wing rotation and the aerodynamic basis of insect flight. Science.1999,284:1954-1960P
    [52]Combes S. A, Daniel T. L. Flexural stiffness in insect wings I. Scaling and the influence of wing venation. J. Exp. Biol.2003,206:2979-2987P
    [53]Combes S. A, Daniel T. L. Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending. J. Exp. Biol.2003,206:2989-2997P
    [54]Combes S. A, Daniel T. L. Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth manduca sexta. J. Exp. Biol.2003,206:2999-3006P
    [55]曾理江.昆虫运动机理研究及其应用.中国科学基金.2000,4:206-210页
    [56]Wang H, Zeng L, Liu H, et al. Measuring wing kinematics, flight trajectory, and body attitude during forward flight and turning maneuvers in dragonflies. J. Exp. Biol.2003,206:745-757P
    [57]Ellingtin C P, Venden Berg C. Leading-edge vortices in insect flight. Neture. 1996,384:626-630P
    [58]Fry S. N, Sayaman R, Dickinson M. H. The aerodynamics of free-flight maneuvers in drosophila. Science.2003,300:495-498P
    [59]Zhao P. F, Liu C. Y, Yang J. M. A flapping wing experiment for insect flight investigation.2nd Int'1 Symp. Aqua Bio-Mechanisms, Honolulu, Hawaii, Sept.14-17,2003
    [60]赵攀峰,刘春阳,杨基明.一种扑翼运动的模型实验及流场测量方法.实验力学,2004,19(4):408-414页
    [61]Alexandra. Techet, Franzs. Hover, Michaels Triantadyllou. Separation and turbulence control in biomimetic floes. Flow Turbulence and Combustion. 2003,71:105-118P
    [62]J.M.Anderson,P.Kerrebrock. The vorticity control unmanned undersea vehicle performance results.Papers of 11th International Symposium on UUS Technology.Autonomous Undersea Systems Institute.1999:360-369P
    [63]K.Hirata. Development of experimental fish robot. http://www.nmri.go.jp/eng /khirata/list/fish/isme_fish.pdf.
    [64]梁建宏,王田苗,魏洪兴,陶伟.水下仿生机器鱼的研究进展Ⅱ—小型实验机器鱼的研制.机器人.2002,24(3):234-238页
    [65]王田苗,梁建宏.基于理想推进器理论的尾鳍推力与效率估算.机械工程学报.2005,41(8):18-23页
    [66]文力,梁建宏,王田苗,宋永生.基于续航能力的仿生航行器设计与实验.北京航空航天大学学报.2008,34(3):340-343页
    [67]苏玉民,黄胜,庞永杰,徐玉如,吴强.仿鱼尾潜器推进系统的水动力分析.海洋工程.2002,20(2):54-59页
    [68]Kato.N,Ando.Y,Shiqetomi.T. Precision maneuvering of underwater robot by mechanical pectoral fins. Proceedings of the 2004 International Symposium on Underwater Technology, IEEE,2004:303-310P
    [69]Kato N. Control performance in the horizontal plane of a fish robot with mechanical pectoral fins. IEEE Journal of Oceanic Engineering, 2000, 25(1):121-129P
    [70]E.G.Drucker,G.V.Lauder. Wake dynamics and fluid forces of turning maneuvers in sunfish. J. Experimental Biology.2001,204:431-442P
    [71]Singh.S,Mani.S. Control of oscillating foil for propulsion of biorobotic autonomous underwater vehicle(AUV).Applied Bionics and Biomechanics 2005,12(1):117-123P
    [72]陈宏,竺长安,尹协振.机械胸鳍式仿生水下机器人的动力学特性研究.机械设计.2006,23(10):24-27页
    [73]苏玉民,曹庆明,赖伟成.仿胸鳍推进系统的水动力分析.哈尔滨工程大学学报.2007,28(7):727-733页
    [74]林信龙,沈林成,谢海斌.单柔性长鳍波动仿生推进器的设计与实现.兵工学报.2008,29(3):364-368页
    [75]林信龙,沈林成,张代兵.仿生波动鳍的实验研究.哈尔滨工程大学学报.2008,29(5):489-492页
    [76]Prahacs C, Sauders A, Smith M, McMordie D, Buehler, M., "Towards legged amphibious mobile robotics", The Inaugural Canadian Design Engineering Network (CDEN) Design Conference, July,2004.
    [77]Christina Georgiades, Simulation of an underwater hexapod robot. Master thesis, McGill University, Montreal, February 2005.
    [78]M Kemp, B Hobson, JH Long Jr. Madeleine:an agile AUV propelled by flexible fins. Proceedings of the 14th International Symposium on Unmanned Untethered Submersible Technology (UUST). Autonomous Undersea Systems Institute, Lee, New Hampshire, USA.2005.
    [79]John H Long Jr, Joseph Schumacher, Nicholas Livingston and Mathieu Kemp, Four flippers or two? Tetragonal swimming with an aquatic robot. Bioinsp. Biomim.2006,1:20-29P
    [80]Stephen Licht, Victor Polidoro, Melissa Flores, Franz S. Hover, Michael S. Triantafyllou. Design and projected performance of a flapping foil AUV. IEEE JOURNAL OF OCEANIC ENGINEERING, VOL.29, NO.3, JULY 2004
    [81]Stephen Hsu, Chris Mailey, Chris Montgomery, Ryan Moody. DUKE&NC STATE UNIVERSITY TEAM:AutonomousUnderwater Vehicle— "Gamera". http://www.auvisi.com/competitions/2001/papers/Duke-NCState.pdf
    [82]Alberico Menozzi, Henry Leinhos. Synthesis and coordination of the motion of multiple flapping foils for control of a biorobotic AUV. IEEE OCEANS 2006-Asia Pacific,2007:1-8P
    [83]孙安,高雪官,吴斌.四足两栖仿生机器龟的研究.机械.2004,31(5):12-16页
    [84]Pornsin-Sisirak.T, Tai Y C. Microbat:a palm-sized electrically powered ornithopter.2001 NASA/JPL Workshop on Biomorphic Robotics, Pasadena, 2000
    [85]Pornsin-Sisirak.T, Lee.S.W. MEMS wing technology for a battery-powered ornithopter.13th IEEE International Conference on Micro Mechanical Systems, Japan.2000
    [86]Young, L.A. Use of vertical lift planetary aerial vehicles for the exploration of mars. http://www.lpi.usra.edu/meetings/robomars/pdf/6227.pdf.2003
    [87]R.Fearing, K.Chiang. Transmission mechanism for a micromechanical flying insect. In Proc. Of the IEEE Int. Conf. on Robotics and Automation. USA 2000:1509-1516P
    [88]J.Yan, R.J.Wood,S.Avadhanula. Towards flapping wing control for a micromechanical flying insect. In Proc of the IEEE Int. Conf on Robotics and Automation. South Korea.2004:3901-3908P
    [89]Dickinson.M.H. Wing rotation and the aerodynamic basis of insect flight. Science.1999,284:1954-1960P
    [90]刘岚,方宗德,侯宇,吴立言.微扑翼飞行器的尺律度研究与仿生设计.中国机械工程.2005,16(18):1613-1617页
    [91]张西金,方宗德,张明伟.电磁振动式微扑翼机构设计和动力学研究.机器人.2007,29(6):575-580页
    [92]苏进展,方宗德,刘岚.微扑翼飞行器总体设计及实验,光学精密工程.2008,16(4):656-661页
    [93]刘岚.微型扑翼飞行器的仿生翼设计技术研究.西北工业大学博士学位论文.2007
    [94]曾锐,昂海松.仿鸟复合振动的扑翼气动分析.南京航空航天大学学报.2003,35(1):6-12页
    [95]曾锐,昂海松,刘国涛,刘良钢.柔性扑翼的模型建立及其功率研究.中山大学学报(自然科学报),2004,43(3):28-31页
    [96]曾锐.仿鸟微型扑翼飞行器的气动特性研究.南京航空航天大学博士学位论文.2004
    [97]王姝歆,陈国平.仿生扑翼飞行机器人翅型的研制与实验研究.实验力学,2006,21(3):315-321页
    [98]王姝歆,周建华,颜景平.微型仿生扑翼飞行机器人柔性翅的仿生设计与实验研究.实验流体力学.2006,20(1):75-79页
    [99]周建华.微型拍翅式飞行机器人翅运动及控制系统研究.东南大学博士学位论文.2005
    [100]左德参.仿生微型飞行器若干关键问题的研究.上海交通大学博士学位论文.2007
    [101]童秉纲.关于生物运动力学的研究.空气动力学前沿研究论文集.2003:48-54页
    [102]李世明.运动生物力学理论与方法.科学出版社,2006:72-73页
    [103]Steven N.Fry, Rosalyn Sayaman. The aerodynamics of free-flight maneuvers in drosophila. Science 300:495-498P
    [104]Bao Lin, Hu Jinsong, Tong binggang. Viscoelastic constitutive model related to deformation of insect wing under loading in flapping motion. Applied Mathematics and Mechanics.2006,27(6):741-748P
    [105]童秉纲.鱼类波状游动的推进机制.力学与实践.2000,22(3):69-74页
    [106]胡文蓉,童秉纲.鳕鱼单向自由游动的数值模拟.第十二届全国计算流体力学会议论文集.西安.2004:587-592页
    [107]Triantafyllou.M.S, Yue K P. Hydrodynamics of fishlike swimming. Fluid Mech.2000,32:33-53P
    [108]Cheng P, Hu J S, Xu B Q. The measurement of the flight gesture and the wings deformation of dragonfly in free flight. Pro of SPIE.2005:879-885P
    [109]Jia L B, Li F, Yin X Y. Coupling modes between two flapping filaments. Fluit Mech.2007,581:199-220P
    [110]S Sunada, C P Ellington. A new method for explaining the generation of aerodynamic forces in flapping flight. Mathematical methods in the applied sciences.2001,24:1377-1386P
    [111]Lewin G C, Haj Hariri. Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow. Journal of Fluid Mechanics.2003,492: 339-362P
    [112]Wang Z J, Birch J M, Dickinson M H. Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. Journal of Experimental Biology.2004,207:449-460P
    [113]郭巧.现代机器人学.北京理工大学出版社,1999:4-10页
    [114]余亮,马晖扬.昆虫拍翼方式的非定常流动物理再探讨.力学学报,2005,37(3):257-265页
    [115]朱仁庆,杨松林,杨大明.实验流体力学.国防工业出版社,2005:13-14页,104页
    [116]蒋新松,封锡盛,王棣棠.水下机器人.辽宁科学技术出版社,2000:258页
    [117]K.D. Jones, M.F.Platzer. Numerical computation of flapping-wing propulsion and power extraction. AIAA-97-0826
    [118]Jones K. D, Center K. B. Wake structures behind plunging airfoils:a comparision of numberical and experimental results. AIAA-96-0078
    [119]Alexander R.M. Principles of animal locomotion. Princeton University Press, 2003
    [120]J.M.Anderson, K.Streitlien. Oscillatingfoils of high propulsive efficiency. Fluid Mech.1998,360:41-72P
    [121]Triantafullou G.S. Optimal thrust development in oscilating foils with application to fish propulsion. Fluids Struct,1993(7):205-224P
    [122]Taylor G. K. Flying and swimming animals cruise at a strouhal number tuned for high power efficiency. Nature,2003(425):707-711P
    [123]Dickinson M H. The wake dynamics and flight forces of the fruit fly drosophila melanogaster. The Journal of Experimental Biology,1996,199: 2085-2104P
    [124]Sane S P, Dickinson M H. The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. The Journal of Experimental Biology,2002,205:1087-1096P
    [125]Sane S P, Dickinson M H. The control of flight force by a flapping wing: lift and drag production. The Journal of Experimental Biology, 2001,204: 2607-2626P
    [126]SRI. Artificial muscle transducers.URL:http://www.erg.sri.com/ automation /actuators, html
    [127]Fossen T I. Guidance and control of ocean vehicles. John Wiley, New York, 1994
    [128]Johnson C. Depth and yaw control of an unmanned underwater vehicle using neural network. M.Phil.thesis, University of Plymouth,1995
    [129]S.Heathcote, D.Martin, and I.Gursul. Flexible flapping wing propulsion at zero freestream velocity.33rd AIAA Fluid Dynamics Conference and Exhibit, 2003-3446
    [130]Wootton R J. The mechanical design of insect wings. Scientific American. 1990,263(5):114-120P
    [131]严辉,谢进,陈永.基于数学形态学的8字形连杆曲线特征的研究.机械科学与技术.2008,27(2):153-156页
    [132]Deeks A J, Chen L. Potential flow around obstracles using the scald boundary finite element method. International for Numerical Methods in Fluids.2003,41:721-741P
    [133]曹凤帅,滕斌.应用比例边界有限元法求解多种二维浮体水动力特性.海洋工程.2008,26(1):102-107页
    [134]张晓庆,王志东,张振山.二维摆动水翼仿生推进水动力性能研究.水动力学研究与进展.2006,21(5):632-639页
    [135]杨亮,苏玉民.粘性流场中摆动尾鳍的水动力性能分析.哈尔滨工程大学学报.2007,28(10):1073-1078页
    [136]Lu X Y, Yang J M. Propulsive performance and vortex shedding of a foil in flapping flight. Acta Mechanic.2003,165:189-206P
    [137]王肇,宋红军,尹协振.二维机翼非定常运动的涡流场显示—沉浮运动.流体力学实验与测量.2004,18(2):71-76页
    [138]王肇,宋红军,尹协振.二维机翼非定常运动的涡流场显示--2俯仰运动和沉浮/俯仰联合运动.流体力学实验与测量.2004,18(4):38-42页
    [139]张廷芳.计算流体力学.第二版.大连理工大学出版社.2007年:16-161页
    [140]阎超.计算流体力学方法及应用.北京航空航天大学出版社.2006年:10-13页
    [141]王福军.计算流体动力学分析-CFD软件原理与应用.清华大学出版社.2004:85-89页,112-115页
    [142]张铭钧.水下机器人.海洋出版社.2000:64-65页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700