用户名: 密码: 验证码:
鄂尔多斯盆地上古生界盒8、山1段物源与沉积相及其对优质天然气储层的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首次对鄂尔多斯盆地上古生界二叠系下石盒子组盒8与山1段砂岩碎屑锆石开展了LA-ICPMS微区原位U-Pb同位素定年与物源示踪研究,准确厘定了盒8与山1段沉积期的物源区、对应不同峰期年龄的源区母岩时代与母岩性质。利用取芯井岩心相标志,结合测井相研究,建立了盒8与山1段的沉积体系与沉积相模式,研究了各种沉积微相在纵向上与平面上的展布特征。通过岩心观察、铸体薄片鉴定、X-射线衍射分析、粒度分析、阴极发光、扫描电镜、物性分析与毛细管压力测试、包裹体测温等分析测试手段,对盒8、山1段砂岩储层的岩石学特征、孔隙类型及其组合、孔隙喉道及其配置等孔隙结构微观特征及其在纵向上与平面上的分布规律进行了精细研究。探讨了源区母岩性质、沉积相与水动力条件、成岩作用等对形成优质储层的影响。
     研究结果显示,鄂尔多斯盆地山1与盒8地层沉积期的物源主要自北部阴山地块基底岩系中早元古代晚期(2300Ma~1800Ma)孔兹岩带和早元古代早期(2300Ma~2600Ma)TTG片麻岩;其次为阴山地块泥盆纪-石炭纪(300-400Ma)的花岗岩及火山岩;鄂尔多斯盆地东部物源中有一部分来自阴山地块东北部太古代古老变质岩系。
     盒8及山1段储层砂岩的类型、骨架矿物成分与重矿物组合及其平面分布规律主要受源区母岩地层时代与母岩性质的控制,也是造成储层非均质性的内因。物源方向、母岩地层与母岩性质、沉积条件同时控制了沉积相带与砂体的空间展布特征。山1沉积期,研究区以曲流河三角洲平原亚相沉积环境为主,南部为曲流河三角洲前缘亚相沉积环境。垂向剖面上分流河道二元结构沉积同等发育,砂体以带状分布为主,局部成连片状分布。盒8沉积期,北部蚀源区物源供给更充足,水动力条件更强,形成北部为冲积平原、其余地区为交织状分流河道为特征的浅水辫状河控三角洲平原亚相沉积。河道的频繁改道致使多期河道彼此叠置形成巨厚砂体,形成盒8特有的连片状砂质与含砾砂质沉积。沉积相与水动力条件不仅控制了砂体展布特征,同时影响了砂岩的结构成熟度,并由此决定了砂岩的原始孔隙特征。
     不同的砂岩类型其成岩作用的路径及成岩产物不同,致使各砂岩类型中的胶结物成分及其产状、孔隙类型及其发育程度、孔喉组合与微观孔隙结构特征存在一定差异,直接导致各砂岩类型不同的储集性能与储层的非均质性。研究区以石英砂岩的储集性能最好,岩屑砂岩的物性较差,岩屑石英砂岩的物性介于两者之间。
     本研究不仅解决了鄂尔多斯盆地上古生界源区与母岩时代问题,而且,对于深入理解鄂尔多斯盆地北部物源区特征、沉积特征与构造演化,预测上古生界天然气有利勘探期及促进鄂尔多斯盆地天然气资源的勘探与开发均具有重要的理论意义和实际意义。
It is the first time to construct age spectrum of detrital zircons in the He 8 and Shan 1 Group of the Low Permian, Upper Paleozoic in Ordos basin, and research on chronology and characteristics of parent rocks in provenance tracing, using techniques of LA-ICPMS in situ U-Pb isotopic dating and trace element analysis of detrital zircons, accompanied with comparative study on petrology of skeleton and heavy minerals and their assemblages in the sandstones, reconstruction via magnetic fabric paleomagnetic original orientation. The depositional system and sedimentary facies models for the He 8 and Shan 1 Group are constructed, temporal and spatial distribution of depositional microfacies are investigated in this paper, base upon solid research on facies indicators from cores, study on well log facies accompanied by regional depositional background. Characteristics of petrology, types of pores and their assemblage, size of pore and throat and their coordination relationship, as well as the horizontal and vertical distribution of these pore structure micro features, based on observation of drilling cores, identification of thin-sections, X-ray diffraction (XRD)of clay minerals, cathodoluminescence image and electron scan micrpscope (ESM) analysis, sandstone grain, porosity, permeability and capillary pressure measurement of the sandstones, homogenization temperature of inclusions in authigenic cements. Impact of parent rock characteristics in provenence, depositional facies and hydrodynamic conditions and diagenesis on formation and development of excellent reservoir is also discussed in this study.
     Research result indicates that the Early Proterozoic Khondalite (2300Ma-1800Ma) zone and TTG gneisses (2300Ma-2600Ma) in the Yingshan Block located in north of the Ordos basin was the major provenence, and subordinate ones came from the Devinian-Carboniferous (300Ma-400Ma) granites and volcanic rocks. Part of the sedimentary sources in the eastern Ordos may derived from the Archean old metamorphic rock series in the northeastern Yingshan Block.
     Types of sandstones, skeleton and heavy minerals and their horizontal distribution of He 8 and Shan 1 group are controlled by chronology and stratigraphy, and characteristics of parent rocks, and the latter also resulted in heterogeneity of reservoir internally. Direction of sedimentary sources, stratigraphy and characteristics of parent rocks, depositional condition controlled the spatial distribution of sedimentary facies and sandbodies. Meandering deltaic plain sedimentary environment was domineering in the study area with the deltaic front in the southern part during the Shan 1 period. "Two-element structure" of the distributary channel sediment developed equally in vertical section. Horizontal distribution of zonal sand bodies dominated and sheet sand bodies subordinated occurred. While during the He 8 period, richer sources from the north provenence and more intense hydrodynamic condition compared with the Shan 1 phase resulted in alluvial plain in the north part, and shallow-water braided deltaic plain environment in vast region of study area, which was characterized by multiple network of distributary channels.Distributary channel course's frequent. changes resulted in multi-period channels overlapped, thus joint-sheet sandbodis horizontally and very thick sand body vertically occurred. Depositional facies and hydrodynamic condition controlled distribution of the sand bodies, influenced the structural maturity of sandstones, thus lead to the primary pore features of sandstones.
     Different sandstone types contributed to different diagenetic paths and various authigenic products, thus resulted in deviation in cements and their occurrences, pore types and their development, pore-throat assembledges and different mico pore structures, and this in turn induced heterogeneity and various reservoir quality. The excellent reservoir for natural gas is quartzarenite with litharenite poor ones, quality of sublitharenite is between the former and the latter.
     This study may not only answer problem of Upper Paleozoic provenance and parent chronology of the Ordos basin, but is very important theatrically and practically in a thorough exploration in characteristics of provenance in the northern part and deposition and tectonic evolution of the Ordos basin, and predict prospecting natural-bearing area and promote exploration and development for hydrocarbon resources in the Ordos basin.
引文
[1]Ajdanlijsky, G. Paleopedogenic occurrences in the Petrohan Terrigenous Group of the Berkovitza Unit, NW Bulgaria. GSB Geol. Conf.,11-13 October 2002. In Sofia, pp.315-317
    [2]Amelin Y, Lee D G, Halliday A N, et al. Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geocheim. Cosmochim. Acta,2000,64:4205-4225
    [3]Amelin Y, Lee D G, Halliday A N, et al. Nature of the Earth's earliest crust from hsfnium isotopes in single detrital zircons. Nature,1999:252-255
    [4]Andersen T. Detrtal zircons as tracer of sedimentary provenance:limiting conditions from statistics and numerical simulation [J]. Chemical Geology,2005,216:249-276
    [5]Axel G, Armin Z. Combined U-Pb and Hf isotope LA-(MS-)ICP-MS analyses of detrital zircons: comparision with SHRIMP and new constrains for the provenance and age of an Armorican metasediment in Central Germany. Earth and Planetary Science Letters,2006,249:47-61
    [6]Bai J, Dai F Y. Archean crust of China. In:Ma X Y, Bai J, eds.1998. Precambrian Crust Evolution of China. Beijing:Geological Publishing House,115-86
    [7]Belousova E A, Griffin W L, Reilly S, et al. Igneous zircon:trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol.2002,143:602-622
    [8]Bodet F, Scharer U. Evolution of the SE-Asian continent from U-Pb and Hf isotopes in single grains of zircon and Baddeleyite from large rivers. Geochim. Cosmochim. Acta,2000,64:2067-2091
    [9]Condie Y, Beyer E, Belousova E, et al. U-Pb isotopic ages and Hf isotopic composition of single zircons:The search for Juvenile Precambrian continental crust. Precambrian Res.,2005,139:42-100
    [10]Cullers R L, Basu A, Suttner L J. Geochemical signature of provenance in sand-mixed material in soils and stream sediments near the Tobucco Root Botholith, Montana, USA [J]. Chem. Geol,1988, 70:335-348
    [11]Davis D W, Williams I S, Rrough T E. Historical development of zircon geochronology [J]. Reviews in Mineralogy and Geochemistry,2003,53:145-173
    [12]Dickinson W R, Beard L S, Brakenridge J L, et al. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol. Soc. America Bull,1983,94:222-235
    [13]Dickinson W. R. Interpreting provenance relations from detrital modes of andstones. In:Zuffa G G (ed.), Provenance of Arenites. Dordrecht:D. Reidel, MATO-ASI Series 148:333-361,1985
    [14]Eynatten H, Gaupp R. Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: constrains from framework petrography, heavy mineral analysis and mineral chemistry [J]. Sedimentary Geology,1999,124:81-111
    [15]Fagel N. et al. Sources of Labrador Sea sediments since the last glacial maximum referred from Nd-Pb isotope [J]. Geochimica et Cosmochimica Acta,2002,66(14):2569-2581
    [16]Farry, J. M., and Watson, E. B. New thermodynamic model and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers:Contrib. Mineral. Petrol.,,2007, DOI 10.1007/s00410-007-0201-0
    [17]Fedo C M, Sircombe KN, Rainbird R H. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry,2003,53:277-298
    [18]Fonneland H C, Lien T, Martinsen O J, et al. Detrital zircon ages:a key to understanding the depositional of deep marine sandstones in the Norwegian Sea. Sedimentary Geology,2004,164: 147-159
    [19]Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton. Nature,2004,432:892-897
    [20]Griffin W L, Belousova E A, Shee S R, et al. Archean crustal evolution in the northern Yilgarm Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Res.,2004,131:231-282
    [21]Guoneng Chen. Geochemical field of elements and its geological implications [J]. Journal of Geosciences of China,1999,1(1):1-7
    [22]H.GReading主编,周明鉴,陈昌明,张疆,等译.沉积环境和相.北京:科学出版社,1991:20-79;127-178
    [23]Hanchar J M, Hoskin P W. Zircon reviews in mineralogy and geochemistry. Mineralogical Society and Geochemical Society,2003:53
    [24]Haughton P. D. W. Developments in Sedimentary Provenance Studies. London:Oxford University Press,1991
    [25]Hawkesworth C J, Kemp AI S. Evolution of the continental crust. Nature,2006a,443:811-817
    [26]Hawkesworth C J, Kemp A I S. Using hafnium and Oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology,2006b,226:144-162
    [27]Horton B K, Hassanzadeh J, Stickli D F., et al. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran:Implications for chronolstratigraphiy and collisional tectonics [J]. Tectonophysics,2008,10:1010-1016
    [28]Hoskin P W O, Ireland T R. Rare earth element chemistry of zircon and its use as a provonance indicator. Geology,2000,28:627-630
    [29]Innecent C. et al. Sm-Nd isotope systematics in deep sea sediments:clay size versus coarser fractions. Marine Geology,2000,168:79-87
    [30]Ireland T R, Williams I S. Consideration in zircon geochronology by SIMS [J]. Reviews in Mineralogy and Geochemistry,2003,53:215-227
    [31]Kinny P D, Maas R. Lu-Hf and Sm-Nd isotope systems in zircon [J]. Reviews in Mineralogy and Geochemistry,2003,53:327-341
    [32]Knusden T L, Griffin W L, Hartz E S, et al. In situ hafnium and lead isotope analyses of detrital zircons from the Devoinian sedimentary basins of NE Greenland:a record of repeated crustal reworking. Contrib. Mineral. Petrol.2001,141:83-94
    [33]Kosler J, Sylvester P J. Present trends and the future of zircon in geochronology:Laser Ablation ICPMS [J]. Reviews in Mineralogy and Geochemistry,2003,53:243-275
    [34]Lei Shao, et al. Sandstone petrology and geochemistry of the Turpan basin (NW China):implications for a tectonic evolution of a continental basin [J]. Journal of Sedimentary Research,2001,70(1): 37-49
    [35]Ludwig K R. A Geochronological Toolkit for Microsoft Excel-User's Manual for Isoplot 3.00 [J]. Berkeley Geochronology Center Special Publication,2003,4:1-41
    [36]Mapeo R B M, Armstrong R A, Kampunzu A B, et al. A ca 200 Ma hiatus between the Lower and Upper Transvaal Groups of south Afirica:SHRIMP U-Pb detrital zircon evidence from the Segwagwa Group, Botswana:Implications for palaeoproterozoic glaciations. Earth and Planetary Science Letters, 2006,244:113-132
    [37]Mclennan S M, Hemming S, McDaniel M J, et al. Geochemical approaches to sedimentation, provenance and tectonics, in:Jonhanson M J, ed. Processes controlling the composition of clastic sediments [J]. Boulder, Colorado:Geological Society of America Special Paper,1993,284:21-40
    [38]Mclennan S M. Rare earth elements in sedimentary rocks:influence of provenance and sedimentary processes, in:Lipin B R and Mckay G R, eds. Geochemistry and mineralogy of rare earth elements [J]. Reviews in Mineralogy,1989,21:169-200
    [39]Morton A C, Claoue-Lang J C, Hallsworth C R. Zircon age and heavy mineral constraints on provenance of North Sea Carboniferous sandstones. Marine and Petroleum Geology,2001,18: 319-337
    [40]Morton A C, Hallsworth C R. Processes of controlling composition of heavy mineral assemblage in sandstones. Sedimentary Geology,1999,124:3-29.
    [41]Morton A C, Hallsworth C R. Processes of controlling composition of heavy mineral assemblage in sandstones [J]. Sedimentary Geology,1999,124:3-29
    [42]Morton A. C.& Hallsworth C. R. Identifying provenance specific features of detrital heavy mineral assemblages in sandstones. Sedimentary Geology,1994,90(3):241-256.
    [43]Morton A. C.& Hallsworth C. R. Identifying provenance specific features of detrital heavy mineral assemblages in sandstones. Sedimentary Geology,1994,90(3):241-256
    [44]Nebel-Jacobsen Y, Scherer E E, Munker C, et al. Seperation of U, Pb, Lu and Hf from single zircons for combined U-Pb daring and Hf isotope measurements by TIMS and MS-ICPMS [J]. Chemical Geology,2005,220:105-120
    [45]Nemchin A A, Cawwood P A. Discordance of the U-Pb system in detrital zircons:Implication for provenance studied of the sedimentary rocks [J]. Sedimentary Geology; 2005,182:143-162
    [46]Paul W O, Trevor R. Rare earth element chemistry of zircon and its use as a provenance indicator [J]. Geology,2000,28(7):627-630
    [47]Sarah E P, Kyser T K, Hiatt E E. Provenance of the Proterozoic Thelon Basin, Nuvavut, Canada, from detrital zircon geochronology and detrital quartz oxygen isotopes. Precambrian Resaerch,2004,129: 115-140
    [48]Shan Gao, Roberta L. Rudnick, Hong-Ling Yuan, et al. Recycling lower continental crust in the North China craton. Nature,2004,432:892-897
    [49]Shan Gao, Roberta L. Rudnick, Hong-Ling Yuan, et al. Recycling lower continental crust in the North China craton[J]. Nature,2004,432:892-897
    [50]Sun M, Armstrong R L, Lambert R St J. Petrochemistry and Sr, Pb and Nd isotopic geochemistry of Early Precambrian rocks, Wutaishan and Taihangshan areas, China. Precambrian Res,1992,56:1-31
    [51]Veevers J J, Saeed A, Belousova E A, et al. U-Pb ages and source composition by Hf isotope and trace-element analysis of detrital zircons in Permain sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton. Earth-Science Reviewers,2005,68:245-279
    [52]Wide S A, Valley J W, Peck W H, et al. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr. ago. Natuer,2001,409:175-178
    [53]Xiaoping Xia, Min Sun, Guochun Zhao, et al. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites:constraints on the evolution of the Ordos terrene, Western Block of the Noeth China Craton[J]. Earth and Planetary Science Letters,2006,241:581-593
    [54]Xiaoping Xia, Min Sun, Guochun Zhao, Yan Luo. LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance. Precambrian Research,2006,144:199-212
    [55]Yuan H Y, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by eximer laser-ablation quadrupole and multiple-collector ICP-MS [J]. Chemical Geology,2008,247:100-118
    [56]Zhao G C, Wilde S A, Cawood P A, et al. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics,1999,310:37-53
    [57]Zhiming Li, Jiajun Liu, Ruizhong Hu, et al. Tectonic setting and nature of the provenance of sedimentary rocks in Lanping Mesozoic-Cenozoic Basin:evidence from geochemistry of sandstones [J]. Chinese Journal of Geochemistry,2003,22(4):352-362
    [58]陈斌,徐备.内蒙古苏尼特左旗南两类花岗岩的基本特征和构造意义.岩石学报,1996,12(4):546-561
    [59]陈斌,赵国春,Simon Wild内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义.地质论评,2001,47(4):361-367
    [60]陈全红,李文厚.鄂尔多斯盆地西南部晚古生代早-中期物源分析.现代地质,2006,20(4):628-634
    [61]陈全红.鄂尔多斯盆地上古生界沉积体系及油气富集规律研究[D].西北大学博士论文,2007
    [62]陈衍景,杨忠芳,赵太平等.沉积物微量元素示踪物源区和地壳成分的方法和现状[J].地质地球科学,1996,(3),7-11
    [63]戴金星,陈践发,钟宁宁等.中国大气田及其气源[M].北京:科学出版社,2003
    [64]付金华,段晓文,姜英昆.鄂尔多斯盆地上古生界天然气成藏地质特征及勘探方法[J].中国石油勘探,2001,6(4)):68-75
    [65]付金华,段晓文,席胜利.鄂尔多斯盆地上古生界气藏特征[J].天然气工业,2000,20(6):16-19
    [66]付金华.鄂尔多斯盆地上古生界天然气成藏条件及富集规律[D].西北大学博士学位论文,2004
    [67]耿元生,伍家善.太行-五台地区早前寒武纪基性火山岩特征及其演化.前寒武纪地质专辑,1990,4:167-174
    [68]何自新,费安琦,王同和.鄂尔多斯盆地演化与油气[M].北京:石油工业出版社,2003
    [69]何自新,费安琦,王同和.鄂尔多斯盆地演化与油气[M].北京:石油工业出版社,2003
    [70]候洪斌,牟泽辉,朱宏权.鄂尔多斯盆地北部上古生界天然气成藏条件与勘探方向[M].北京:石油工业出版社,2004,126-128
    [71]贾炳文,武永强.内蒙古大青山晚古生代煤系中火山事件层的物质来源及地层意义[J].华北地质矿产杂志,1995,10(2):203-213
    [72]金巍,李树勋,刘喜山.内蒙大青山地区早前寒武纪高级变质岩系特征和变质动力学.岩石学报,1991,7(4):27-35
    [73]李任伟,万渝生,陈振宇,等.根据碎屑锆石SHRIMP U-Pb测年恢复早侏罗世大别造山带源区特征.中国科学(D辑),2004,34(4):320-328
    [74]李献华,梁细荣,韦刚健,等.锆石Hf同位素组成的LAM-MC-ICPMS的精确测定[J].地球化学,2003,32(1):86-90
    [75]梁细荣,李献华,刘永康,等.激光探针等离子体质谱法(LAM-ICPMS)用于年轻锆石U-Pb定年[J].地球化学,2000,29(1):1-5
    [76]刘飞,陈岳龙,苏本勋,兰中伍,蒋丽婷.松潘-甘孜地区三叠系碎屑沉积岩地球化学特征及其锆石年龄研究.地球学报,2006,27(4):289-296
    [77]刘锐娥,黄月明,卫孝峰,等.鄂尔多斯盆地北部晚古生代物源区分析及其地质意义[J].矿物岩石,2003,3(3):82-86
    [78]刘锐娥,卫孝峰,王亚丽,等.泥质岩稀土元素地球化学特征在物源分析中的意义—以鄂尔多斯盆地上古生界为例[J].天然气地球科学,2005,16(6):788-791
    [79]刘锐娥.鄂尔多斯盆地北部上古生界碎屑岩储层形成机理及主控因素研究[D].西北大学博士论 文,2004
    [80]刘少峰,柯爱蓉,吴丽云,等.鄂尔多斯西南缘前陆盆地沉积物物源分析及其构造意义,沉积学报,1997,15(1):156-160
    [81]刘小洪.鄂尔多斯盆地上古生界砂岩储层的成岩作用研究与孔隙成岩演化分析.西北大学博士论文,2008
    [82]罗静兰,刘小洪,林潼,张三,李博.成岩作用与油气侵位对鄂尔多斯盆地延长组砂岩储层物性的影响[J].地质学报,2006,80(5):664-673
    [83]罗静兰,史成恩,李博,等.鄂尔多斯盆地周缘及西峰地区延长组长8、长6沉积物源-来自岩石地球化学的证据[J].中国科学D辑:地球科学,2007,37(增刊):62-72
    [84]罗静兰,张成立.乌审召地区盒8、山1段优质储层控制因素研究[R].长庆油田分公司勘探开发研究院/西北大学,2007
    [85]彭澎,翟明国,2002.华北陆块前寒武纪两次重大地质事件的特征和性质,地球科学进展,17(6):818-825
    [86]邵济安.中朝板块北缘中段地壳演化.北京大学出版社,1991,11-91
    [87]邵磊,StatteggerK,李文厚.从砂岩地球化学探讨盆地构造背景.科学通报,1998,43(9):985-88
    [88]邵磊,刘志伟,朱伟林.陆源碎屑岩地球化学在盆地分析中的应用.地学前缘,2000,7(9):297-304
    [89]陶继雄,许立权.内蒙古中部召河北侧片麻岩的锆石U-Pb年龄.内蒙古地质,2002,(3):5-9
    [90]汪正江,陈洪德,张锦泉,等.物源分析的研究与展望[J].沉积与特提斯地质,2000,20(4):104-110
    [91]汪正江,张锦权,陈洪德等.鄂尔多斯盆地晚古生代陆源碎屑沉积源区分析.成都理工学院学报,2001,28(1):7-12
    [92]王惠初,袁桂邦,辛后田.内蒙古固阳村空山地区麻粒岩的锆石U-Pb年龄及其对年龄解释的启示.前寒武纪研究进展,2001,24(1):28-34
    [93]王辑,陆松年,李惠民,等.内蒙古中部变质岩同位素年代构造格架.天津地质矿产研究所所刊,1995,29:1-76.
    [94]吴昌华,李惠民,钟长汀,等.内蒙古黄土窑孔兹岩系的锆石与金红石年龄研究.地质论评,1998,44(6):618-626
    [95]吴昌华,孙敏,李惠民,赵国春,夏小平.乌拉山-集宁孔兹岩锆石激光探针等离子质谱(LA-ICP-MS)年龄,岩石学报,2006,22(11):2639-2654
    [96]吴福元,李献华,郑永飞,等.Lu-Hf同位素体系及其岩石学应用.岩石学报,2007,23(2):185-220
    [97]吴世敏,陈汉宗等.沉积物物源分析的现状[J].海洋科学.1999,(2),35-37
    [98]伍家善,耿元生,沈其韩,等.1998.中朝古大陆地质特征及构造演化.北京:地质出版社,1-212
    [99]谢静,吴富元,丁仲礼.浑善达克沙地的碎屑锆石年龄和Hf同位素组成及其源区意义.岩石学报,2007,23(2):523-528
    [100]闫义,林舸,等.判断陆源碎屑沉积物对源区构造背景的指示意义.地球科学进展,2002,17(1):85-90
    [101]杨华,席胜利,魏新善,等.苏里格地区天然气勘探潜力分析[J].天然气工业,2006,26(12):45-48
    [102]杨俊杰,李克勤,张东生,等.长庆油田,中国石油地质志(卷十二)[M].北京:石油工业出版社,1992:62-78
    [103]杨俊杰,裴锡古主编.中国天然气地质学(卷四),鄂尔多斯盆地[M].北京:石油工业出版社,1996
    [104]杨守业,李从先.REE示踪沉积物物源研究进展[J].地球科学进展,1999,14(2):164-167
    [105]张福礼等著.鄂尔多斯盆地天然气地质[M].地质出版社,1994
    [106]张金亮,常象春.深盆气地质理论及应用[M].地质出版社,2002
    [107]张玉清,贾和义,张志祥.内蒙古中部大青山北西乌兰不浪紫苏斜长麻粒岩锆石U-Pb年龄,中国地质,2003,30(4):394-399
    [108]张玉清,刘俊杰,2003.内蒙古大青山北前壕适应闪长岩锆石U-Pb年龄及地质意义,华南地质与矿产,4:22-27
    [109]赵国春,孙敏,Wilde S A.华北克拉通基地构造单元特征及早元古代拼合,中国科学,2002,32(7):538-549
    [110]赵红格,刘池洋.物源分析方法及研究进展[M].沉积学报.2003,21(3):409-415
    [111]赵文智,汪泽成,陈孟晋,等.鄂尔多斯盆地上古生界天然气优质储层形成机理探讨[J].地质学报,2005,79(6):833
    [112]钟玉芳,马昌前,佘振兵.锆石地球化学特征及地质应用研究综述.地质科技情报,2006,25(1):27-40
    [113]周安朝,贾炳文,马美玲,等.华北板块北缘晚古生代火山事件沉积的全序列及其主要特征[J].地质论评,2001,47(2):175-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700