用户名: 密码: 验证码:
二级逆流吸附—微滤工艺去除模拟废水中铯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日本福岛地震引发的核电站放射性物质泄漏引起了人们的广泛关注。在这些放射性物质中,铯是半衰期较长的高释热裂变产物,其存在对环境造成长期威胁。本文利用亚铁氰化铜作为吸附剂,采用微滤膜进行固液分离,开发出累积二级逆流吸附-微滤工艺去除模拟废水中的铯,获得了较高的去污因数和浓缩倍数,为应对核突发事件提供了技术支撑。
     试验制备出分子式为Cu_2Fe(CN)_6·7H_2O的亚铁氰化铜,其对铯的吸附过程符合Freundlich吸附等温式和拟二级吸附动力学模型,离子交换是主要的作用机理。当溶液的初始铯浓度约为100μg/L,pH值在2.6~10.9范围内时,铯的分配系数大于2.94×10~6mL/g。溶液中与铯共存的K~+离子和Na~+离子的浓度分别低于20mg/L和1000mg/L时,不影响铯的去除。亚铁氰化铜吸附铯以后在水溶液中不解吸。升高溶液温度有利于铯的去除。
     使用常规吸附-微滤工艺处理含铯废水,随着运行时间的增加,出水铯浓度呈下降的趋势。当亚铁氰化铜的投加量为20~80mg/L时,得到的平均去污因数为287~1349。由于离子交换作用,出水中铜的浓度有所升高,但是其浓度以及可能被引入的氰化物浓度均满足国家《生活饮用水卫生标准》(GB5749-2006)要求。
     针对亚铁氰化铜吸附水中的铯,开发出二级逆流吸附-微滤工艺,并建立了数学模型;采用该模型可较准确地预测出水中的铯浓度,并在烧杯试验以及小试试验中进行了验证。当水中初始铯浓度约为100μg/L,亚铁氰化铜的投加量为40mg/L,稀释因子分别为0.7和0.4时,烧杯试验获得的去污因数分别为615和1123,与模型计算值接近。
     二级逆流吸附-微滤工艺小试试验的验证结果表明,出水铯浓度随运行时间的增加基本不变,在稀释因子分别为0.7和0.4时,得到的去污因数分别为593和964。与常规吸附-微滤工艺相比,在相同的吸附剂投加量下去污因数可提高1~2倍,膜分离器内悬浮固体浓度的实测值接近计算值,膜污染速率小,可获得更大的浓缩倍数。
The leakage of radioactive materials from Fukushima Daiichi Nuclear PowerPlant due to the earthquake in Japan caused the people's extensive concern. Amongthe radioactive nuclides, cesium has high heat fission and a long half-life. Theexistence of cesium becomes a long-term threat to the environment. In this paper,countercurrent two-stage adsorption-microfiltration process was developed for thecesium removal from simulated liquid waste. Copper ferrocyanide and microfiltrationmembrane were used for adsorption and solid-liquid separation, respectively. Thepurpose of this research was to acquire higher decontamination factor andconcentration factor, and to provide technical support in response to the nuclearincident.
     Copper ferrocyanide with the molecular formula of Cu_2Fe(CN)_6·7H_2O wasprepared in this study. The adsorption behavior of cesium on copper ferrocyanidecould be best described by the Freundlich isotherm model and a pseudo-second orderkinetic model. Ion exchange was the main mechanism during the adsorption process.The distribution coefficient was more than2.94×10~6mL/g when the pH of solutionwas between2.6-10.9, and the initial cesium concentration was approximately100μg/L. The existence of K~+and Na~+with the concentration below20mg/L and1000mg/L in the solution did not affect the removal of cesium. Desorption could beignored after the adsorption of cesium on copper ferrocyanide. The highertemperature of solution could help the adsorption process.
     Lab-scale tests with a conventional adsorption-microfiltration process were usedfor the removal of cesium from simulated liquid waste, the concentration of cesium inthe effluent decreased gradually with the operation time, and the meandecontamination factor was between287-1349with the copper ferrocyanide dosagebetween20-80mg/L. Because the ion exchange, the concentration of copper in theeffluent was higher than that in the influent, however, both the concentration ofcopper and the cyanide, which could be introduced into the effluent, met the ChineseStandards for Drinking Water Quality (GB5749-2006).
     Based on the adsorption of cesium on copper ferrocyanide, a countercurrenttwo-stage adsorption-microfiltration process was developed and the corresponding mathematical model was established. The concentration of cesium in the effluentcould be predicted more accurately by the model. A series of jar tests and lab-scaletests were achieved to verify this model. In the jar tests, the decontamination factorsobtained were615and1123when the initial cesium concentration was approximately100μg/L, the dosage of copper ferrocyanide was40mg/L, and the dilution factorswere0.7and0.4, respectively. The experimental values fitted quite well with thevalues calculated by the model.
     The results of lab-scale tests with the countercurrent two-stageadsorption-microfiltration process showed that the effluent cesium concentrationremained stable with operation time, and the decontamination factors obtained were593and964when the dilution factors were0.7and0.4, respectively. Compared withthe conventional adsorption-microfiltration process, the decontamination factorobtained could increase1-2times with the same dosage of adsorbent by using thecountercurrent two-stage adsorption-microfiltration process. The experimental valuesof suspended solid in the membrane separator were close to those of calculated ones.Membrane fouling rate was slower and a higher concentration factor could beacquired in the countercurrent two-stage adsorption-microfiltration process.
引文
[1]刘元方,江林根.放射化学[M].北京:科学出版社,2010.
    [2]陈艳,福岛核电站清理高放射性废水[EB/OL].[2011-04-14].http://epaper.jinghua.cn/html/2011-04/14/content_649726.htm.
    [3] Manolopoulou M., Vagena E., Stoulos S., et al. Radioiodine and radiocesiumin Thessaloniki, Northern Greece due to the Fukushima nuclear accident[J].Journal of Environmental Radioactivity,2011,102(8):796-797.
    [4]周书葵,娄涛,庞朝晖,等.放射性废水处理技术[M].北京:化学工业出版社,2012.
    [5]侯立安.特殊废水处理技术及工程实例[M].北京:化学工业出版社,2003.
    [6]中华人民共和国国家环境保护局.GB9133-1995放射性废物的分类[S].北京:中国标准出版社,1995.
    [7]顾忠茂.核废物处理技术[M].北京:原子能出版社,2009.
    [8] Delmore J E, Snyder D C, Tranter T, et al. Cesium isotope ratios as indicatorsof nuclear power plant operations[J]. Journal of Environmental Radioactivity,2011,102(11):1008-1011.
    [9] Valsala T P, Roy S C, Shah J G., et al. Removal of radioactive caesium fromlow level radioactive waste (LLW) streams using cobalt ferrocyanideimpregnated organic anion exchanger[J]. Journal of Hazardous Materials,2009,166(2-3):1148-1153.
    [10] Murali M S, Raut D R., Prabhu D R, et al. Removal of Cs from simulatedhigh-level waste solutions by extraction using chlorinated cobaltdicarbollide ina mixture of nitrobenzene and xylene[J]. Journal of Radioanalytical andNuclear Chemistry,2012,291(3):611-616.
    [11]王宝贞.放射性废水处理(上册)[M].北京:科学出版社,1979.
    [12]侯立安,徐伟昌,陈向东.放射性废液处置的研究进展[M]//中国科学技术前沿,中国工程院版.第12卷.北京:高等教育出版社.
    [13] Agency I A E, Advances in technologies for the treatment of low andintermediate level radioactive liquid wastes: technical reports series No.370[R]. Vienna: IAEA,1994.
    [14]杨庆,侯立安,王佑君.中低水平放射性废水处理技术研究进展[J].环境科学与管理,2007,32(9):103-107.
    [15] Agency I A E, Treatment of low and intermediate level liquid radioactivewastes: technical reports series No.236[R]. Vienna: IAEA,1984.
    [16] Agency I A E, Handling and processing of radioactive waste from nuclearapplications: technical report series No.402[R]. Vienna: IAEA,2001.
    [17] Agency I A E, Application of membrane technologies for liquid radioactivewaste processing: technical report series No.431[R]. Vienna: IAEA,2004.
    [18]曹式芳.海水淡化技术的发展[J].天津化工,2002(2):6-8.
    [19]徐伟昌.生物技术在核工业中的应用[M].长沙:国防科技大学出版社,2002.
    [20] Dean J A. Lange's Handbook of Chemistry[M].16th ed. New York:McGraw-Hill Professional,2004.
    [21] Mccabe D J. Cesium, potassium, and sodium tetraphenylborate solubility insalt solution: WSRC-TR-96-0384[R]. South Carolina: WestinghouseSavannah River Company,1996.
    [22] Peterson R A, Burgess J O, Walker D D, et al. Decontamination of high-levelwaste using a continuous precipitation process[J]. Separation Science andTechnology,2001,36(5-6):1307-1321.
    [23] Ponder S M, Helkowski R,Mallouk T E. Continuous-flow process for theseparation of cesium from complex waste mixtures[J]. Industrial&Engineering Chemistry Research,2001,40(15):3384-3389.
    [24] Debreuille M F, Hubert N, Moulin J P. Method and device for separatingcaesium strontium and transuranium elements contained in sodium waste[P]:US,6517788B2.2003-02-01.
    [25] Lee E H, Lim J G, Chung D Y, et al. Selective removal of Cs and Re byprecipitation in a Na2CO3-H2O2solution[J]. Journal of Radioanalytical andNuclear Chemistry,2010,284(2):387-395.
    [26] Agency I A E, Application of ion exchange processes for the treatment ofradioactive waste and management of spent ion exchangers: technical reportseries No.408[R]. Vienna: IAEA,2002.
    [27] Borai E H, Harjula R, malinen L, et al. Efficient removal of cesium fromlow-level radioactive liquid waste using natural and impregnated zeoliteminerals[J]. Journal of Hazardous Materials,2009,172(1):416-422.
    [28] El-Kamash A M. Evaluation of zeolite A for the sorptive removal of Cs+andSr2+ions from aqueous solutions using batch and fixed bed columnoperations[J]. Journal of Hazardous Materials,2008,151(2-3):432-445.
    [29] Jiaojiao W, Bing L, Jiali L. Behavior and analysis of cesium adsorption onmontmorillonite mineral[J]. Journal of Environmental Radioactivity,2009,100(10):914-920.
    [30] Tranter T J, Herbst R S, Todd T A, et al. Evaluation of ammoniummolybdophosphate-polyacrylonitrile (AMP-PAN) as a cesium selectivesorbent for the removal of137Cs from acidic nuclear waste solutions[J].Advances in Environmental Research,2002,6(2):107-121.
    [31]孙兆祥,刘晓东.焦磷锑酸锆-磷钼酸铵的制备与交换性能[J].北京师范大学学报(自然科学版),1996,32(1):102-105.
    [32] Yavari R, Huang Y D, Ahmadi S J, et al. Uptake behavior of titaniummolybdophosphate for cesium and strontium[J]. Journal of Radioanalyticaland Nuclear Chemistry,2010,286(1):223-229.
    [33] Shady S A. Selectivity of cesium from fission radionuclides usingresorcinol-formaldehyde and zirconyl-molybdopyrophosphate asion-exchangers[J]. Journal of Hazardous Materials,2009,167(1-3):947-952.
    [34] Park Y, Lee Y C, Shin W S, et al. Removal of cobalt, strontium and cesiumfrom radioactive laundry wastewater by ammoniummolybdophosphate-polyacrylonitrile (AMP-PAN)[J]. Chemical EngineeringJournal,2010,162(2):685-695.
    [35] Vrtoch L, Pipí ka M, Horník M, et al. Sorption of cesium from water solutionson potassium nickel hexacyanoferrate-modified Agaricus bisporus mushroombiomass[J]. Journal of Radioanalytical and Nuclear Chemistry,2011,287(3):853-862.
    [36] Bing L, Jiali L, Jiaojiao W. Removal of radioactive cesium from solutions byzinc ferrocyanide[J]. Nuclear Science and Techniques,2008,19(2):88-92.
    [37] Zhang C P, Gu P., Zhao J, et al. Research on the treatment of liquid wastecontaining cesium by an adsorption-microfiltration process with potassiumzinc hexacyanoferrate[J]. Journal of Hazardous Materials,2009,167(1-3):1057-1062.
    [38] Milyutin V V, Gelis V M, Klindukhov V G. Coprecipitation of microamountsof Cs with ferrocyanides of various metals[J]. Radiochemistry,2004,46(5):479-480.
    [39] Loos-Neskovic C, Ayrault S, Badillo V, et al. Structure of copper-potassiumhexacyanoferrate (II) and sorption mechanisms of cesium[J]. Journal of SolidState Chemistry,2004,177(6):1817-1882.
    [40] Ayrault S, Jimenez B, Garnier E, et al. Sorption mechanisms of cesium onCu2IIFeII(CN)6and Cu3II[FeIII(CN)6]2hexacyanoferrates and their relation tothe crystalline structure[J]. Journal of Solid State Chemistry,1998,141(2):475-485.
    [41] Ayrault S, Loos-Neskovic C, Fedoroff M, et al. Compositions and structures ofcopper hexacyanoferrates(II) and (III): experimental results[J]. Talanta,1995,42(11):1581-1593.
    [42] Avramenko V, Bratskaya S, Zheleznov V, et al. Colloid stable sorbents forcesium removal: preparation and application of latex particles functionalizedwith transition metals ferrocyanides[J]. Journal of Hazardous Materials,2011,186(2-3):1343-1350.
    [43] Anthory R G, Philip C V, Dosch R G. Selective adsorption and ion exchange ofmetal cations and anions with silico-titanates and layered titanates[J]. WasteManagement,1993,13(5-7):503-512.
    [44] Anthony R G, Dosch R G, Gu D, et al. Use of silicotitanates for removingcesium and strontium from defense waste[J]. Industrial&EngineeringChemistry Research,1994,33(11):2702-2705.
    [45] Miller J E, Brown N E. Development and properties of crystallinesilicotitanate (CST) ion exchangers for radioactive waste applications:SAND97-0771[R]. Albuquerque: Sandia National Laboratories,1997.
    [46] Solbra S, Allison N, Waite S, et al. Cesium and strontium ion exchange on theframework titanium silicate M2Ti2O3SiO4·nH2O (M=H,Na)[J]. EnvironmentalScience&Technology,2001,35(3):626-629.
    [47] Mann N R,Todd T. A. Removal of cesium from acidic radioactive tank wasteby using ionsiv IE-911[J]. Separation Science and Technology,2008,39(10):2351-2371.
    [48]张继荣,鲍卫民,宋崇立.水热法合成钛硅酸盐新型无机离子交换剂[J].离子交换与吸附,2000,16(4):318-323.
    [49]于波,陈靖,宋崇立.新型除铯环境材料硅钛酸钠孔道结构化合物(Na4Ti4Si3O10)合成及结构表征[J].无机化学学报,2003,19(2):119-124.
    [50]于波,陈靖,朱建新.高钛硅比微孔钛硅分子筛的水热合成及孔结构分析[J].稀有金属材料与工程,2008,37(增刊2):116-119.
    [51]尉凤珍,方向红.真空蒸发浓缩装置在核放射废水处理中的应用试验[J].工业水处理,2009,29(9):62-65.
    [52]于波,陈靖,朱晓文,等.从酸性高放废液中去除137Cs的研究进展[J].原子能科学技术,2002,36(1):51-57.
    [53] Shuler R G, Bowers C V, Smith J E. The extraction of cesium and strontiumfrom acidic high activity nuclear waste using a purex process compatibleorganic extractant[J]. Solvent Extraction and Ion Exchange,1985,3(5):567-604.
    [54] Sachleben R A, Deng Y, Bailey D R. Ringsize and substituent effects in thesolvent extraction of alkali metal nitrates by crown ethers in1,2-dichloroethane and1-octanol[J]. Solvent Extraction and Ion Exchange,1996,14(6):995-1015.
    [55] Lawrence W, Kurath D. Preliminary survey of separations technologyapplicable to pretreatment of Hanford tank waste: PNL29426[R]. Richland:Pacific Northwest Laboratories,2000.
    [56] Mohapatra P K, Bhattacharyya A,Manchanda V K. Selective separation ofradio-cesium from acidic solutions using supported liquid membranecontaining chlorinated cobalt dicarbollide (CCD) in phenyltrifluoromethylsulphone (PTMS)[J]. Journal of Hazardous Materials,2010,181(1-3):679-685.
    [57] Alfieri C, Dradi E, Pochini A. Synthesis and X-ray crystal and molecularstructure of a novel macrobicyclic ligand-crownedp-t-Buty-calix[4]arene[J].Journal of the Chemical Society, Chemical Communications,1983,19(2):1075-1077.
    [58] Dozol J F, Simon N, Lamare V. A solution for cesium removal fromhigh-salinity acidic or alkaline liquid waste: the crown calix [4] arenes[J].Separation Science and Technology,1999,34(6-7):877-909.
    [59] Bonnesen P V, Delmay L H, Tamare J. Alkaline-side extraction of cesium fromSavannah River tank waste using a calixarene-crown ether extractant:ORNLPTM213704[R]. Tennessee: Oak Ridge National Laboratory,1998.
    [60] Rao S V S, Paul B, Lal K B, et al. Effective removal of cesium and strontiumfrom radioactive wastes using chemical treatment followed by ultrafiltration[J]. Journal of Radioanalytical and Nuclear Chemistry,2000,246(2):413-418.
    [61]侯立安,左莉.纳滤膜分离技术处理放射性污染废水的试验研究[J].给水排水,2004,30(10):47-49.
    [62]白庆中,陈红盛,叶裕才.无机纳滤膜处理低水平放射性废水的试验研究[J].环境科学,2006,27(7):1334-1338.
    [63] Zakrzewska-Trznadel G. Radioactive solutions treatment by hybridcomplexation-UF/NF process[J]. Journal of Membrane Science,2003,225(1-2):25-39.
    [64] Singh S, Thorat V, Kaushik C P. Potential of chromolaena odorata forphytoremediation of137Cs from solution and low level nuclear waste[J].Journal of Hazardous Materials,2008,162(2-3):743-745.
    [65] Chen C,Wang J. Removal of Pb2+, Ag+, Cs+and Sr2+from aqueous solution bybrewery's waste biomass[J]. Journal of Hazardous Materials,2008,151(1):65-70.
    [66] Ngwenya N, Chirwa E M N. Single and binary component sorption of thefission products Sr2+, Cs+and Co2+from aqueous solutions onto sulphatereducing bacteria[J]. Minerals Engineering,2010,23(6):463-470.
    [67] Sinha P K, Amalraj R V, Krishnasamy V. Flocculation studies on freshlyprecipitated copper ferrocyanide for the removal of caesium from radioactiveliquid waste[J]. Waste Management,1993,13(4):341-350.
    [68] Hsu C W, White T L. Development of high-performance liquidchromatographic methods for measuring tetraphenylborate decompositionproducts in radioactive alkaline solutions[J]. Journal of Chromatography A,1998,828(1-2):461-467.
    [69] Johnson J. DOE needs new waste separation technology[J]. Chemical andEngineering News,1999,77(23):8.
    [70]徐世平,张继荣,宋崇立.用无机离子交换法从酸性高放废液中去除铯研究进展[J].辐射防护通讯,2000,20(6):8-12.
    [71] Raut D R, Mohapatra P K, Ansari S A, et al. Evaluation of acalix[4]-bis-crown-6ionophore-based supported liquid membrane system forselective137Cs transport from acidic solutions[J]. Journal of MembraneScience,2008,310(1-2):229-236.
    [72] Haas P A. A review of information on ferrocyanide solids for removal ofcesium from solutions[J]. Separation Science and Technology,1993,28(17-18):2479-2506.
    [73] Nilchi A, Saberi R, Moradi M, et al. Adsorption of cesium on copperhexacyanoferrate-PAN composite ion exchanger from aqueous solution[J].Chemical Engineering Journal,2011,172(1):572-580.
    [74] Lee E F T, Streat M. Sorption of caesium by complex hexacyanoferratesⅤ. Acomparison of some cyanoferrates[J]. Journal of Chemical Technology andBiotechnology,1983,(33A):333-338.
    [75] Lee E F T, Streat M. Sorption of caesium by complex hexacyanoferratesⅢ. Astudy of the sorption properties of potassium copper ferrocyanide[J]. Journalof Chemical Technology and Biotechnology,1983,(33A):80-86.
    [76] Argun M E, Dursun S. A new approach to modification of natural adsorbentfor heavy metal adsorption[J]. Bioresource Technology,2008,99(13):2516-2527.
    [77] Huang J Y, Takizawa S, Fujita K. Pilot-plant study of a high recoverymembrane filtration process for drinking water treatment[J]. Desalination,2000,41(10):77-84.
    [78]黄霞,桂萍,范晓军,等.膜生物反应器废水处理工艺的研究进展[J].环境科学研究,1998,11(1):40-44.
    [79] Crittenden J C, Trussell R R, Hand D W, et al. Water treatment: principles anddesign[M].2nd ed. New Jersey: John Wiley&Sons, Inc.,2005.
    [80]中华人们共和国环境保护部.水和废水监测分析方法[M].第四版.北京:中国环境科学出版社,2002.
    [81] Ho Y S, Chiang C C. Sorption studies of acid dye by mixed sorbents[J].Adsorption,2001,7(2):139-147.
    [82] Sarkar M, Banerjee A, Pramanick P P. Kinetics and mechanism of fluorideremoval using laterite[J]. Industrial&Engineering Chemistry Research,2006,45(17):5920-5927.
    [83] El-Naggar I M, Zakaria E S, Ali I M, et al. Kinetic modeling analysis for theremoval of cesium ions from aqueous solutions using polyanilinetitanotungstate[J]. Arabian Journal of Chemistry,2012,5(1):109-119.
    [84] Ruthven D M, Principles of adsorption and adsorption processes[M]. NewYork: Wiley Interscience Press,1984.
    [85] Aksu Z. Equilibrium and kinetic modelling of cadmium(II) biosorption by C.vulgaris in a batch system: effect of temperature[J]. Separation andPurification Technology,2001,21(3):285-294.
    [86] Chiou M S, Li H Y. Equilibrium and kinetic modeling of adsorption ofreactive dye on crosslinked chitosan beads[J]. Journal of Hazardous Materials,2002,93(2):233-248.
    [87] Argun M E, Dursun S. A new approach to modification of natural adsorbentfor heavy metal adsorption[J]. Bioresource Technology,2008,99(13):2516-2527.
    [88] Ho Y S, McKay G. Pseudo-second order model for sorption processes[J].Process Biochemistry,1999,34(5):451-465.
    [89] Ho Y S, McKay G. The kinetics of sorption of divalent metal ions ontosphagnum moss peat[J]. Water Research,2000,34(3):735-742.
    [90] Kumar K V. Pseudo-second order models for the adsorption of safranin ontoactivated carbon: comparison of linear and non-linear regression methods[J].Journal of Hazardous Materials,2007,142(1-2):564-567.
    [91] Kannan N, Sundaram M M. Kinetics and mechanism of removal of methyleneblue by adsorption on various carbons–a comparative study[J]. Dyes andPigment,2001,51(1):25-40.
    [92] Ho Y S, McKay G. The sorption of lead(Ⅱ) ions on peat[J]. Water Research,1999,33(2):578-584.
    [93] Chang M-Y, Juang R-S. Adsorption of tannic acid, humic acid, and dyes fromwater using the composite of chitosan and activated clay[J]. Journal of Colloidand Interface Science,2004,278(1):18-25.
    [94] Huang Y, Ma X, Liang G, et al. Adsorption behavior of Cr(Ⅵ) onorganic-modified rectorite[J]. Chemical Engineering Journal,2008,138(1-3):187-193.
    [95]秦丽红,张凤宝,张国亮,等. NTS在大孔吸附树脂上的吸附动力学及机理[J].化学工业与工程,2007,24(3):245-248.
    [96]宋应华,朱家文,陈葵,等.大孔树脂对红霉素的吸附动力学研究[J].离子交换与吸附,2007,239(4):349-359.
    [97] Namasivayam C.,Sureshkumar M. V. Removal of chromium(VI) from waterand wastewater using surfactant modified coconut coir pith as a biosorbent[J].Bioresource Technology,2008,99(7):2218-2225.
    [98]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005.
    [99] Langmuir I. The adsorption of gases on plane surfaces of glass, mica andplatinum[J]. Journal of the American Chemical Society,1918,40(9):1361-1403.
    [100] Freundlich H M F. Die adsorption in losungen[J]. Zeitschrift für PhysikalischeChemie,1906,(57):387-470.
    [101] Saberi R, Nilchi A, Garmarodi S R, et al. Adsorption characteristic of137Csfrom aqueous solution using PAN-based sodium titanosilicate composite[J].Journal of Radioanalytical and Nuclear Chemistry,2010,284(2):461-469.
    [102] Metwally E, El-Zakla T, Ayoub R R. Thermodynamics study for the sorptionof134Cs and60Co radionuclides from aqueous solutions[J]. Journal of NuclearRadiochemical Sciences,2008,9(1):1-6.
    [103] Atun G, Kilislioglu A. Adsorption behavior of cesium on montmorillonite-typeclay in the presence of potassium ions[J]. Journal of Radioanalytical andNuclear Chemistry,2003,258(3):605-611.
    [104] Crittenden J C, Sanongraj S, Bulloch J L, et al. Correlation of aqueous-phaseadsorption isotherms[J]. Environmental Science&Technology,1999,33(17):2926-2933.
    [105] Stoeckli F, López-Ramón M V, Moreno-Castilla C. Adsorption of phenoliccompounds from aqueous solutions, by activated carbons, described by theDubinin-Astakhov equation[J]. Langmuir,2001,17(11):3301-3306.
    [106] Helfferich F. Ion exchange[M]. New York: Mc Graw Hill,1962.
    [107] Cortés-Martínez R, Olguín M T, Solache-Ríos M. Cesium sorption byclinoptilolite-rich tuffs in batch and fixed-bed systems[J]. Desalination,2010,258(1-3):164-170.
    [108] Kashi Banerjee G L A, Michele Prevostc, et al. Kinetic and thermodynamicaspects of adsorption of arsenic onto granular ferric hydroxide (GFH)[J].Water Research,2008,42(13):3371-3378.
    [109] Hassan H S, Attallah M F, Yakout S M. Sorption characteristics of aneconomical sorbent material used for removal radioisotopes of cesium andeuropium[J]. Journal of Radioanalytical and Nuclear Chemistry,2010,286(1):17-26.
    [110] Mishra SP, Vijaya. Removal behavior of hydrous managanese oxide andhydrous stannic oxide for Cs(Ι) ions from aqueous solutions[J]. Separationand Purification Technology,2007,54(1):10-17.
    [111] Al-Asheh S, Duvnjak Z. Adsorption of copper and chromium by aspergilluscarbonarius[J]. Biotechnology Progress,1995,11(6):638-642.
    [112] El-Latif M M A, Elkady M F. Equilibrium isotherms for harmful ions sorptionusing nano zirconium vanadate ion exchanger[J]. Desalination,2010,255(1-3):21-43.
    [113] Campbell D O, Lee D D, Dillow T A, Development studies for the treatmentof ORNL low-level liquid waste:ORNL/TM-11798[R]. Oak Ridge: Oak RidgeNational Laboratory,1991.
    [114] Yavari R, Huang Y D, Ahmadi S J, et al. Uptake behavior of titaniummolybdophosphate for cesium and strontium[J]. Journal of Radioanalyticaland Nuclear Chemistry,2010,286(1):223-229.
    [115] Sangvanich T, Sukwarotwat V, Wiacek R J, et al. Selective capture of cesiumand thallium from natural waters and simulated wastes with copperferrocyanide functionalized mesoporous silica[J]. Journal of Hazardous.Materials.,2010,182(1-3):225-231.
    [116] Lin Y, Fryxell G E, Wu H, et al. Selective sorption of cesium usingself-assembled monolayers on mesoporous supports[J]. Environmental Science&Technology,2001,35(19):3962-3966.
    [117] Milonji S, Bispo I, Fedoroff M, et al. Sorption of cesium on copperhexacyanoferrate/polymer/silica composites in batch and dynamicconditions[J]. Journal of Radioanalytical and Nuclear Chemistry,2002,252(3):497-501.
    [118]刘忠洲,续曙光,李锁定.微滤、超滤过程中的膜污染与清洗[J].水处理技术,1997,23(4):187-193.
    [119]吴持恭.水力学[M].第3版.北京:高等教育出版社,2003.
    [120]董秉直,曹达文,管晓涛,等.混凝对膜过滤的影响[J].中国给水排水,2002,18(12):34-36.
    [121] Wendong X, Shankararaman C, Dennis A, et al. Indirect evidence for depositrearrangement during dead-end microfiltration of iron coagulatedsuspensions[J]. Journal of Membrane Science,2004,239(2):227-241.
    [122]桂萍,黄霞,钱易.三种型式膜生物反应器工艺运行特性研究[J].给水排水,1999,25(3):24-27.
    [123] Field R W, Wu D, Howell J A, et al. Critical flux concept for microfiltrationfouling[J]. Journal of Membrane Science,1995,100(3):259-272.
    [124]王海燕.膜技术应用于饮用水处理的试验研究[D].天津:天津大学环境科学与工程学院,2011.
    [125] Tseng R-L, Wu F-C. Analyzing a liquid–solid phase countercurrent two-andthree-stage adsorption process with the Freundlich equation[J]. Journal ofHazardous Materials,2009,162(1):237-248.
    [126] Wu F-C, Tseng R-L. Liquid–solid phase countercurrent multi-stage adsorptionprocess for using the Langmuir equation[J]. Journal of Hazardous Materials,2008,155(3):449-458.
    [127] Zhao C, Gu P, Cui H, et al. Reverse osmosis concentrate treatment via aPAC-MF accumulative countercurrent adsorption process[J]. Water Research,2012,46(1):218-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700