用户名: 密码: 验证码:
戈壁覆盖区深穿透地球化学异常形成机理与找矿方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的干旱荒漠戈壁区,面积广阔,找隐伏矿的潜力巨大,但由于本区气候干旱、沙漠和戈壁广布,一直被认为是地球化学勘查的技术难点区域。本论文以揭示戈壁覆盖区深穿透地球化学异常形成机理为目标,以地球化学、地质学以及地理景观学理论为基础,在了解荒漠戈壁区景观演化的前提下,对覆盖层的结构特征、理化性质、成因等方面开展分析讨论,同时重点通过对成矿元素在覆盖层中空间三维分布特征的了解,并结合地气、同位素、室内实验迁移柱等方面的证据,系统地研究深穿透地球化学异常形成机理,并对适合此类景观的深穿透地球化学找矿方法进行技术改进。主要取得了如下认识和结论:
     1、成矿元素在矿体上方不同深度覆盖层中的异常具有明显的继承关系;在矿体上方覆盖层,成矿元素呈现出顶底层高,中间低的特点;覆盖层底部异常主要集中在构造蚀变带矿体附近及其周边低洼处,异常分布面积较小,而对应的地表异常,异常强度大,分布面积广。
     2、深穿透地球化学异常的形成经历了一系列复杂的过程,从成矿—准平原化过程中元素的侧向分散—元素垂向迁移—元素卸载再到地表元素的侧向分散,并最终形成地表所能观测到的深穿透地球化学异常。准平原化过程使元素侧向迁移至古地形的低洼处;成矿元素通过地气流等方式从矿体向地表垂向迁移,迁移到地表后被地表细粒物质中的粘土等地球化学障所捕获并富集;元素垂向迁移至地表以后又发生二次侧向迁移过程,这个过程使异常得以扩散,形成一个更大面积的异常范围,这是运用低密度深穿透地球化学方法进行区域调查圈定隐伏矿找矿靶区的前提。通过室内地球化学迁移柱的研究,发现绝对浓度高的元素每年可以至少以米的距离迁移,在上百万年的第四纪演化历史中,元素完全有能力迁移几百米的覆盖层到达地表,这为深穿透地球化学技术的使用提供了理论基础。
     3、通过方法技术的不断总结,建议在不同的勘查阶段使用不同的深穿透方法技术。在区域地球化学调查或区域填图阶段建议使用微细粒测量技术。对于矿区化探可以采用微细粒测量技术、活动态提取技术、地气测量技术和电化学测量技术,这些技术各有优缺点,可以起到互补的作用。对覆盖区异常的查证只有通过穿透覆盖层直接取得原岩样品查证异常源,空气动力反循环粉末取样钻探技术是覆盖区化探异常查证的理想选择。
The vast area of China's Gobi desert has a great potential for prospecting concealed ore deposits. This region is technically difficult for geochemical exploration due to dry climate and overburden covers. The objectives of the paper are to reveal mechanism of deep-penetrating geochemical anomalous formation of a concealed gold deposit in Gobi covering areas based on geochemistry, geology and geomorphology, and analysis of the landscape evoiution of Gobi desert, physical and chemical properties of covering regolith, to understand three-dimensional distribution of Au and associated elements in covering regolith by using overburden drilling, to improves the deep-penetrating geochemical methods. The main conclusions are as follows:
     1. The element anomalies in covering regolith layer have the obvious inheritance relationship in different depth over ore body and present contents of elements are higher in the top and bottom layers than those in the middle layer. Anomalies in the bottom of the covering layers are mainly concentrated near the altered zones and its surrounding lowlands. In the top layers, there are corresponding surface anomalies, but anomalous distribution area and concentrations are more than those in the bottom layers.
     2. The study area has experienced a complicated geological and weathering process from the ore formation, to the lateral dispersion under the process of pediplanation, the vertical migration, until to lateral dispersion at regolith surface. The eroded gold mineralization rocks were mechanically transported and deposited in the lowest places. The elements vertically migrate to the soil surface by earthgas extending and are captured by geochemical barrier such as clays in the fine-grained soils. After that the secondary lateral migration at soil surface formed a widely broad range of anomalies, which is the premise of low-density deep-penetrating geochemical methods to delineate regional targets in covered terrains. The laboratory research on geochemical migration finds that some high concentration of elements in the ore can migrate at least several meters every year. This means that at millions-of-years scale of the quaternary evolution history, elements quite have the ability to move hundreds of meters to the earth surface from the depth.
     3. A deep-penetrating geochemical procedure for different exploration stages from regional to local are proposed based on above-mentioned theoretical studies. In regional survey stage, the micro-particle measurement technique can be cost-effective to delineate regional targets. In local stage, combinations application of the micro-particle measurement, selective leaching of mobile forms, earthgas and electrogeochemical methods can be effective for location of ore body targets. Reverse circulation air drilling technology is an ideal choice for evaluating geochemical anomalies pinpointing ore bodies in covered area.
引文
[1]Alekseev S. G., Dukhanin, A.S., Veshev, S. A. and Voroshilov, N.A.. Some aspects of practical use of geoelectrochemical methods of exploration for deep-seated mineralization[J]. J. Geochem. Explor.,1996,56:79-86.
    [2]Antropova, L. V., Goldberg, I. S., Voroshilov, N. A. and Ryss, Yu. S.. New methods of regional exploration for blind mineralization:application in the USSR[J]. J. Geochem. Explor.,1992,43:157-166.
    [3]Cameron, E. M.. Deep-penetrating Geochemistry [M]. CAMIRO-Exploration Division, 1998,117.
    [4]Cameron E M, Hamilton S M, Leybourne M I, et al. Finding deeply-buried deposits using geochemistry [J]. Geochemistry:Exploration, Environment, Analysis.2004,4(1): 7-32.
    [5]Chao T T. Use of partial dissolution techniques in geochemical exploration[J]. J. Geochem. Explor.,1984,20:101-135.
    [6]Clark, J. R., Meier, A. L. and Riddle. Enzyme leaching of surficial geochemical samples for defecting hydromorphic trace-element anomalies associated with precious-metal mineralized bedrock buried beneath glacial overburden in northern Minnesota[J]. In: GOLD'90,1990,189-207.
    [7]Clark, J. R., Yeager, J. R., Rogers, P. and Hoffman, E. L.. Innovative enzyme leach provides cost-effective overburden/bedrock penetration[J]. In:A.G. Gubins (editor), Geophysics and Geochemistry at the Millenium, Proceedings of Exploration 97, 1997,371-374.
    [8]Fursov V Z. Mercury vapor survey:Technique and results [J]. J. Geochem. Explor., 1990,38:145-156.
    [9]Goldberg, I. S., Abramson, G. J., Haslam, C.O. and Los, V. L.. Geoelectrochemical exploration:principles, practices and performance [J]. In:the proceedings of The AusIMM 1997 Annual Conference, Ballarat, Australia,1997.
    [10]Goldberg, I. S., Ivanova, A. V., Ryss, Yu. S., Veikher, A. A., bakhtin, Yu. G., Alekseev, S. G. and Yakovlev, A. F.. Exploration for ore deposits by the CHIM method[J]. ONTIVITR, Leningrad,,1978,75p.
    [11]Gold, T., and Soter, S. The deep earthgas hypothesis [J]. Science America,1980, 242:130-138.
    [12]Govett, G J S, Dunlop, A C and Atherden P R. Electrogeochemical techniques in deeply weathered terrain in Australia[J]. Journal of Geochemical Exploration,1984,21: 311-331.
    [13]Hawkes H E, Webb J S. Geochemistry in Mineral Exploration[M]. New York and Evanton:Harper&Row, Publishers,1962.
    [14]Hawkes H E, Williston S H. Mercury vapor as a guide to lead-zinc-silver deposits[J]. Mining Congress J,1962,48(12):30-32.
    [15]Hamilton S M, Cameron E M, Mclenaghan M B, et al. Redox, pH and SP variation over mineralization in thick glacial overburden, Part Ⅰ:methodologies and field investigation at the Marsh Zone gold property [J]. Exploration, Environment, Analysis,2004,4: 33-34.
    [16]Hamilton S M. Electrochemical mass-transport in overburden:a new model to account for the formation of selective leach geochemical anomalies in glacial terrain[J]. Journal of Geochemical Exploration,1998,63:155-172.
    [17]Kristiansson, K.and Malmqvist, L.. Evidence for no diffusive transport of Rn in the ground and a new physical model for the transport[J]. Geophysics,1982,47(10): 1444-1452.
    [18]Kristiansson, K.and Malmqvist, L.. Trace elements in geogas and their relation to bedrock composition[J]. Geoexploration,1987,24:517-534.
    [19]McCarthy J H Jr, Lambe R N, Dietrich J A. A case history of soil gases as an exploration guide in glaciated terrain-Crandon massive sulfide deposit, Wisconsin[J]. Econ Geol, 1986,81:408-420.
    [20]Mann, A.W., Birrell, R. D., Gay, L. M., Mann, A. T., Perdrix, J. L. and Gardner, K. R. Partial extractions and mobile metal ions [J]. In:K.S. Camuti (Editor), Extended abstracts of the 17th IGES,1995,31-34.
    [21]Mann A W, Birrell R D, Gay L M, Mann A T, Perdrix J L and Gardner K R. Application of the mobile metal ion technique to routine geochemical exploration[J]. In:G. E. M. Hall and G. F. Bonham-Carter(Editors), Selective extractions, J. Geochem. Explor.,1995,61: 87-102.
    [22]Malmqvist, L. and Kristiansson, K.. Experimental evidence for an ascending micro flow of geogas in the ground[J]. Earth and Planetary Science Letters,1984,70:407-416.
    [23]Reinhard W. Leinz and Donald B. Hoover. The Russion CHIM method-electrically-or diffusion-driven collection of ions? [J]. Explore,1993, (79):5-9.
    [24]Smith, D. B., Hoover, D. B., Sanzalone, R. F. Preliminarz studies of the CHIM electrogeochemical method at the Kokomo Mine, Russell Gulch Colorado[J]. J. Geochem. Explor.,1993,46:257-278.
    [25]Shmakin B M. The method of partial extraction of metals in a constant current electrical field for geochemical exploration[J]. J. Geochem. Explor.,1985,23:27-33.
    [26]Sokolov, V., A. Geochemistry of Natural Gas Pub[J]. House Geology and Ore Protection(in Russian),1971.
    [27]Wang Xueqiu, Xie xuejing and Ye shengyong. Concepts for gold exploration based on the abundance and distribution of ultrafine gold[J]. J. Geochem. Explor.,1995,55 (1-3):93-102.
    [28]Wang Xueqiu. Leaching of mobile forms of metals in overburden:development and applications[J]. J. Geochem. Explor.,1998,61:39-55.
    [29]Wang Xueqiu, Cheng Zhizhong, Liu Dawen, Xu Li and Xie Xuejing. Nanoscale metals in earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant ore deposits in overburden terrains[J]. J. Geochem. Explor.,1997, 58(1):63-72.
    [30]Wang X Q, Wen X Q, Ye R, et al. Vertical variations and dispersion of elements in arid desert regolith:a case study from the Jinwozi gold deposit, northwestern China[J]. Geochemistry:Exploration, Environment, Analysis,2007,7:163-171.
    [31]Wang X Q, Chi Q H, Liu H Y, et al. Wide-spaced sampling for delineation of geochemical provinces in desert terrains, northwestern China[J]. Geochemistry: Exploration, Environment, Analysis,2007,7:153-161.
    [32]Xie Xuejing. A decade of regional geochemistry in China-the National Reconnaissance project[J]. Transaction of Mining and Metallurgy, Section B:Applied Earth Science, 100:B57-B65.
    [33]Xie Xuejing, Wang Xueqiu, Xu Li, A.A. Kremenetsky and V.K. Kheifets. Orientation study of strategic deep-penetration geochemical methods in central Kyzykum desert terrain, Uzbekistan[J]. Geochem. Explor.,2000,66:135-143.
    [34]Xie Xuejing. Surficial and superimposed geochemical exploration for giant ore deposits. Clark, A. H(editor), Giant ore deposits Ⅱ. Kingston, Candon,1995:475-485.
    [35]Xie Xuejing, Wang xueqiu. Geochemical exploration for gold:a new approach to an old problem. In:A. W. Rose and P. M. Taufen(editor), Geochemical Exploration, 1989. J. Geochem. Explor,1991,40:25-48.
    [36]Xie xuejin, Yin binchuan. Geochemical patterns from local to global[J]. Geochem. Explor.,1993,47:109-129.
    [37]Zhang R H and Hu S M,2002. A case study of the influx of the upper mantle fluids into the crust[J]. J Volcanology and Geothermal Research,118:319-338.
    [38]A.N.比列尔曼著;陈傅康,王恩涌译.景观地球化学概论[M].北京:地质出版社,1958.
    [39]陈柏林,吴淦国,叶得金,等.甘一新北山金窝子金矿田构造控矿解析[J].地球学报,2003,24(4):305-310.
    [40]陈富文,李华芹,蔡红,等.新疆东部金窝子金矿成因讨论-同位素地质年代学证据[J].地质论评,1999,45(3):247-254.
    [41]寸圭,陈纪明.中国典型矿床[M].北京:地质出版社,1994:16-24.
    [42]曹正正中.金窝子金矿成因分析[J].新疆矿产地质,1990,(1-2):45-50.
    [43]程志中,王学求,刘大文.地球气组分与隐伏岩体的关系初探[J].地质地球化学,2002,30(2):90-94.
    [44]程志中,王学求,胡忠贤,杨兆武.森林沼泽区富含有机质样品中金的存在形式及对分析的影响[J].物探与化探,2004,28(3):206-208.
    [45]杜乐天.地球的五个气圈与氢烃资源[J].铀矿地质,1993,9(5):260-262.
    [46]杜佩轩.新疆北部干旱荒漠区勘查地球化学的方法研究与应用效果[J].第四届勘查地球化学学术讨论会论文选编,中国地质大学出版社,1991,33-39.
    [47]雒利平,冯建忠,傅水兴,等.甘肃金窝子金矿地质地球化学特征[J].有色金属矿产与勘察,1999,8(5):522-525.
    [48]韩吟文,马振东.地球化学[M].北京:地质出版社,2003.
    [49]郝立波,陆继龙,马力.浅覆盖区土壤化学成分与基岩化学成分的关系及其意义——以大兴安岭北部地区为例[J].中国地质,2005,32(3):477-482.
    [50]卡哈尔克尤木.金窝子金矿床构造成矿与找矿前景[J].新疆有色金属,2005,4: 16-17.
    [51]刘炳璋,陈治才,田中保.表生地球化学异常形成机理及异常解释[J].四川地质学报,2007,27(3):215-218.
    [52]刘红艳,王学求.金属活动态提取技术在十红滩铀矿的应用[J].吉林大学学报(地球科学版),2006,36(2):183-186.
    [53]李清,奚小环,等.内蒙古东部半干旱区区域化探方法研究[J].第三届勘查地球化学学术讨论会论文选编,冶金工业出版社,1986,176-192.
    [54]李景春,赵爱林,金成洙,等.北山地区金窝子金矿床成矿系统分析[J].西北地质,2003,36(3):84-96.
    [55]李晓敏,彭晓蕾.元素赋存状态研究对于矿产资源勘探开发之重要意义[J].吉林地质,2001,20(3):46-49.
    [56]刘占元.电地球化学勘查的理论与方法[C].谢学锦,邵跃,王学求主编,走向21世纪矿产勘查地球化学,地质出版社,1999,160-167.
    [57]刘应汉,任天祥,汪明启,等.隐伏矿区地气测量试验及效果[J].有色金属矿产与勘查,1995,4(6):355-360.
    [58]刘应汉,刘京秋,张华,等.纳米微粒物质测量中动态累积法采样技术[J].物探与化探,2008,32(1):61-65.
    [59]刘飞燕,朱志敏,沈冰,陈家彪.元素赋存状态的研究及其在矿产资源综合利用中的意义[J].资源开发与市场,2006,22(6):564-565.
    [60]卢荫庥,王晓玲,白金峰.地球气中金属与活动态金属分析方法研究[C].谢学锦,邵跃,王学求主编,走向21世纪矿产勘查地球化学,地质出版社,1999,143-159.
    [61]马生明,朱立新,周国华,张金炳.高山峡谷区影响土壤测量找矿效果的元素表生活动特性研究[J].地质与勘探,2002,38(5):58-62.
    [62]潘小菲,刘伟.北山金窝子金矿床流体包裹体特征及成矿流体演化[J].岩石学报,2006,22(1):253-263.
    [63]庞欣,王东红,彭安.稀土元素在土壤中迁移、转化模型的建立及验证[J].环境化学,2002,21(4):329-335.
    [64]任天祥,张华,杨少平,等.内蒙西部干旱荒漠区域化探方法研究[J].第三届勘查地球化学学术讨论会论文选编,冶金工业出版社,1982,82-101.
    [65]任天祥,赵云,张华,杨少平.内蒙中西部干旱半干旱区区域化探扫面方法技术研究[J].第三届勘查地球化学学术讨论会论文选编,冶金工业出版社,1988,166-167.
    [66]任天祥,李明喜,徐耀先,等.高寒山区表生作用地球化学特征及区域化探方法的初步研究[J].地质论评,1983,29(5):428-436.
    [67]任天祥,刘应汉,汪明启.纳米科学与隐伏矿床—一种寻找隐伏矿的新方法新技术[J].科技导报,1995,8.
    [68]舒斌,陈柏林,吴淦国.金窝子金矿金的赋存状态和金矿物特征[J].新疆地质,2006,24(1):30-33.
    [69]孙忠军.高寒湖沼区水系沉积物中元素迁移富集的分形伸展机制[J].物探化探计算技术,2005,27(3):246-250.
    [70]孙忠军,陈冬梅,秦爱华.高寒湖沼区土壤中成矿元素迁移的分形伸展机制[J].地质与勘探,2006,42(4):67-70.
    [71]涂光炽,高振敏.分散元素成矿机制研究获重大进展[J].中国科学院院刊,2003,(5):358-361.
    [72]涂翰勤.元素赋存状态研究方法[J].矿物岩石,1981,(6):84-96.
    [73]唐金荣,吴传壁,施俊法.深穿透地球化学迁移机理与方法技术研究新进展[J].地质通报,2007,26(12):1579-1590.
    [74]唐金荣,崔熙琳,施俊法.非传统化探方法研究的新进展[J].地质通报,2009,28(2-3):232-244.
    [75]王学求,谢学锦.金的勘查地球化学:理论与方法,战略与战术[M].山东科学技术出版社,2000.
    [76]王学求,谢学锦,卢荫庥.地气动态提取技术的研制及在寻找隐伏矿上的初步试验[J].物探与化探,1995,19(3):161-171.
    [77]王学求,程志中.元素活动态测量技术的发展及其意义[J].国外地质勘探技术,1996,2,17-22.
    [78]王学求,谢学锦,卢荫庥.地气动态提取技术的研制及在寻找隐伏矿上的初步试验[J].物探与化探,1995,19(3).
    [79]王学求,谢学锦.非传统金矿化探的理论与方法技术研究[J].地质学报,1996,70(1):84-95.
    [80]王学求.18届国际化探会议述评[J].物化探译丛,1997,5:31-33.
    [81]王学求.深穿透地球化学[J].物探与化探,1998,22(3):166-169.
    [82]王学求.地气测量技术的发展及其意义[J].国外地质勘探技术,1996,4:12-18.
    [83]王学求.地球气纳微金属测量的的概念理论与方法[C].走向21世纪的矿产勘查地球化学,谢学锦、邵跃、王学求主编,地质出版社,1999,105-124.
    [84]王学求.巨型矿床与大型矿集区勘查地球化学[C].谢学锦,邵跃,王学求主编.走向21世纪矿产勘查地球化学.北京:地质出版社,1999,35-47.
    [85]王学求.深穿透地球化学迁移模型[J].地质通报,2005,24(10-11):892-896.
    [86]王学求.荒漠戈壁区超低密度地球化学调查与评价—以东天山为例[J].新疆地质,2001,19(3):200-206.
    [87]王学求,孙宏伟,迟清华,程志中,赵善定.地球化学异常再现性与可对比性[J].中国地质,2005,32(1):135-140.
    [88]王学求,刘占元,叶荣,等.新疆金窝子矿区深穿透地球化学对比研究[J].物探与化探,2003,27(4):247-250.
    [89]王学求,叶荣.纳米金属微粒发现-深穿透地球化学的微观证据[J].地球学报,2011,32(1):7-12.
    [90]王学求,刘占元,白金峰,孙彬彬.深穿透地球化学对比研究两例[J].物探化探计算技术,2005,27(3):250-255.
    [91]王学求,申武军,张必敏,聂兰仕,迟清华,徐善法.地球化学块体与大型矿集区的关系一以东天山为例[J].地学前缘,2007,14(5):116-123.
    [93]王瑞廷,欧阳建平.亚热带岩溶景观区金的表生地球化学异常特征-以云南东部富源胜境关金矿区为例[J].西北大学学报,2001,31(6):500-505.
    [94]王瑞廷,欧阳建平,方维萱.不同景观区金的表生地球化学异常特征研究[J].西北地质科学,1999,20(2):76-83.
    [95]王志华.景观地球化学研究在土壤地球化学测量中的作用[J].地质与勘探,1999,35(6):55-57.
    [96]王清利,陈文,韩丹,等.新疆金窝子金矿床形成时代研究及成因机制讨论[J].中国地质,2008,35(2):286-292.
    [97]王虹.金窝子金矿床动力热液成矿雏议[J].新疆地质,1993,(1):63-67.
    [98]汪明启,高玉岩,张得恩,等.地气测量在北祁连盆地区找矿突破及其意义[J].物探与化探,2006,30(1):7-12.
    [99]汪明启,高玉岩.利用铅同位素研究金属矿床地气物质来源:甘肃蛟龙掌铅锌矿床研究实例[J].地球化学,2007,36(4):391-399.
    [100]伍宗华,金仰芬,郭英杰,等.地气测量在叶县-邓县-南漳地学剖面研究中的应用[J].岩石学报,1995,11(3):333-342.
    [101]谢学锦.战略性与战术性深穿透地球化学方法[J].地学前缘,1998,5(2):171-183.
    [102]谢学锦,王学求.深穿透地球化学新进展[J].地学前缘,2003,10(1):225-238.
    [103]徐德兰,曾勇.景观地球化学研究现状与进展[J].江苏地质,2003,27(3):159-163.
    [104]席小平.金窝子岩体的地质特征及找矿方向[J].新疆地质,1997,(1):76-83.
    [105]叶荣,王学求,赵伦山,等.金窝子矿带戈壁覆盖区化探深穿透找矿方法研究[J].地质与勘探,2003,39(6):90-93.
    [106]叶荣,王学求,赵伦山,等.戈壁覆盖区金窝子矿带深穿透地球化学方法研究[J].地质与勘探,2004,40(6):65-70.
    [107]叶荣,王学求,赵伦山,等.东天山戈壁覆盖层的结构和成因与金的表生迁移[J].地质与勘探,2003,39(6):90-93.
    [108]尹昭汉.景观地球化学[J].地球科学进展,1992,7(5):63-64.
    [109]周济元,崔炳芳,肖惠良,等.甘新北山东段裂谷演化及金矿成矿规律[J].火山地质与矿产,2002,21(1):7-17.
    [110]张必敏,王学求,迟清华,吕庆田.戈壁覆盖区景观演化与Au的分散迁移[J].现代地质,2011,25(3):575-580.
    [111]张建芳,张刚阳.铅同位素在矿床研究和找矿勘探中的应用综述[J].地质找矿论丛,2009,24(4):322-348.
    [112]张理刚.同位素地质研究现状与展望[J].地质与勘探,1992,28(4):21-29.
    [113]赵伦山,张本仁.地球化学[M].北京:科学出版社,1988.
    [114]赵善定,王学求.荒漠戈壁区地表疏松层中元素的分布规律[J].物探与化探,2006,30(6):517-520.
    [115]赵善定,王学求.土屋铜矿上方覆盖层元素分布规律研究[J].新疆地质,2005,23(3):239-243。
    [116]赵殿甲,张积斌.金窝子金矿床的地球化学特征及其成因的探讨[J].地质地球化学,1987,8:59-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700