用户名: 密码: 验证码:
钢筋混凝土框架结构地震倒塌破坏研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
任何情况下人的生命安全都是第一位的。强震作用下建筑物的倒塌造成的人员伤亡将引发一系列较财产损失更严重、更复杂的社会问题和经济问题。近年来国内外的数次震害表明即使严格执行抗震设计的建筑物也可能发生不同程度的倒塌破坏,大震不倒抗震设防目标未充分实现的根本原因在于未对结构倒塌破坏机理进行深入研究,缺乏准确的倒塌破坏临界状态定义和合理的倒塌破坏准则。本文重点研究了钢筋混凝土框架结构的倒塌破坏特点和破坏机理,建立了结构倒塌破坏分析模型、临界状态、破坏准则,主要涉及以下工作:
     深入分析总结了结构倒塌破坏研究方法,已有倒塌破坏准则本质上是构件设计的延伸,融入结构思想的倒塌研究考虑了构件、子结构、结构破坏的不确定性。薄弱区域的塑性变形集中是倒塌发生的根本原因,框架结构塑性变形集中区域就是柱铰大量充分发育的区域,此时结构内力重分布能力逐步下降,形成柱铰破坏机制。创造性的提出了结构域倒塌破坏分析模型和塑性铰密度倒塌破坏准则,在构件、子结构、整体结构三个层面上对倒塌研究进行了思考和探索,建立了可行的倒塌研究分析思路和方法。
     分析了结构倒塌破坏特性并提出了结构倒塌破坏分析模型,定义倒塌临界状态为地震作用下发生不同程度破坏后结构的极限性能,以倒塌区间代替单一倒塌临界值。根据同一层内受损构件的位置、破坏程度和数量等指标,将引起层倒塌的、破坏程度相近的同类型构件组合定义为倒塌关键区域,建立了域倒塌破坏分析模型。域失效是倒塌破坏发生的根本原因,真实反映了结构整体性能的退化规律和特点,适用于不同类型的倒塌研究。
     对框架结构的倒塌破坏机制和内力重分布特性进行深入分析,建议了基于柱铰的倒塌破坏准则。选取柱端塑性铰发育为倒塌分析变量,根据塑性铰发育程度、出现位置和数量等参数定义了塑性铰密度倒塌破坏准则。塑性铰密度破坏准则考虑了塑性铰发育与结构整体性能退化之间的相互关系。从构件损伤、子结构破坏和结构倒塌破坏三个层面上对倒塌破坏机理进行了解释和说明。薄弱层内一定量的柱铰充分发育后,结构的内力重分布能力丧失,子结构转化为可变机构,标志着倒塌的开始。试验研究和有限元分析表明域模型和塑性铰密度破坏准则较准确的解释和定义了结构倒塌临界状态、揭示了倒塌破坏机理。
     结构倒塌是由一定量的框架柱塑性变形集中引起的,柱端塑性变形是倒塌破坏研究的关键内容,对框架柱的损伤和塑性变形程度量化进行了研究:考虑滞回耗能与构件损伤的相互关系提出了有效耗能理论,建立了考虑延性和有效耗能比例的改进双参数破坏准则;研究了柱的截面破坏特性,在理论分析基础上通过数据回归得出了框架柱的极限曲率计算公式,建立了塑性铰发育量化方法。
     根据三榀平面框架的拟静力试验,建立了OpenSees的纤维单元模型,进行了框架结构的反复加载试验验证,完成了基于塑性铰密度破坏准则的平面框架结构倒塌计算分析,选取倒塌破坏区间(0.6,1.0)能够准确的定义倒塌破坏极限,倒塌破坏指数较好的反映了结构的整体性能退化规律。选取114条地震波进行了框架结构的时程分析,根据倒塌破坏指数大小从中选取了10条地震动作为后续参数分析的地震动数据库。完成了不同层数、层高、跨度、轴压比的倒塌破坏计算分析,计算表明随着层数、层高、跨度、轴压比的增加倒塌破坏总体呈现加剧的趋势,基于域模型的塑性铰密度准则能够较好的定义结构倒塌破坏,地震动随机性对结构倒塌破坏的影响不容忽视。
Life safety is always the first one in any case. Under strong earthquakes, the collapse ofbuildings caused heavy casualties and property losses, especially casualties would trigger a seriesof more complex and serious social and economic problems than the property damage. In recentyears, several damage at home and abroad have shown that the strict implementation of theseismic design of buildings may also occur in varying degrees of collapse damage, thefundamental reason of the fortification objective―no collapsing with strong earthquake‖not toachieve lies in the lack of further study on failure mechanism of structural collapse, the precisedefinition of the collapse damage critical state and the reasonable establishment of quantitativecriteria of collapse. Here the failure characteristics and mechanism of reinforced concrete framestructural collapse are focused on research, besides, analysis model, the critical state and failurecriteria of collapse damage are established. The major works are summarized as follows:
     The existing research methods of structural collapse damage are deeply analyzed andsummarized. Existing design methods is essentially the extension of member design, while theimproved research of structural collapse into the structural thought contain the uncertainty ofmember, sub-structure and structural damage. The concentration of plastic deformation in weakareas is the fundamental reason for the collapse occurred. The plastic deformation concentratedarea of frame structure is a large number of fully developed hinge pillar area, at this point, theredistribution capacity of structural internal force is gradually decreased to form a hinge pillarfailure mechanism. Domain-failure damage model and plastic-hinge density failure criterion areproposed. It is reflection and exploration for collapse research from the three levels of components,sub-structure and the overall structure, then, the analytical ideas and methods of a feasible collapseresearch are established.
     The characteristics of collapse damage was analyzed, the critical state of collapse wasdefined as limit performance of incomplete structure after different degrees of injury occurredunder the action of earthquake. According to some indicators of the damaged components withinthe same layer, such as location, the degree of damage and quantity, component composition of the same type of causing the collapse of the layer and the similar extent of damage was defined as thekey areas of collapse. Analysis model of domain collapse damage was established. Domain failurewas the primary cause of collapse damage occurred. It truly reflected the degradationcharacteristics of the overall performance and applies to the different types of collapse.
     By analyzing the mechanism of collapse of the framework structure and the characteristics ofthe internal force redistribution, on the basis of domain model studies, the development of columnplastic hinge was selected as collapse analysis variables. According to the degree of developmentof plastic hinges, the location of plastic hinge appears, the number of column plastic hinges andother parameters, the collapse failure criterion of plastic hinges density was defined. Therelationship between the column injury and overall performance degradation of the structure wasconsidered in the failure criterion. Collapse was demonstrated and explained from three levels,such as component damage, sub-structural damage and structural collapse damage. After a certainamount of columns hinges in the weak story fully developed, the capability of redistribution ofinternal forces of the structure was lost, then substructure into variable mechanism marked thebeginning of the collapse, the critical state of collapse was accurately defined, failure mechanismwas interpreted and quantitative analysis was achieved by domain model and plastic hingesdensity failure criterion.
     The collapsed damage is due to the concentration of plastic deformation in the column-end,the damage and quantify of the degree of plastic deformation of frame column were studied.Effective energy theories have been proposed by considering the relationships between hystereticenergy and component damage, improved two-parameter failure criterion was established byconsidering ductility and the ratio of energy efficient, the failure characteristics of section of thecolumn were studied, on the basis of the theoretical analysis, the calculation formula of ultimatecurvature of frame column was derived by data regression, the quantization method of thedevelopment of plastic hinges was established.
     According to the pseudo-static test of three specimens of plane frame, fiber element modelbased on OpenSees was established, experimental verification of cyclic loading tests of framestructure were carried out, the calculation and analysis of plane frame structure collapse wascompleted based on plastic-hinge density failure criterion, the selected collapse interval (0.6,1.0) can accurately express the limits of collapse, Collapse damage index can better reflect thedeterioration of the whole performance of the structure.The framework structure’s time historyanalysis was conducted by selecting114seismic waves. According to the size of collapse damageindex,10ground motions were selected as a ground motion database for follow-parametricanalysis. The calculation and analysis of collapse damage were completed on different layers,different story height, different span length and different axial compression ratio. The resultsshowed that as the increase of layer numbers, story height, span length and axial compression ratio,collapse damage as a whole presents an exacerbated trend. Structural collapse was well defined byplastic-hinge density failure criterion based on domain-failure damage model, the impact ofground motion randomness to structural collapse damage cannot be ignored.
引文
[1]高孟潭,卢寿德.关于下一代地震区划图编制原则与关键技术的初步探讨[J].震灾防御技术.2006,l(01):1-6.
    [2]熊立红,吴文博,孙悦.汶川地震作用下约束砌体房屋的抗震能力分析[J].土木工程学报,2012,45(S2):103-108.
    [3]岳茂光,王东升,孙治国,等汶川地震下框架结构的抗倒塌能力分析[J].工程力学,2012,29(11):250-256.
    [4]温增平,徐超,陆鸣,等.汶川地震重灾区典型钢筋混凝土框架结构震害现象[J].北京工业大学学报,2009,35(06):753-760.
    [5]王亚勇.汶川地震建筑震害启示-抗震概念设计[J].建筑结构学报,2008,29(04):20-25.
    [6]刘伯权.关于钢筋混凝土框架抗震设计的几个问题[J].西北建筑工程学院学报,1994,11(01):1-3.
    [7]薛彦涛,黄世敏,姚秋来,等.汶川地震钢筋混凝土框架结构震害及对策[J].工程抗震与加固改造,2009,31(05):93-100.
    [8]姜立新,傅征祥.地震灾害经济损失估算与预测方法[J].自然灾害学报,1995,4(04):27-33.
    [9]赵荣国,李卫平,陈锦标.世界地震灾害损失的统计[J].国际地震动态,1996,26(12):10-19.
    [10]李卫平.1996-2003年全世界灾害地震统计分析[J].华北地震科学,2005,23(02):54-64.
    [11]刘伯权.抗震结构的破坏准则及可靠性分析[M].北京:中国建材工业出版社,1995.
    [12]李英民,刘立平.工程结构的设计地震动[M].北京:科学出版社,2011.
    [13]于晓辉,吕大刚.考虑结构不确定性的地震倒塌易损性分析[J].建筑结构学报,2012,33(10):8-14.
    [14]M.T.Page, J.M.Carlson,李忠伟.地震危险性评估的方法:模型的不确定性及WGCEP-2002预测[J].世界地震译丛,2006,32(06):1-13.
    [15]张耀国,雷建成,唐荣昌,等.考虑不确定性的地震危险性分析方法及其应用[J].四川地震,1991,15(04):20-24.
    [16]沈建文,庄昆元,蔡长青.地震危险性分析的不确定性及其对策[J].中国地震,1992,8(04):14-17.
    [17]赵荣国,李卫平,陈锦标.地震灾害统计的不确定性[J].国际地震动态,1996,25(10):10-16.
    [18]吴波,郭安薪,林少书.钢筋混凝土柱极限变形角的概率特性及其在有控结构大震可靠度分析中的应用[J].地震工程与工程震动,2001,21(03):36-40.
    [19]吕大刚,宋鹏彦,于晓辉,等.土木工程结构抗震可靠度理论的研究与发展[A].中国建筑工业出版社、同济大学《建筑钢结构进展》编辑部、香港理工大学《机构工程进展》编委会.第二届结构工程新进展国际论坛论文集[C].中国建筑工业出版社、同济大学《建筑钢结构进展》编辑部、香港理工大学《机构工程进展》编委会:,2008:13.
    [20]王亚勇,高孟潭,叶列平,等.基于大震和特大震下倒塌率目标的建筑抗震设计方法研究[J].土木建筑与环境工程.2010,32(S2):291-297.
    [21]Dinh T V, Ichinose T. Probabilistic estimation of seismic story drifts in reinforced concrete buildings[J].Journal of structural engineering,2005,131(03):416-427.
    [22] Haselton C B, Liel A B, Deierlein G G, et al. Seismic collapse safety of reinforced concrete buildings.I: Assessment of ductile moment frames[J]. Journal of Structural Engineering,2010,137(04):481-491.
    [23]Liel A B, Haselton C B, Deierlein G G. Seismic collapse safety of reinforced concrete buildings. II:Comparative assessment of nonductile and ductile moment frames[J]. Journal of StructuralEngineering,2010,137(4):492-502.
    [24] Haselton C B, Deierlein G G. Assessing Seismic Collapse Safety of Modern Reinforced ConcreteMoment-Frame Buildings [M]. Pacific Earthquake Engineering Research Center,2007/08.
    [25]库兹明(苏)著,王炳文、贾泽林译.马克思理论和方法论中的系统性原则[M],上海:三联书店,1980
    [26]庞元正.矛盾学说与系统理论[J].中国社会科学,1987,9(06):103-115.
    [27]钱学森,许国志,王寿云.组织管理的技术-系统工程[J].上海理工大学学报,2011,33(06):520-525.
    [28]张卓民.辩证唯物主义系统观初探[J].社会科学辑刊,1983,4(06):32-39.
    [29]GB50153-2006工程结构可靠性设计统一标准[S].北京:中国建筑工业出版社.
    [30]叶列平,曲哲,陆新征,等.提高建筑结构抗地震倒塌能力的设计思想与方法[J].建筑结构学报,2008,29(04):42-50.
    [31]叶列平,陆新征,赵世春,等.框架结构抗地震倒塌能力的研究——汶川地震极震区几个框架结构震害案例分析[J].建筑结构学报,2009,30(06):67-76.
    [32]蔡建国,王蜂岚,冯健,等.建筑结构连续倒塌概念设计[J]工业建筑.2011,41(02):74-77.
    [33]Gurley C. Progressive Collapse and Earthquake Resistance[J].Practice Periodical on Structural Designand Construction.2008,13(01):19-23.
    [34]Department of defense, DoD Minimum Antiterrorism Standards for Buildings, Unified FacilitiesCriteria(UFC)4-023-03,25January2005.
    [35]General services Administration, Progressive Collapse Analysis an Design Guidelines For New FederalOffice Buildings and Major Modernization Projects, June2003.
    [36]萧岚.试谈中国古代建筑的抗震措施[A].建筑历史与理论(第三、四辑)[C].1982:11.
    [37]谢礼立,马玉宏.现代抗震设计理论的发展过程[J].国际地震动态,2003,33(10):1-8.
    [38]薛强.考虑二阶效应的钢框架抗震设计研究[D].西安:西安建筑科技大学,2012.
    [39]蔡健,周靖,禹奇才.建筑抗震设计理论研究进展[J].广州大学学报(自然科学版),2005,4(01):65-73.
    [40]王克海,李茜,韦韩.国内外延性抗震设计的比较[J].地震工程与工程振动,2006,26(03):70-73.
    [41]聂祺.高层钢筋混凝土结构非线性动力时程分析研究[D].北京:中国建筑科学研究院,2009.
    [42]Ellingwood B. R. Performance-Based Design: Structural Reliability Considerations[C]. Proceedings ofStructures Congress: Advanced Technology in Structural Engineering, SEI/ASCE, New York,2000.
    [43]SEAOC. Tentative Lateral Force Requirements and Commentary[S]. Sacramento:Structural EngineersAssociation of California,1972.
    [44]FEMA302.NEHRP Recommended Provisions for the Seismic Regulations of New Buildings andOther Structures[R]. Washingtion, DC: Federal Emergency Management Agency,1997.
    [45] Hamburger R O. The ATC-58Project: Development of Next-Generation Performance-BasedEarthquake Engineering Design Criteria for Buildings[C]//Structures Congress2006@sStructuralEngineering and Public Safety. ASCE,1-8.
    [46] Moghadam A S, Tso W K. Damage assessment of eccentric multistory buildings using3-D pushoveranalysis[C]//Proceedings of Eleventh World Conference on Earthquake Engineering.1996.
    [47]黄羽立,陆新征,叶列平,等.基于多点位移控制的推覆分析算法[J].工程力学,2011,28(02):18-23.
    [48]朱俊锋,王东炜,霍达.在大震下RC框架结构基于Pushover方法的失效相关性分析[J].地震工程与工程振动,2005,25(04):85-90.
    [49]Kim S P, Kurama Y C. An alternative pushover analysis procedure to estimate seismic displacementdemands[J]. Engineering structures,2008,30(12):3793-3807.
    [50]马千里,叶列平,陆新征. MPA法与Pushover法的准确性对比[J].华南理工大学学报(自然科学版),2008,36(11):121-128.
    [51]王丰,李宏男,伊廷华.考虑双向地震动作用的非对称结构多维Pushover分析[J].计算力学学报,2010,27(06):1055-1060.
    [52] Tsai M H, Lin B H. Investigation of Progressive Collapse Resistance and Inelastic Response for anEarthquake-Resistant RC Building Subjected to Column Failure[J]. Engineering structures,2008,30(12):3619-3628.
    [53] Marjanishvili S, Agnew E. Comparison of various procedures for progressive collapse analysis[J].Journal of Performance of Constructed Facilities,2006,20(4):365-374.
    [54]朱俊锋.基于Pushover方法的RC框架结构失效相关性分析[D].郑州:郑州大学,2003.
    [55]Vamvatsikos D,CornellC A.Incremental Dynamic ANALYSIS [J]. Earthquake Engineering andStructural Dynamics,2002,31(03):491-514.
    [56]吕大刚,于晓辉,王光远.基于单地震动记录IDA方法的结构倒塌分析[J].地震工程与工程振动,2009,29(06):33-39.
    [57]马千里.钢筋混凝土框架结构基于能量抗震设计方法研究[D].北京:清华大学,2009.
    [58]Luco N, Cornell C A. Effects of Connection Fractures on SMRF Seismic Drift Demands[J]. Journal ofStructural Engineering,2000,126:127-136.
    [59]杨成,赵世春,赵人达,等.地震作用特征对结构IDA曲线的影响分析[J].四川大学学报(工程科学版),2010,42(02):93-99.
    [60]王亚勇,刘小弟,安东.钢筋砼框架结构时程法地震反应分析[J].建筑结构,1993,14(07):21-24.
    [61]吴小峰,孙启国,狄杰建,等.抗震分析反应谱法和时程分析法数值仿真比较[J].西北地震学报,2011,33(03):275-278.
    [62]Nair D, Va1divieso J, Johnson C. Comparison of Spectrum and Time History Techniques in SeismicDesign of Platforms[C]//Offshore Technology Conference.1980.
    [63]李兵,陈鑫,赵乃志. RC框-剪结构多维弹塑性时程反应分析[J].低温建筑技术,2009,32(08):29-31.
    [64]陈万祥,郭志昆,杨成忠.结构多维弹塑性地震反应的时程分析研究[J].四川建筑科学研究,2003,29(01):74-76.
    [65]王亚勇,程民宪,刘小弟.结构抗震时程分析法输入地震记录的选择方法及其应用[J].建筑结构,1992,13(05):3-7.
    [66]王亚勇,刘小弟,程民宪.建筑结构时程分析法输入地震波的研究[J].建筑结构学报,1991,12(02):51-60.
    [67]董娣,周锡元,闫维明,等.地震动不确定性及其影响因素的初步分析[J].地震研究,2006,29(02):167-175.
    [68]王亚勇.关于设计反应谱、时程法和能量方法的探讨[J].建筑结构学报,2000,21(01):21-28.
    [69]顾祥林,印小晶,林峰,等.建筑结构倒塌过程模拟与防倒塌设计[J].建筑结构学报,2010,31(06):179-187.
    [70]张富文,吕西林.框架结构不同倒塌模式的数值模拟与分析[J].建筑结构学报,2009,30(05):119-125.
    [71]刘海卿,刘东.钢筋混凝土框架结构地震倒塌过程模拟分析[J].辽宁工程技术大学学报(自然科学版),2009,28(06):969-972.
    [72] GB50011—2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010
    [73]何政.强震下混凝土结构渐进倒塌性能分析与设计新进展[J].南京信息工程大学学报(自然科学版),2009,1(01):59-66.
    [74]李应斌,刘伯权,史庆轩.结构性能水准与评价指标[J].世界地震工程,2003,19(02):132-137.
    [75]程志辉,陈辉明.首层架空多层框架结构抗地震倒塌简化验算[J].建筑结构,2011,04:105-108.
    [76]吕大刚,于晓辉,王光远.单地震动记录随机增量动力分析[J].工程力学,2010,27(S1):53-58.
    [77] Housner G. Limit design of structures to resist earthquakes//Proceedings of the1st World Conferenceon Earthquake Engineering. Oakland: Califormia,1956:1-12.
    [78] Housner G W. Behavior of structures during earthquake.[J].Journal of the Engineering MechanicsDivision,1959,85(04):109-129.
    [79]盛明强.基于滞回耗能的结构抗震性能评价方法研究[D].上海:同济大学,2008.
    [80]肖明葵,刘波,白绍良.抗震结构总输入能量及其影响因素分析[J].重庆建筑大学学报,1996,18(02):20-33.
    [81]夏洪流,李英民,杨溥,等.罕遇地震作用下SDOF结构位移响应的统计特性分析[J].重庆建筑大学学报,2000,22(S1):139-143.
    [82]叶列平,伍文杰.基于能量准则的SDOF阻尼减震结构最大地震位移[J].清华大学学报(自然科学版),2001,41(12):72-74.
    [83]孙国华,顾强,何若全,等.弹性SDOF体系地震动输入能量的影响因素分析[J].建筑科学与工程学报,2011,28(04):63-68.
    [84]Shen J,Akbas B. Seismic energy demand in steel moment frames [J].Journal of Earthquake Engineering,1999,3(04):519-559.
    [85]Priestley M J N. Myths and fallacies in earthquake engineering—conflicts between design andreality[J]. Bulletin of the New Zealand National Society for Earthquake Engineering,1993,26(03):329-341.
    [86]Kunnath S K, Chai Y H. Cumulative damage‐based inelastic cyclic demand spectrum[J]. Earthquakeengineering&structural dynamics,2004,33(04):499-520.
    [87]叶献国,许政,常磊.钢筋混凝土框架结构耗能分析[J].震灾防御技术,2011,6(04):448-453.
    [88]滕军,董志君.基于能量的超高层钢筋混凝土框架核心筒结构抗震性能分析[J].建筑结构学报,2010,31(S2):1-4.
    [89]吕杨,徐龙河,李忠献,丁阳.钢筋混凝土柱基于能量阈值的损伤准则[J].工程力学,2011,28(05):84-89.
    [90]任重翠,欧进萍.钢框架结构基于性能的耗能减振设计[A].中国建筑工业出版社、同济大学《建筑钢结构进展》编辑部、香港理工大学《机构工程进展》编委会.第二届结构工程新进展国际论坛论文集[C].中国建筑工业出版社、同济大学《建筑钢结构进展》编辑部、香港理工大学《机构工程进展》编委会:,2008:9.
    [91]史庆轩,熊仲明,李菊芳.框架结构滞回耗能在结构层间分配的计算分析[J].西安建筑科技大学学报(自然科学版),2005,37(02):174-178.
    [92]孟少平,吴京,吕志涛.预应力混凝土框架结构抗震耗能机制的选择[J].工业建筑,2002,32(10):4-6.
    [93] Zahrah T F, Hall W J. Earthquake Energy Absorption in SDOF Structures[J]. Journal of structuralEngineering,1984,110(8):1757-1772.
    [94]熊仲明,史庆轩,李菊芳.框架结构基于能量地震反应分析及设计方法的理论研究[J].世界地震工程,2005,21(02):141-146.
    [95]杜敏,赵彦.基于能量的建筑结构抗震设计方法介绍[J].防灾科技学院学报,2011,13(01):14-18.
    [96]瞿岳前,梁兴文,田野.基于能量分析的地震损伤性能评估[J].世界地震工程,2006,22(01):109-114.
    [97]汪梦甫,糜永红.基于能量理论的钢筋混凝土框架-剪力墙结构非线性地震反应分析[J].工程抗震,2004,26(02):15-16.
    [98]Park Y J, Ang A H S. Mechanistic seismic damage model for reinforced concrete[J]. Journal ofStructural Engineering, ASCE,1985,111(04):722~739.
    [99]Park Y J, Ang A H S, Wen Y K. Seismic damage analysis of reinforced concrete building[J]. Journal ofStructural Engineering, ASCE,1985,111(04):740~756.
    [100]王东升,冯启民,王国新.考虑低周疲劳寿命的改进Park-Ang地震损伤模型[J].土木工程学报,2004,37(11):41-49.
    [101]何利,叶献国. Kratzig及Park-Ang损伤指数模型比较研究[J].土木工程学报,2010,43(12):1-6.
    [102]傅剑平,王敏,白绍良.对用于钢筋混凝土结构的Pa rk-Ang双参数破坏准则的识别和修正[J].地震工程与工程振动,2005,25(5):73-79.
    [103]付国,刘伯权,邢国华.基于有效耗能的改进Park-Ang双参数损伤模型及其计算研究[J].工程力学,2013,30(07):84-90.
    [104]易伟建,尹犟.基于位移及滞回耗能的结构抗震性能评估新方法[J].湖南大学学报(自然科学版),2009,36(08):1-6.
    [105]Zareian F, Krawinkler H. Structural System Parameter Selection based on Collapse Potential ofBuildings in Earthquakes[J]. Journal of structural engineering,2010,136(08):933-943.
    [106]Mehanny S S F, Deierlein G G. Seismic Damage and Collapse Assessment of Composite Momentframes[J]. Journal of Structural Engineering,2001,127(09):1045-1053.
    [107]叶列平,陆新征,赵世春,等.框架结构抗地震倒塌能力的研究——汶川地震极震区几个框架结构震害案例分析[J].建筑结构学报,2009,30(06):67-76.
    [108]唐代远,陆新征,叶列平,等.柱轴压比对我国RC框架结构抗地震倒塌能力的影响[J].工程抗震与加固改造,2010,33(05):26-35.
    [109]施炜,叶列平,陆新征,等.不同抗震设防RC框架结构抗倒塌能力研究[J].工程力学,2011,28(03):41-48.
    [110]杜修力,尹之潜,李小军. RC框架结构地震倒塌反应分析[J].哈尔滨建筑工程学院学报,1992,25(03):7-13.
    [111]刘晶波,谷音,牛惠敏,等.大空间砖-混凝土组合结构弹塑性地震反应与计算倒塌研究[J].建筑结构学报,2006,27(03):78-83.
    [112]吕大刚,于晓辉,陈志恒.钢筋混凝土框架结构侧向倒塌地震易损性分析[J].哈尔滨工业大学学报,2011,43(06):1-5.
    [113]陆新征,叶列平.基于IDA分析的结构抗地震倒塌能力研究[J].工程抗震与加固改造,2010,33(01):13-18.
    [114]陆新征,张万开,柳国环.基于推覆分析的RC框架地震倒塌易损性预测[J].地震工程与工程振动,2012,32(04):1-6.
    [115]张玉辉,赵忠虎,鞠杨.地震力作用下钢筋混凝土框架结构倒塌的数值模拟研究[J].工业建筑,2004,34(03):57-61.
    [116]Quantification of Building Seismic Performance Factors [S]. ATC-63Project Report(90%Draft),FEMAP695/April2008
    [117]马晓董,吴建华,何锦江.地震作用下钢筋混凝土框架结构防倒塌的判别[J].浙江科技学院学报,2008,20(04):274-278.
    [118]陈以一.地震作用下多层钢结构的抗力退化与倒塌预测[J].同济大学学报(自然科学版),1996,24(02):130-135.
    [119]李耀庄,苏玲红,吴小华.火灾下工程结构连续性倒塌分析与设计方法探讨[J].灾害学,2010,25(01):89-92.
    [120]Deierlein G G, Mehanny S S. On Assessing Near Collapse in Seismic Performance-Based Design[C].ASCE,2004.
    [121]王彬.大震下钢筋混凝土框架结构塑性铰破坏机制研究[D].长春:吉林大学,2009.
    [122]顾祥林,黄庆华,汪小林,等.地震中钢筋混凝土框架结构倒塌反应的试验研究与数值仿真[J].土木工程学报,2012,45(09):36-45.
    [123]丁阳,刘碧文,葛金刚.地震作用下单层柱面网壳倒塌机理分析与试验研究[J].地震工程与工程振动,2013,33(02):68-73.
    [124]陆新征,唐代远,叶列平,等.我国7度设防等跨RC框架抗地震倒塌能力研究[J].地震工程与工程振动,2011,31(05):13-20.
    [125]杨红,高文生,王志军.空间框架简化为平面模型的抗震分析[J].重庆大学学报,2008,31(11):1267-1272.
    [126]杨红,朱振华,白绍良.双向地震作用下我国―强柱弱梁‖措施的有效性评估[J].土木工程学报,2011,44(01):58-64.
    [127]杨红,王七林,白绍良.双向水平地震作用下我国框架的―强柱弱梁‖屈服机制[J].建筑结构,2010,40(08):71-76.
    [128]林旭川,潘鹏,叶列平,等.汶川地震中典型RC框架结构的震害仿真与分析[J].土木工程学报,2009,42(05):13-20.
    [129]Kim H S, Kim J, An D W. Development of Integrated System for Progressive Collapse Analysis ofBuilding Structures Considering Dynamic Effects[J]. Advances in Engineering Software,2009,40(01):1-8.
    [130]贾浩华,魏德敏.钢筋混凝土框架结构抗层屈服倒塌能力评价方法研究[J].建筑结构学报,2013,34(07):40-46.
    [131]程家喻,杨喆.唐山地震人员震亡率与房屋倒塌率的相关分析[J].地震地质,1993,15(01):82-87.
    [132]杜永峰,王小虎.多维地震激励下串联隔震结构的倒塌模拟[J].工程抗震与加固改造,2012,34(06):50-54.
    [133]黄兴淮,徐赵东,杨明飞.多维地震下大跨网格结构倒塌分析与抗倒塌措施[J].东南大学学报(自然科学版),2012,42(01):109-113.
    [134]苏幼坡,张玉敏,王绍杰,等.从汶川地震看提高建筑结构抗倒塌能力的必要性和可行性[J].土木工程学报,2009,42(05):25-32.
    [135]杨红,王建辉,白绍良.双向地震作用对框架柱端弯矩增大系数的影响分析[J].土木工程学报,2008,41(09):40-47.
    [136]Pantazopoulou S J, French C W. Slab participation in practical earthquake design of reinforcedconcrete frames[J]. ACI Structural Journal,2001,98(04):479-489.
    [137]Mehrdad S, Marlon B,Serkan S. Experimental and Analytical Progressive Collapse Evaluation ofActual Reinforced Concrete Structure[J].ACI Structural Journal,2007,104(06):731-739.
    [138]汪小林,顾祥林,印小晶,等.现浇楼板对钢筋混凝土框架结构倒塌模式的影响[J].建筑结构学报,2013,34(04):23-31.
    [139]左琼,白雪霜,王亚勇.楼板参与作用对RC框架结构抗倒塌能力影响[J].建筑结构,2013,43(01):37-40.
    [140]Collapse B C C. Engineering Implications of The Bucharest Computing Center Collapse[C]//Proceedings of the World Conference on Earthquake Engineering.1980,6:455.
    [141]张富文,吕西林.框架结构不同倒塌模式的数值模拟与分析[J].建筑结构学报,2009,30(05):119-125
    [1]刘伯权.抗震结构的破坏准则及可靠性分析[M].北京:中国建材工业出版社,1995.
    [2]杜修力,金浏.混凝土材料细观单元弹模非均匀统计特性研究[J].工程力学,2012,29(10):106-115.
    [3]马怀发,陈厚群,黎保琨.混凝土试件细观结构的数值模拟[J].水利学报,2004,35(10):27-35.
    [4]应宗权,杜成斌,刘冰.混凝土梁弯拉断裂过程的细观分析[J].东南大学学报(自然科学版),2007,37(02):213-216.
    [5]马怀发,陈厚群,黎保琨.细观结构不均匀性对混凝土动弯拉强度的影响[J].水利学报,2005,37(07):846-852.
    [6]金浏,杜修力.钢筋混凝土构件细观数值模拟分析[J].水利学报,2012,42(10):1230-1236.
    [7]林皋,李建波,赵娟,等.单轴拉压状态下混凝土破坏的细观数值演化分析[J].建筑科学与工程学报,2007,24(01):1-6.
    [8]韩海玲,李固华,魏建东,等.地震对新浇混凝土细观结构及强度的影响[J].重庆交通大学学报(自然科学版),2010,29(06):912-915.
    [9]刘庭金,朱合华,莫海鸿.非均质混凝土破坏过程的细观数值试验[J].岩石力学与工程学报,2005,24(22):4120-4133.
    [10]田威,党发宁,陈厚群.基于单轴压缩CT技术的混凝土细观破损分区研究[J].水利学报,2011,42(8):995-1001.
    [11]蒋家奋,汤关祚.混凝土宏观变形特征与强度的关系[J].混凝土及加筋混凝土,1989,11(05):9-16.
    [12]ComitéEuro-international du Béton. Seismic Design of Reinforced Concrete Structures for controlledinelastic response[M]. Thomas Telford,1998.
    [13]栗光华,朱晞.抗震结构破坏准则的历史沿革和发展趋势[J].地震工程与工程振动,2006,26(03):67-69.
    [14]王敏.抗震钢筋混凝土柱的破坏准则及截面混凝土纤维的损伤累积性能研究[D].重庆:重庆大学,2005.
    [15]盛明强.基于滞回耗能的结构抗震性能评价方法研究[D].上海:同济大学,2008.
    [16]汪梦甫,糜永红.基于能量理论的钢筋混凝土框架-剪力墙结构非线性地震反应分析[J].工程抗震,2004,26(02):15-16.
    [17]梁书亭,丁大钧.框架柱铰的动力反应及耗能分析[J].东南大学学报,1994,24(03):75-82.
    [18]徐培蓁,聂瑞锋,叶列平.方钢管混凝土柱累积耗能性能的实验研究[J].北京科技大学学报,2011,33(08):1037-1042.
    [19]黄懋锡.钢筋混凝土框架短柱的延性和耗能能力[J].西南交通大学学报,1987,22(01):41-47.
    [20]刘伯权,白绍良,赖明.抗震结构的破坏准则评述及探讨[J].重庆建筑工程学院学报,1993,15(04):1-8.
    [21]刘伯权,刘鸣.钢筋混凝土柱的破坏与能量吸收[J].地震工程与工程振动,1998,18(03):15-19.
    [22]Park Y J, Ang A H S. Mechanistic seismic damage model for reinforced concrete[J]. Journal ofStructural Engineering, ASCE,1985,111(04):722-739.
    [23]Park Y J, Ang A H S, Wen Y K. Seismic damage analysis of reinforced concrete buildings[J]. Journal ofStructural Engineering, ASCE,1985,111(04):740-757.
    [24]陈林之,蒋欢军,吕西林.修正的钢筋混凝土结构Park-Ang损伤模型[J].同济大学学报(自然科学版),2010,38(08):1103-1107.
    [25]傅剑平,王敏,白绍良.对用于钢筋混凝土结构的Park-Ang双参数破坏准则的识别和修正[J].地震工程与工程振动,2005,25(05):75-81.
    [26]牛荻涛,任利杰.改进的钢筋混凝土结构双参数地震破坏模型[J].地震工程与工程振动,1996,16(04):44-54.
    [27]王东升,冯启民,王国新.考虑低周疲劳寿命的改进Park-Ang地震损伤模型[J].土木工程学报,2004,37(11):41-49.
    [28]Telemachos B., Panagiotakos, Michael N. Fardis, Deformations of reinforced concrete members atyielding and Ultimate ACI Structural Journal[J].ACI Materials Journal,2001,98(02):135-148.
    [29]Kawashima Laboratory Department of Civil Engineering. Cyclic Loading Test Data of ReinforcedConcrete Bridge Piers [DB/OL]. http://seismic.cv.titech.ac.jp/en/titdata/titdata.html,2011-01-10.
    [30]刘海卿,陈小波,王学庆.基于损伤指数的框架结构倒塌分析综述[J].自然灾害学报,2008,17(01):186-190
    [31]T.鲍雷.延性钢筋混凝土建筑的确定性抗震设计步骤[J].建筑结构学报1983,3(04):12-23.
    [32]Applied Technology Council. ATC240, Seismic evaluation and retrofit of concrete buildings [R]. RedWood City, California, America: Applied Technology Council,1996.
    [33] Federal Emergency Management Agency.FEMA273/FEMA274, NEHRP Commentary on theguidelines for seismic rehabilitation of buildings[R]. Washington D C, America: Federal EmergencyManagement Agency,1996.
    [34]王亚勇,高孟潭,叶列平,等.基于大震和特大震下倒塌目标的建筑抗震设计方法研究[J].土木建筑与环境工程.2010,32(s2):291-297.
    [35]李英民,刘立平.工程结构的设计地震动[M].北京:科学出版社,2011.
    [36]Paulay T, Priestley m J N. Seismic Desig n of Reinforced Concrete and Masonry Buildings[M].Hoboken: John Wiley&Sons,1992.
    [37]Park R, Paulay T. Reinforced Concrete Structures,John Wiley&Sons, New York,1975.
    [38]Mander JB. Seismic Design of Bridge Piers[D].New Zealand: The University of Canterbury,1983.
    [39]鲍雷,普里斯特利.钢筋混凝土和砌体结构的抗震设计[M].北京:中国建筑工业出版社,1999.
    [40]Watson S, Park R. Simulated seismic load tests on reinforced concrete columns[J]. Journal of StructuralEngineering,1994,120(06):1825-1849.
    [41]Bae S. Seismic performance of full-scale reinforced concrete columns.[D].dissertation, Austin (TX):the University of Texas;2005.
    [42]Berry M P, Lehman D E, Lowes L N. Lumped-plasticity models for performance simulation of bridgecolumns[J]. ACI Structural Journal,2008,105(3):270-279.
    [43]王福明,曾建民,段炼.钢筋混凝土压弯构件塑性铰的试验研究[J].太原工业大学学报,1989,20(04):20-29.
    [44]高振世,庞同和.钢筋混凝土框架单元延性和锚固钢筋粘性滑移性能的试验研究[J].南京工学院学报,1985,(04):53-60.
    [45]沈聚敏,翁义军.钢筋混凝土构件的变形和延性[J].建筑结构学报,1980,1(02):47-58.
    [46]袁必果.钢筋混凝土压弯构件塑性铰的试验研究[J].南京工学院学报,1981,(03):117-129.
    [47]Priestley M J N. Seismic design and retrofit of bridges[M]. New York. Wiley.1996.
    [48]01-2008JTG/TB.公路桥梁抗震设计细则[S].北京:人民交通出版社,2008.
    [49]王敏.抗震钢筋混凝土柱的破坏准则及截面混凝土纤维的损伤累积性能研究[D].重庆:重庆大学,2005.
    [50]Kent D C,Park R. Flexural members with confined concrete[J]. Journal of the StructuralDivision,1971,97(07):1969-1990.
    [51]Kowalsky M J. Deformation limit states for circular reinforced concrete bridge columns[J]. Journal ofStructural Engineering,2000,126(08):869-878.
    [52]魏洋,孙泽阳,吴刚,等. FRP约束矩形截面混凝土的极限曲率计算[J].工业建筑,2007,37(s):335-339.
    [53] The Structural Performance Database [DB/OL]. http://nisee.berkeley.edu/spd/,2013-03-10.
    [1]王亚勇,高孟潭,叶列平,等.基于大震和特大震下倒塌率目标的建筑抗震设计方法研究方案[A].中国建筑学会抗震防灾分会、中国地震学会地震工程专业委员会、中国地震工程联合会.第八届全国地震工程学术会议论文集(Ⅱ)[C].中国建筑学会抗震防灾分会、中国地震学会地震工程专业委员会、中国地震工程联合会:,2010:7.
    [2]ATC-40,(1996).Seismic Evaluation and Retrofit of Concrete Building.[S]Redwood City,CA.
    [3]FEMA-273,(1997) NEHRP Guidelines for the Seismic Rehabilitation of Buildings,[S]FEMA,Washington, D.C.
    [4]FEMA-274,(1997). NEHRP Commentary on the Guidelines for the Seismic Rehabilitation ofBuildings.[S] FEMA, Washington, D.C.
    [5]马千里.钢筋混凝土框架结构基于能量抗震设计方法研究[D].北京:清华大学,2009.
    [6]聂建国,黄远,田淑明等.高层钢板剪力墙结构底部加强层抗震性能分析[J].地震工程与工程振动,2008,28(06):163-171.
    [7]叶列平,陆新征,赵世春等.框架结构抗地震倒塌能力的研究——汶川地震极震区几个框架结构震害案例分析[J].建筑结构学报,2009,30(06):67-76.
    [8]王彬.大震下钢筋混凝土框架结构塑性铰破坏机制研究[D].吉林:吉林大学,2009.
    [9]钟益村,任富栋,田家骅.二层双跨钢筋混凝土框架弹塑性性能试验研究[J].建筑结构学报,1981,2(03):34-41.
    [10]徐云扉,胡庆昌,陈玉峰,等.低周反复荷载下两跨三层钢筋混凝土框架受力性能的试验研究[J].建筑结构学报,1986,7(02):1-16.
    [11]郭泰.钢筋砼梁转移塑性铰框架弹塑性全过程分析方法与程序设计[J].建筑结构,1994,24(07):3-8.
    [12]李忠献,郝永昶,周兵,等.钢筋混凝土分体柱框架抗震性能的模型试验研究[J].建筑结构学报,2003,24(06):1-10.
    [13]耿继国.框架柱抗震设计时综合考虑轴压比与剪跨比的初步研究[D].成都:西南交通大学,2006.
    [14]Haselton C B, Deierlein G G. Assessing Seismic Collapse Safety of Modern Reinforced ConcreteMoment-Frame Buildings [S]. Pacific Earthquake Engineering Research Center,2008(2007/08).
    [15]付国,刘伯权,邢国华.基于有效耗能的改进Park-Ang双参数损伤模型及其计算研究[J].工程力学,2013,30(07):84-90
    [16]GB50011—2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010
    [17]Haselton C B, Liel A B, Deierlein G G, et al. Seismic Collapse Safety of Reinforced ConcreteBuildings. I: Assessment of Ductile Moment Frames[J]. Journal of Structural Engineering,2010,137(04):481-491.
    [18]Liel A B, Haselton C B, Deierlein G G. Seismic Collapse Safety of Reinforced Concrete Buildings. II:Comparative Assessment of Nonductile and Ductile Moment Frames[J]. Journal of StructuralEngineering,2010,137(04):492-502.
    [19]Deierlein G G, Liel A B, Haselton C B, et al. ATC63Methodology for Evaluating Seismic CollapseSafety of Archetype Buildings[C]//Proceedings of ASCE-SEI Structures Congress, Vancouver, BC.2008.
    [20]朱俊锋,王东炜,霍达.在大震下RC框架结构基于Pushover方法的失效相关性分析[J].地震工程与工程振动,2005,25(04):85-90.
    [1]吴巧云,朱宏平,樊剑.基于性能的钢筋混凝土框架结构地震易损性分析[J].工程力学,2012,29(09):117-124.
    [2]吕大刚,于晓辉,宋鹏彦,张鹏,王光远.抗震结构最优设防水平决策与全寿命优化设计的简化易损性分析方法[J].地震工程与工程振动,2009,29(04):23-32
    [3]ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings[S]. Applied Technology Council,RedWood City,California,1996
    [4]吕大刚,王光远.基于可靠度和灵敏度的结构局部地震易损性分析[J].自然灾害学报,2006,15(04):157-162.
    [5]Rossetto T, Elnashai A. A new analytical procedure for the derivation of displacement-basedvulnerability curves for populations of RC structures[J]. Engineering structures,2005,27(03):397-409.
    [6]Kwon O S, Elnashai A. The effect of material and ground motion uncertainty on the seismicvulnerability curves of RC structure[J]. Engineering Structures,2006,28(02):289-303.
    [7]于刚,孙智,孙利民.基于塑性极限状态的结构易损性分析[J].哈尔滨工业大学学报,2010,41(12):1953-1957.
    [8]乔亚玲,闫维明,郭小东.建筑物易损性分析计算系统[J].工程抗震与加固改造,2005,25(04):75-79.
    [9]陆新征,张万开,柳国环.基于推覆分析的RC框架地震倒塌易损性预测[J].地震工程与工程振动,2012,32(04):1-6.
    [10]吕大刚,崔双双,李雁军,等.基于备用荷载路径Pushover方法的结构连续倒塌鲁棒性分析[J].建筑结构学报,2010,31(S2):112-118.
    [11]方召欣,李惠强.基于能量观点的结构安全性与鲁棒性[J].建筑结构学报,2007,28(S1):269-273.
    [12]叶列平,程光煜,陆新征,等.论结构抗震的鲁棒性[J].建筑结构,2008,38(06):11-15.
    [13]陈瑞金,刘西拉.结构体系可靠性与可靠度[C]. PP工程结构可靠性,全国第二届学术交流会论文集,1989:43-47.
    [14]黄靓,施楚贤,刘桂秋,等. MDOF子结构拟动力方法在复杂高层结构抗震试验中的应用研究[J].土木工程学报,2006,39(12):23-32.
    [15]花林林.层单元结构模型在高层建筑结构方案设计中的应用[D].福建:厦门大学,2007.
    [16]王德才,叶献国,曹均锋.试验子结构对整体结构响应的影响研究[J].安徽建筑工业学院学报(自然科学版).2007,15(05):27-30
    [17]Wilkinson S M, Hiley R A. A non-linear response history model for the seismic analysis of high-riseframed buildings[J]. Computers&structures,2006,84(05):318-329.
    [18]关俊伟.单层双跨门式刚架轻型房屋钢结构地震反应弹塑性时程分析[D].西安:西安建筑科技大学,2008.
    [19]吴茜.单层单跨门式刚架结构弹塑性动力时程分析[D].西安:西安建筑科技大学,2008.
    [20]R.W.Clough, J.Penzien著,王光远等译.结构动力学[M].北京:中国建筑工业出版社,1984.
    [21]Wilson E L, Farhoomand I, Bathe K J. Nonlinear dynamic analysis of complex structures[J].Earthquake Engineering&Structural Dynamics,1972,1(03):241-252.
    [22]雷庆关,陈东,王建国,等.基于Wilson-θ精细积分法的结构地震时程反应分析[J].工业建筑,2012,42(07):82-85.
    [23Liu W K, Belytschko T, Mani A. Probabilistic finite elements for nonlinear structural dynamics[J].Computer Methods in Applied Mechanics and Engineering,1986,56(01):61-81.
    [24]林国章.地震作用下高层钢—混凝土混合结构时程反应分析[D].长沙:中南大学,2007.
    [25]李兵,陈鑫,赵乃志. RC框-剪结构多维弹塑性时程反应分析[J].低温建筑技术,2009,36(08):29-31.
    [26] Zou X K, Chan C M. An optimal resizing technique for seismic drift design of concrete buildingssubjected to response spectrum and time history loadings[J]. Computers&structures,2005,83(19):1689-1704.
    [27]Chang S Y. Accurate representation of external force in time history analysis[J]. Journal of engineeringmechanics,2006,132(01):34-45.
    [28]Chang S Y. Accuracy of time history analysis of impulses[J]. Journal of Structural Engineering,2003,129(03):357-372.
    [29]王亚勇,刘小弟,安东.钢筋砼框架结构时程法地震反应分析[J].建筑结构,1993,23(07):21-24.
    [30]陈万祥,郭志昆,杨成忠.结构多维弹塑性地震反应的时程分析研究[J].四川建筑科学研究,2003,29(01):74-76.
    [31]吴小峰,孙启国,狄杰建,等.抗震分析反应谱法和时程分析法数值仿真比较[J].西北地震学报,2011,33(03):275-278.
    [32]D.Nair,J.B.Valdivieso,C.M.Johnson,等.平台抗震设计中反应谱和时程曲线法的比较[J].国外地震工程,1983,(05):8-14.
    [33]杨溥,李英民,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报,2000,33(6):34-37.
    [34]杨红,吴晶晶.考虑结构局部反应特征的时程分析法输入地震波研究[J].土木工程学报,2007,40(11):29-35.
    [35]张文元,张耀春,吴一红,等.长春光大银行主体钢结构在罕遇地震作用下的时程反应分析[J].世界地震工程,2003,19(03):104-109.
    [36]刘枫,肖从真,徐自国,等.首都机场3号航站楼多维多点输入时程地震反应分析[J].建筑结构学报,2006,27(05):56-63.
    [37]张爱林,张传成,刘学春.多维地震输入下首都机场航站楼T3反应谱分析[J].地震工程与工程振动,2008,28(01):32-37.
    [38]刘枫,杜义欣,赵鹏飞,等.武汉火车站多点输入地震反应时程分析[J].建筑结构,2009,39(01):11-15.
    [39]甄伟,李志东,高昂,等.广州新客站结构多点输入地震反应分析[J].建筑结构,2009,39(12):28-32.
    [40]Poon D C K, Hsiao L E, Zhu Y, et al. Non-Linear Time History Analysis for the Performance BasedDesign of Shanghai Tower[C]//Structures Congress2011. ASCE,2011:541-551.
    [41]Kassimali A, Bidhendi E. Stability of trusses under dynamic loads[J]. Computers&structures,1988,29(03):381-392.
    [42] Noor A K, Peters J M. Nonlinear dynamic analysis of space trusses[J]. Computer Methods in AppliedMechanics and Engineering,1980,21(02):131-151.
    [43] Zhu K, Al-Bermani F G A, Kitipornchai S. Nonlinear dynamic analysis of lattice structures[J].Computers&structures,1994,52(01):9-15.
    [44] Thai H T, Kim S E. Nonlinear inelastic time-history analysis of truss structures[J]. Journal ofConstructional Steel Research,2011,67(12):1966-1972.
    [45]王亚勇,程民宪,刘小弟.结构抗震时程分析法输入地震记录的选择方法及其应用[J].建筑结构,1992,22(05):3-7.
    [46]王亚勇,刘小弟,程民宪.建筑结构时程分析法输入地震波的研究[J].建筑结构学报,1991,12(02):51-60.
    [47]王亚勇.关于设计反应谱、时程法和能量方法的探讨[J].建筑结构学报,2000,21(01):21-28.
    [48]马宏旺,赵国藩.钢筋混凝土矩形柱截面曲率延性系数概率分析[J].大连理工大学学报,2001,41(04):485-490.
    [49]吕西林,周定松,蒋欢军.钢筋混凝土框架柱的变形能力及基于性能的抗震设计方法[J].地震工程与工程振动,2005,26(06):53-61.
    [50] Priestley M J N, Paulay T. Seismic Design of Reinforced Concrete and Masonry Buildings[J] NewYork:John Wiley&Sons, Inc..1992.
    [51]Al-Haddad M S. Curvature Ductility of RC Beams Under Low and High Strain Rates[J]. ACIStructural Journal,1995,92(05):526-534.
    [52]Vidot-Vega A L, Kowalsky M J. Relationship between Strain, Curvature, and Drift in ReinforcedConcrete Moment Frames in Support of Performance-Based Seismic Design[J]. ACI StructuralJournal,2010,107(03):291-299.
    [53]钟益村,任富栋,田家骅.二层双跨钢筋混凝土框架弹塑性性能试验研究[J].建筑结构学报,1981,2(03):34-41.
    [54]徐云扉,胡庆昌,陈玉峰,等.低周反复荷载下两跨三层钢筋混凝土框架受力性能的试验研究[J].建筑结构学报,1986,7(02):1-16.
    [55]陆新征,叶列平,潘鹏,等.钢筋混凝土框架结构拟静力倒塌试验研究及数值模拟竞赛Ⅰ:框架试验[J].建筑结构,2012,42(11):19-22.
    [56]陆新征,叶列平,潘鹏,等.钢筋混凝土框架结构拟静力倒塌试验研究及数值模拟竞赛Ⅱ:关键构件试验[J].建筑结构,2012,42(11):23-26.
    [57]整体框架拟静力倒塌试验分析竞赛[DB/OL]. http://www.collapse-prevention.net/show.asp?ID=10&adID=2.2013.4.10.
    [58] Mazzorti S, McKenna F, Scott M H, et al. OpenSees users manual[R]. PEER, University of Calffornia,Berkeley,2004.
    [59] MATLAB百度百科[DB/OL]. http://baike.baidu.com/view/10598.htm.2013.03.10.
    [60]Kent D C,Park R. Flexural Members with Confined Concrete[J]. Journal of the StructuralDivision,1971,97(07):1969-1990.
    [61]Mazzoni S,McKenna F, Fenves G L. OpenSees Command Language Manual[Z]. Berkeley: PEER,University of California,2007.
    [62] Menegotto, M. and Pinto, P.E Method of Analysis for Cyclically Loaded Reinforced Concrete PlaneFrames including Changes in Geometry and Non-elastic Behavior of Elements under CombinedNorma Force and Bending[J]. Proc. of IABSE Symposium on Resistance and Ultimate Deformabilityof Structures Acted on by Well Defined Repeated Loads1973.15-22.
    [63]Scott M H, Fenves G L. Plastic Hinge Integration Methods for Force-Based Beam–ColumnElements[J]. Journal of Structural Engineering,2006,132(02):244-252.
    [64] Priestley M J N, Paulay T. Seismic Design of Reinforced Concrete and Masonry Buildings[J] NewYork:John Wiley&Sons, Inc.1992.
    [65]雷拓,钱江,刘伯权.既有钢筋混凝土框架结构基于性能的抗震评估[J].工程抗震与加固改造,2013,35(03):113-120.
    [66]01-2008JTG/TB.公路桥梁抗震设计细则[S].北京:人民交通出版社,2008.
    [1]Mazzorti S, McKenna F, Scott M H, et al. OpenSees users manual[R]. PEER, University of Calffornia,Berkeley,2004.
    [2] Priestley M J N, Paulay T. Seismic Design of Reinforced Concrete and Masonry Buildings[M].NewYork: John wiley&Sons,1992.
    [3] Palm W J. Introduction to MATLAB7for Engineers[M]. New York: McGraw-Hill,2005.
    [4]王亚勇.关于设计反应谱时程法和能量方法的探讨[J].建筑结构学报,2000,21(01):21-28.
    [5]Bommer J J, Acevedo A B. The use of real earthquake accelerograms as input to dynamic analysis[J].Journal of Earthquake Engineering,2004,8(spec01):43-91.
    [6]李英民,刘立平.工程结构的设计地震动[M].北京:科学出版社,2011.
    [7]GB50011-2010,建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [8]卢啸,陆新征,叶列平.超高层建筑地震动强度指标探讨[J].土木工程学报,2012,45(S1):292-296.
    [9]耿方方,丁幼亮,谢辉,李爱群,宋建永,李万恒,王玉倩.近断层地震动作用下长周期结构的地震动强度指标[J].东南大学学报(自然科学版),2013,43(01):203-208.
    [10]陈国平,温留汉·黑沙,王帅.多种表征强震动记录特性的参数对比分析[J].华南地震,2011,31(02):45-53.
    [11]叶列平,马千里,缪志伟.结构抗震分析用地震动强度指标的研究[J].地震工程与工程振动,2009,29(04):9-22.
    [12]Nau J M, Hall W J. Scaling methods for earthquakeresponse spectra [J]. ASCE Journal ofStructuralEngineering,1984,110(07):1533-1548.
    [13]Riddell R. On ground motion intensity indices [J].Earthquake Spectra,2007,23(01):147-173.
    [14]Fajfar P, Vidic T, Fischinger M. A measure ofearthquake motion capacity to damagemedium-periodstructures [J]. Soil Dynamics and EarthquakeEngineering,1990,9(05):236-242
    [15]郝敏,谢礼立,李伟.基于砌体结构破坏损伤的地震烈度物理标准研究[J].地震工程与工程振动,2007,27(05):27-32.
    [16]FEMAP695Quantification of Building seismic performance factors[R].Washington DC,2009.5.
    [17]PEER Ground Motion Database[DB/Ol]. http://peer.berkeley.edu/peer_ground_motion_database/site,2013.5.20.
    [18]PEER Strong Motion Database[DB/Ol]. http://peer.berkeley.edu/smcat/search.html,2013.5.21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700