用户名: 密码: 验证码:
碳纤维增强Si-HAC及其生物复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羟基磷灰石(hydroxyapatite, Ca10(PO4)6(OH)2, HA)是脊椎动物骨骼和牙齿的主要无机成分,在齿骨中约占97%,骨骼中占77%。HA具有优良的生物相容性、生物活性、骨传导作用和骨诱导作用等生物学性能,人体骨细胞可以和HA在HA表面形成化学键合,且结合强度高、稳定性好。研究表明,植入骨中的HA具有诱导骨细胞生长的作用,并逐步参与代谢,是可以完全与生物体骨、齿结合成一体的一类生物陶瓷,因此被广泛用作硬组织修复和替代材料。但HA本身强度低、脆性大且重复性差,只能被应用在牙槽脊增高、耳小骨替换以及颌面骨修复等非承重材料方面,而难以应用于承重骨方面,因此需要对HA进行增强增韧。
     以分析纯硝酸钙[Ca(NO3)2·4H2O]、磷酸氢二铵[(NH4)2HPO4]、尿素[CO(NH2)2]和正硅酸乙酯(TEOS)为起始原料,采用微波化学反应法制备出纳米Si-HA粉体,粉体在800℃热处理3 h。结果表明,所制备的Si-HA粉体的晶粒平均尺寸随Ca(NO3)2·4H2O溶液浓度的增加呈现先减小后增大的趋势,随反应时间的延长和反应温度的升高,晶粒平均尺寸随之减小;球磨反应原料或产物,均易于获得粒度较小的结晶产物;延长陈化时间,有利于形成与人体骨组织成分更接近的Si-HA粉体;反应产物用无水乙醇洗涤,有益于粉体的分散。
     以Si-HA粉体为原料,碳纤维为增强相,丙烯酸/衣康酸的缓冲液中加入柠檬酸钠为凝固剂作为固相,在室温条件下,将固、液两相均匀调和后制备出硅羟基磷灰石骨水泥(Cf/Si-HAC)生物材料。结果表明,Cf/Si-HAC的抗折强度随碳纤维体积含量、硅烷偶联剂KH-550质量含量和柠檬酸钠质量含量的增加均呈现先增大后减小的趋势。当碳纤维体积含量为30%、硅烷偶联剂KH-550质量含量为0.8%、柠檬酸钠质量含量为25%时,骨水泥的抗折强度达到极大值43.8 MPa。
     Cf/Si-HAC生物复合材料的孔隙率随Si含量的增加呈现先减小后增大(61%-63%)的趋势,和抗折强度的变化趋势正好相反,当Si含量为4wt%时,复合材料的孔隙率值最小,为49%。孔隙率随烧结温度的增加而增加(45%-68%),所制备复合材料的孔隙率均满足人体自然骨对孔隙率的要求,说明合成骨水泥材料所采用的工艺是合适的。
     Cf/Si-HAC复合材料的凝结时间随Si含量的增加近似呈线性增加,初凝时间从6min增加到15min。
     以聚甲基丙烯酸甲酯(PMMA)、甲基丙烯酸甲酯(MMA)和Si-HA为反应原料,过硫酸钾(KPS)为引发剂,碳纤维纤维为增强相,采用悬浮聚合的方法,制备出Cf/Si-HAC/PMMA-PMA生物复合材料。结果表明,Cf/Si-HAC/PMMA-PMA生物复合材料的抗折强度和抗压强度均随复合材料中PMMA/PMA体积比、KPS引发剂质量含量、W/O体积比、溶液反应温度和碳纤维体积含量的增加呈现先增大后减小的趋势,抗压强度大于抗折强度,当PMMA/PMA体积比、KPS引发剂质量含量、W/O体积比、溶液反应温度和碳纤维体积含量分别为8/2、1.5%、3/1、80℃和1.5%时,复合材料的抗折强度和抗压强度分别达到最大值109.5MPa和239.8MPa、111.7MPa和240.5MPa、110.8MPa和240.6MPa、110.8MPa和240.2MPa以及110.9 MPa和240.8MPa。
     以壳聚糖和HA为原料,碳纤维为增强相,通过悬浮聚合的方法制备出Cf/Si-HAC/CS生物复合材料。结果表明,Cf/Si-HAC/CS生物复合材料的抗折强度和抗压强度均随复合材料中HA/CS体积比、戊二醛交联剂质量含量、溶液反应温度和碳纤维体积含量的增加呈现先增大后减小的趋势,抗压强度大于抗折强度,当Si-HA/CS体积比、戊二醛交联剂质量含量、溶液反应温度和碳纤维体积含量分别为2/20、0.4%、60℃和1.5%时,复合材料的抗折强度和抗压强度分别达到最大值65.57MPa和76.58MPa、70.10MPa和86.32MPa、70.08MPa和92.34MPa以及62.12 MPa和105.15MPa。
     Cf/Si-HAC/PMMA-PMA和Cf/Si-HAC/CS生物复合材料分别在模拟体液(simulated body fluid, SBF)中浸泡时,随浸泡时间的延长(1d-28d),两种复合材料的表面逐渐被沉积的HA所覆盖,同时复合材料的力学性能变化很小,以上两点说明所制备的生物复合材料不仅具有良好的生物活性,而且在SBF中的浸泡对其力学性能几乎没有影响。
Hydroxyapatite (HA) is the main inorganic component of vertebrates in bones and teeth with similar structure, which contains 77% in body bones and 97% in dental bones. The bone cells can react with HA in its surface to form good combination intensity and good stability due to its excellent biocompatability, bioactivity, conductibility and induction of bone, etc. It shows that the HA has been widely used in human hard tissue repair and replacement because it can take effect in inducing the bone cells to grow and metabolize gradually, so it is the kind bioceramic which can combine with organism bones and teeth. However, HA only used in alveolar ridge augmentation, ear bones replacement and maxillofacial bone repair in virtue of the weak intensity and repeatability of HA itself. Hence, it is important to be reinforced and toughened.
     Nano-Si-HA powders sintered at 800℃for 3h were prepared by the microwave chemical reaction process using calcium nitrate [Ca(NO3)2·4H2O], ammonium dibasic phosphate [(NH4)2HPO4], carbamide and ethyl silicate;tetraethyl orthosilicate(TEOS)as raw materials. The results show that the particles average size display a trend of decreasing firstly and then increasing with Ca(NO3)2·4H2O solution concentration. The particles average size decrease with the increasing of reaction time and temperature. The smaller particles were easy to obtain by ball grinding the raw materials and products and extending the aging time. The as-prepared products washed by alcohol anhydrous are helpful to disperse.
     Carbon fiber reinforced silicon-substituted hydroxyapatite bone cements (Cf/Si-HAC) biocomposites were prepared using a buffer solution of acrylic acid and itaconic acid as gelling agent. The results show that the flexural strenth display a trend of increasing to a maximum and then decreasing with the carbon fibers volume fraction, silane coupling agent KH-550 mass fraction and sodium citrate content. When the carbon fibers volume fraction, silane coupling agent KH-550 mass fraction and sodium citrate content reaches 30%,0.8% and 25%, respectively, the flexural strength reaches the maximum value of 43.8 MPa.
     The porosity of Cf/Si-HAC biocomposites decreases firstly and then increases (61%-63%) with the increasing of Si content, which is opposite with the flexural strength. When the Si mass fraction is 4%, the porosity of the composite reaches the mimimum of 49%. The porosity increases (45%-68%) with sintering temperature, it shows that the as-prepared composites are conform to body bones.
     The setting time of the Cf/Si-HAC increased almost linearly from 6min to 15min with the Si content.
     Carbon fiber reinforced polymethyl methacrylate (PMMA)-polymethyl acrylate (PMA) biocomposites (Cf/Si-HAC/PMMA-PMA) were prepared by suspension polymerization process using polymethylmethacrylate (PMMA), methyl methacrylate (MMA) and Si-HA powders as raw materials, potassium persulfate (KPS) as initiator. The results show that the flexural strength and compressive strength of the as-prepared Cf/Si-HAC/PMMA-PMA composites both display a trend of increasing firstly and then decreasing with increasing of the PMMA/PMA volume ratio, KPS mass fraction, W/O volume ratio, the reaction temperature of solutions and carbon fibers volume fraction, and the compressive strength is bigger than the flexural strength. When the PMMA/PMA volume ratio, KPS mass fraction, W/O volume ratio, the reaction temperature of solutions and carbon fibers volume fraction reaches 8/2,1.5%,3/1,80℃and 1.5%, respectively, the flexural strength and compressive strength Cf/PMMA-PMA composite arrived to a maximum of 109.5Mpa and 239.8MPa, 111.7Mpa and 240.5MPa,110.8Mpa and 240.6MPa,110.8Mpa and 240.2MPa, 110.9 Mpa and 240.8MPa.
     Carbon fiber reinforced chitosan and Si-HA biocomposites (Cf/Si-HAC/CS) were prepared by suspension polymerization process using chitosan and HA as raw materials. The results show that the flexural strength and compressive strength of the as-prepared Cf/Si-HAC/CS composites both display a trend of increasing firstly and then decreasing with increasing of the Si-HA/CS volume ratio, gultaraldehyde cross-linking mass fraction, reaction temperature of solutions and carbon fibers volume fraction, and the compressive strength is bigger than the flexural strength. When the Si-HA/CS volume ratio, gultaraldehyde cross-linking mass fraction, reaction temperature of solutions and carbon fibers volume fraction reaches the 2/20,0.4%,60℃and 1.5%, respectively, the flexural strength and compressive strength of the Cf/HA-CS composite arrived to a maximum of 65.57Mpa and 76.58MPa,70.10Mpa and 86.32MPa,70.08Mpa and 92.34MPa and 62.12Mpa and 105.15MPa.
     The surface of the as-prepared Cf/Si-HAC/PMMA-PMA and Cf/Si-HAC/CS biocomposites were both covered by Si-HA when they were immersed from 1 day to 28 days in simulated body fluid (SBF), and the mechanical properties almost no changing. It shows that the two biocomposites not only shows the excellent bioactivity, but also the mechanical properties of them have almost no change in SBF solutions.
引文
[1]俞耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社,2000:1-2.
    [2]阮建明,邹俭鹏,黄伯云.生物材料学[M].北京:科学出版社,2004:1-3.
    [3]蒋电明.生物活性骨修复材料[N].科学中国人,2005-5-5(4)
    [4]李新化.羟基磷灰石生物陶瓷粉体制备及其在钛基体上的涂覆[D].合肥:合肥工业大学,2003.
    [5]韩艳君,李木森,吕宇鹏.羟基磷灰石生物复合材料的应用进展[J].化工进展,2004,3(9):968-970.
    [6]陈菲.纳米羟基磷灰石生物材料的制备及性能研究[D].厦门:厦门大学,2004.
    [7]李世普,陈晓明.生物陶瓷[M].武汉:武汉工业大学出版社,1989:2-3.
    [8]刘子胜,刘昌胜.无机骨粘结剂[J].材料导报,2000,14(5):32-35.
    [9]储成林,朱景川,尹钟大等.羟基磷灰石(HA)生物复合材料的研究进展[J].中国陶瓷,1999,30(6):606-608.
    [10]张德正,王保锋,纪元玉等.医用羟基磷灰石陶瓷的制备与应用[J].中国陶瓷,1998,34(6):24-26.
    [11]张玉梅.含镧羟基磷灰石的合成和性能研究[J].牙体牙髓牙周病学杂志,2000,10(3):149-151.
    [12]陈德敏.磷灰石骨水泥材料的物性研究[J].生物医学工程学杂志,2000,17(1):13-15.
    [13]Bacquet Z, LeGeros, John PL. An introduction to bioceramics:Dense hydroxyapatite. World Scientific Publishing,1993:146-149.
    [14]宋胜云,钱济先,张雪梅.磷酸钙骨水泥固定锁骨骨折的稳定性观察[J].中国临床康复,2002,6(2):23-25.
    [15]朱伟民,王大平,孟志斌等.纳米羟基磷灰石人工骨修复骨缺损的实验研究[J].中国临床解剖学杂志,2006,24(6):670-673.
    [16]王瑞芳,文达,谢兴益等.纳米羟基磷灰石骨修复复合材料的研究进展[J].生物医学工程学杂志,2008,25(5):1231-1234.
    [17]崔阳,刘一,陈学思等.改性羟基磷灰石骨修复纳米复合材料的制备及生物学评价[J].中国组织工程研究与临床康复,2007,11(26):5074-5077.
    [18]Chang M C, Douglas W H, Tanaka J. Organic-inorganic interaction and the growth mechanism of hydroxyapatite crystals in gelatin matrices between 37℃ and 80℃[J]. Journal of Materials Science:Materials Medicine,2006,17:387-391.
    [19]周立伟,魏世成,李玉宝等.纳米羟基磷灰石/聚酰胺66复合人工骨修复颅骨缺损的动物实验研究[J].口腔医学,2009,29(11):561-563.
    [20]石国华,丁诚,龚连生等.壳聚糖/羟基磷灰石纳米复合材料修复骨缺损研究[J].中国现代医学杂志,2007,17(19):2322-2329.
    [21]张利,李玉宝,魏杰等.纳米羟基磷灰石/壳聚糖复合骨修复材料的共沉淀法制备及其性能表征[J].功能材料,2005,36(3):441-445.
    [22]甘少磊,冯庆玲.卡拉胶/纳米羟基磷灰石/胶原可注射骨修复材料的制备与表征[J].中国医学科学院学报,2006,28(5):710-713.
    [23]黄永辉,沈铁城,徐晓峰等.纳米羟基磷灰石/胶原骨修复骨缺损的效果评估[J].中国临床康复,2006,10(37):51-54.
    [24]黄涛,常祺,黄昌林等.NHAC/BMP复合物修复兔桡骨大段缺损及加强局部VEGF表达的研究[J].中医正骨,2009,21(8):574-576.
    [25]张龙城,宋为明,唐增福等.BMP-HA人工听骨在显微外科鼓室成形术中的应用[J].中华显微外科杂志,2005,28(1):30-31.
    [26]徐艺展,刘榕芳,肖秀峰.羟基磷灰石/淀粉基复合生物材料[J].材料导报,2005,19(9):100-105.
    [27]刘冰,王忠义,陈鹏等.纳米晶羟基磷灰石复合胶原材料在拔牙创修复中的作用[J].临床口腔医学杂志,2005,21(5):259-261.
    [28]邱静,张杰魁,张敏等.氧化钇-羟基磷灰石骨修复材料的研究[J].生物医学工程学杂志,1998,15(1):26-27.
    [29]徐侃,杨倩,聂晶晶.二氧化钛与羟基磷灰石纳米复合材料制备与表征[J].浙江大学学报,2009,43(9):1719-1722.
    [30]王莉丽,王秀峰,江红涛.多孔氧化锆基体上涂覆羟基磷灰石涂层材料的制备和性能[J].机械工程材料,2008,32(12):5-7.
    [31]陈菲,林昌健,王周成.钛基表面纳米羟基磷灰石涂层的电泳沉积[J].电化学,2005,11(1):67-71.
    [32]李颖华,曹丽云,黄剑锋等.碳/碳复合材料表面纳米HAp/壳聚糖生物复合涂层的制备[J].航空材料学报,2009,29(4):81-84.
    [33]熊信柏,曾燮榕,万怡灶等.碳/碳复合材料表面制备羟基磷灰石涂层的研究进展[J].机械工程材料,2009,33(7):1-4.
    [34]郑学斌,丁传贤,王毅等.等离子喷涂HA/Ti复合涂层研究[J].无机材料学报,2000,15(6):1083-1088.
    [35]朱梓园,张富强,郑学斌.钛种植体载银抗菌羟基磷灰石涂层的制备及结构特征[J]. 上海口腔医学,2006,15(5):543-546.
    [36]憨勇,徐可为.针状缺钙羟基磷灰石涂层的烧结特性及磷酸氢钙相的影响[J].硅酸盐学报,1998,26(4):458-464.
    [37]郭洁,王欣宇,唐舟等.通过仿生法在镁合金表面制备羟基磷灰石涂层的研究[J].现代生物医学进展,2009,9(12):2267-2269.
    [38]张彩珍,李运,汤玉斐等.射频磁控溅射法制备羟基磷灰石/β-磷酸三钙生物涂层[J].生物骨科材料与临床研究,2008,5(2):48-50.
    [39]廖颖敏,冯祖德,雷彩霞.电诱导牙釉质表面羟基磷灰石涂层形成的研究[J].无机化学学报,2009,25(7):1187-1193.
    [40]李娟莹,张超武.磷酸钙骨水泥作为药物缓释载体的研究[J].陶瓷,2006,(6):12-15.
    [41]LI Juanying, HUANG Jianfeng, CAO Liyun. Progress on calcium phosphate cement prepared as druy dilivery system[J]. Journal of Shaanxi University of Science & Technology,2008,26(3):25-29.
    [42]黄大建,张文熊,刘晶冰等.纳米羟基磷灰石/壳聚糖-明胶复合微球的制备及性能[J].中国组织工程研究与临床康复,2009,13(16):3097-3100.
    [43]#12Drug Delivery System,1993,8(6):467-471.
    [44]孙明林,胡蕴玉.磷酸钙骨水泥的研究和应用进展[J].中国骨科杂志,2002,22(1):49-54.
    [45]刘彦,邵长艳.天然型网孔羟基磷灰石复合BMP基因质粒直接盖髓的实验研究[J].中国医药指南,2008,6(4):9-11.
    [46]Hideki A, Masataka O. Effects of Adriacin-adsorbing HAp-sol on Ca-9 cell Growth[J]. Reports of the Institute for Medical and Dental Engineering,1993,(27):39-44.
    [47]Otsuka M, Matsuda Y, W ang Z, et al. Effect of sodium bicarbonate amount on in vitro indomethacin release from self-setting carbonated-apatite cement[J]. Pharmacy Research, 1997,14(4):444-449.
    [48]Takechi M, Miyamoto Y, Ishikawa K, et al. Effects of added antibiotics on the basic peoperties of antiwashout-type fast-setting calcium phosphate cement[J]. Journal of Biomedical Materials Research,1998,39(2):308-316.
    [49]尹邵雅,常祥平.BMPs载体及缓释系统研究新进展[J].国外医学生物医学工程分册,2002,25(1):12-15.
    [50]石和彬,刘羽,钟宏.磷灰石在抗菌材料中的应用[J].化学与生物工程,2003,6(6):48-49.
    [51]冯晋阳,吴建锋,徐晓虹.羟基磷灰石抗菌防的研究[J].硅酸盐通报,2004,(4):6-10.
    [52]卢志华,孙康宁.载银羟基磷灰石的制备与表征[J].稀有金属材料与工程,2009,38(1):56-60.
    [53]叶彬,崔凯,冯庆玲等.载银氟磷灰石抗菌剂的制备和耐高温性能研究[J].无机材料学报,2003,18(2):485-489.
    [54]张海斌,柳清菊,张瑾等.银系氟磷灰石抗菌剂的制备和性能研究[J].功能材料与器件学报,2005,11(3):299-302.
    [55]张士成,李世普.磷灰石超微粉对癌细胞作用的初步研究[J].武汉工业大学学报,1996,18(1):5-8.
    [56]袁媛,唐胜利,洪华等.纳米羟基磷灰石的制备及其抗肿瘤活性的研究[J].中国生物医学工程学报,2005,24(1):26-30.
    [57]刘静霆,韩颖超,李世普等.羟基磷灰石纳米粒子负载阿霉素的体外抗肿瘤活性研究[J].中国生物医学工程学报,2008,27(4):572-576.
    [58]林骏,杨进城.复合抗肿瘤活性珊瑚羟基磷灰石人工骨抗骨巨细胞瘤的体外实验[J].中国组织工程研究与临床康复,2009,13(34):6637-6640.
    [59]赵森林,廖立兵.介孔羟基磷灰石研究进展[J].有色金属,2009,61(2):55-60.
    [60]李显波.纳米羟基磷灰石的制备方法及其在牙膏中的应用[J].牙膏工艺,2005,(1):28-29.
    [61]冯德厚,李毅苹.羟基磷灰石与美容牙膏[J].牙膏工业,2004,(3):16-18.
    [62]彭继荣,李珍.羟基磷灰石的应用研究进展[J].中国非金属矿工业导刊,2005,(2):12-15.
    [63]刘羽,彭明生.磷灰石在废水治理中的应用[J].安全与环境学报,2001,1(1):9-12.
    [64]罗惠华,程静,钱功明等.颗粒化磷矿物材料重金属吸附剂的研制[J].矿产综合利用,2007,(5):20-24.
    [65]戴怡.羟基磷灰石陶瓷在室温下的湿敏性能[J].大连轻工业学院院报,1998,17(3):26-29.
    [66]K de Groot, CAPT Klein, JGC Wolke et al. Handbook of bioactive ceramics:Chemistry of calcium phosphate bioceramics. CRC Press, Boca Raton, Florida,1990:3-16.
    [67]赵冰,杜荣归,林昌健.羟基磷灰石生物陶瓷材料的制备及其新进展[J].功能材料,2003,34(2):126-132.
    [68]吕迎,李慕勤.多孔羟基磷灰石生物陶瓷的研究现状与进展[J].佳木斯大学学报,2003,21(4):439-443.
    [69]张超武,李娟莹.共沉淀法制备羟基磷灰石影响因素的研究[J].材料导报,2006,20(Ⅶ):390-392.
    [70]徐光亮,聂轶霞,赖振宇.水热合成强力磷灰石纳米粉体的研究[J].无机材料学报,2002,17(3):600-604.
    [71]廖其龙,徐光亮,尹光福等.纳米羟基磷灰石的水热合成[J].功能材料,2002,33(3):338-340.
    [72]张文龙,李永绣,刘燕燕.微波水热转化制备多孔羟基磷灰石微球[J].化工新型材料,2005,33(8):91-94.
    [73]李娟莹,黄剑锋,曹丽云等.工艺因素对碳纤维增强硅羟基磷灰石骨水泥抗折强度的影响[J].硅酸盐学报,2009,37(8):93-98.
    [74]张文龙,刘燕燕,李永绣等.核-壳型方解石/磷灰石复合微粉的微波辅助合成[J].硅酸盐通报,2005,4:94-96.
    [75]CAO Liyun, ZHANG Chuanbo, HUANG Jianfeng. Influence of temperature, [Ca2+], Ca/P ratio and ultrasonic power on the crystallinity and morphology of hydroxyapatite nanoparticles prepared with a novel ultrasonic precipitation method[J]. Materials Letters, 2005,59:1902-1906.
    [76]黄剑锋.溶胶-凝胶原理与技术[M].北京:化学工业出版社,2005.
    [77]王娟,李晨,徐博.溶胶-凝胶法的级别原理、发展及应用现状[J].化学工业与工程,2009,26(3):273-277.
    [78]BRINKER C J, SCHERER G W. Sol-Gel Science:The physics and chemistry of Sol-gel Processing [M]. San Diego:Academic Press,1990.
    [79]刘羽,钟康年,胡文云.溶胶-凝胶法合成条件与羟基磷灰石特征的关系[J].材料科学与工程,1997,15(1):63-65.
    [80]南开辉,王迎军.水解时间对溶胶-凝胶法制备羟基磷灰石粉体的影响[J].处理科学与工程学报,2004,22(2):175-178.
    [81]Toyoda M, Teranish E. Low temperature preparation of β-tri-calcium phosphate through sol-gel processing[J]. Journal of the Society of Japan,2000,108(2):213-215.
    [82]Lim G K, Wang J, Ng S C, etal. Processing of Fine Hydroxyapatite Powders ViaanInverse Microemulsion Route [J]. Materials Letters,1996(28):431-436.
    [83]Lim G K, Wang J, Ng S C, etal. Processing of Hydroxyapatite Via Microemulsion and Emulsion Routes [J]. Biomaterials,1997(21):1433-1439.
    [84]Lim G K, Wang J, Ng S C, etal. Nanosized Hydroxyapatite Powders from Microemulsions and Emulsions Stabilized by a Biodegradable Surfactant [J]. Material Chemistry,1999(9):1635-1639.
    [85]任卫,李世普,王友法.超细羟基磷灰石颗粒的反相微乳液合成[J].硅酸盐通报,2002(6):27-31.
    [86]赵亚凡,陈传忠.激光熔覆羟基磷灰石涂层的研究动态[J].激光技术,2006,30(6):614-617.
    [87]张亚平,高家诚,文静.钛合金表面激光熔凝一步制备复合生物陶瓷涂层[J].材料研究学报,1998,12(4):423-426.
    [88]DE M, MUL K, VEAM J L, et al. Laser treatment of plasma sprayed HA coatings[J]. Dental Research,1986,65(3):437-440.
    [89]高亚丽,熊党生,王存山等.医用镁合金激光熔覆羟基磷灰石涂层初探[J].特种铸造及有色合金,2009,29(4):305-309.
    [90]LI X D, Weng J, Tong W D, et al. Biomaterials,1997,18,1487-1493.
    [91]王昌祥,陈治清,邱静.离子束溅射沉积羟基磷灰石涂层钛种植体材料的制备和表征[J].功能材料,1999,30(4):438-440.
    [92]李东旭,耿艳丽,李延报.磷酸氢钙水解法合成羟基磷灰石纳米晶[J].无机化学学报,2008,24(1):83-87.
    [93]Monma H, Kamiya T. Preparation of hydroxyapatite by the hydrolysis of brushite. J.Mater.Sci.1987,22:247-250.
    [94]Lim G K, Wang, Ng S C, et al. Processing of hydroxyapatite via micro emulsion and emulsion routes. Biomaterials,1997,18(21):1433-1439.
    [95]Shurkhanzadeh M. Calcium phosphate coatings prepared by electro-crystallization from aqueous electrolytes[J]. Journal of Materials Science:Materials Medicine,1995,6: 90-94.
    [96]黄立业,憨勇,徐可为.电化学沉积-水热合成法制备羟基磷灰石生物涂层的工艺研究[J].硅酸盐学报,1998,26(1):87-91.
    [97]黄剑锋,沈基显,曹丽云等.C(f)/CS-HA复合材料的制备及性能研究[J].武汉理工大学学报,2009,31(11):33-35.
    [98]夏睿,方诗元,孔荣等.壳聚糖抗菌生物陶瓷的制备及其体内外实验研究[J].生物骨科材料与临床研究,2009,6(5):21-23.
    [99]Bigi A, Bracci B, Panzavolta S. Effect of added gelatin on the properties of calcium phosphate cement[J]. Biomaterials,2004,14:2893-2899.
    [100]申喜生.全髋关节置换中骨水泥应用的临床影响[J].浙江中西医结合杂志,2009,19(10):656-658.
    [101]曾丽平,曹丽云,黄剑锋等.HA改性短切碳纤维/PMMA生物复合材料力 学性能的研究[J].无机材料学报,2009,24(3):475-479.
    [102]Finebra M P, Fernande Z E, Boltong M C, et al. Compliance of an apatite calcium phosphate cement with some short-time clinical requirements in bone surgery, orthoplasties and dentistry[J]. Clinic Mater,1994,17(2):99-104.
    [103]徐立新,史雪婷,王彦平等.聚磷酸钙纤维增强增韧磷酸钙骨水泥的力学效应[J].中国组织工程研究与临床康复,2009,13(38):7474-7476.
    [104]邓启明,谢瑞娟.磷酸钙骨水泥/丝素材料的凝固时间初探[J].国外丝绸,2009,4:13-15.
    [105]郭大刚,徐可为,赵晓云等.固化条件对掺锶羟基磷灰石骨水泥凝结时间的影响[J].硅酸盐学报,2005,33(10):1292-1296.
    [106]徐铮青,林军,徐靖宏.磷酸钙骨水泥理化性能改进的研究进展[J].材料科学与工程学报,2009,27(4):649-652.
    [107]周鑫,夏群,苗军等.磷酸钙骨水泥改性研究进展[J].中国矫形外科杂志,2008,16(1):55-57.
    [108]杨娟娟,王秀鹏,叶建东.原料粒度对磷酸钙骨水泥性能的影响[J].材料科学与工程学报,2008,26(3):400-405.
    [109]姚志鹏,刘文革,倪国新.掺锶羟基磷灰石骨水泥的生物学特点及在骨科的应用[J].中国组织工程研究与临床康复,2008,12(36):7151-7154.
    [110]廖大鹏,周正炎,顾云峰等.锶磷灰石修复下颌骨缺损的实验研究[J].上海口腔医学,2000,9(2):73-75.
    [111]郭大刚,徐可为,憨勇.理想化学配比掺锶羟基磷灰石的热稳定性[J].稀有金属材料与工程,2006,35(3):379-382.
    [112]韩学哲,刘淼,同志超等.磷酸钙骨水泥替代骨的制备及其细胞生物相容性实验研究[J].颈腰痛杂志,2008,29(4):308-311.
    [113]杜瑞林,常江.含Zn、Mn生物玻璃的制备及性能研究[J].无机材料学报,2004,19(6):1354-1359.
    [114]唐佩福,郝立波,毛克亚等.羟基磷灰石骨水泥中碳酸根存在的意义及对溶解度的影响[J].生物医学工程与临床,2005,9(5):267-270.
    [115]李慧,杨洪.改进羟基磷灰石骨水泥的降解性研究进展[J].硅酸盐通报,2008,27(1):115-118.
    [116]张莉,马宁,车彦海等.rhBMP-2/n-HA/Co复合膜异位成骨的实验研究[J].实用口腔医学杂志,2009,25(5):650-653.
    [117]徐翔晖,王雪微,陈晓农.纳米生物材料的应用[J].纳米科技,2009,6(1):72-78.
    [118]孙瑞雪,郭燕川,张兵等.明胶/羟基磷灰石复合物微球中明胶对无机相影响的研究[J].影像科学与光化学,2009,27(5):342-350.
    [119]李峻峰,张利,左奕等.CS/n-HA复合微球的制备与表征[J].功能材料,2009,40(4):653-655.
    [120]李吉东,左奕,邹琴等.纳米羟基磷灰石/聚酰胺复合材料屏障膜的体外生物相容性[J].复合材料学报,2009,26(2):131-137.
    [121]孟纯阳,蒋电明,安洪等.多孔n-HA/PA66支架复合rhBMP-2修复兔桡骨缺损的实验研究[J].中国生物工程杂志,2009,29(8):8-13.
    [122]于婷,刘娅,王宇等.改性纳米羟基磷灰石/PLGA复合材料的制备及生物活性[J].高等化学学报,2009,30(7):1439-1444.
    [123]苏佳灿,李明,禹宝庆等.纳米羟基磷灰石/聚几内酯复合生物活性多孔支架研究[J].无机材料学报,2009,24(3):485-490.
    [124]董志红,李玉宝,邹琴等.多孔HA/PU复合支架材料生物相容性的评估[J].中国生物医学工程学报,2008,27(6):906-911.
    [125]兰小勇,周初松,田京等.海藻酸钙/纳米羟基磷灰石/胶原复合材料修复兔桡骨缺损[J].中国医学科学院学报,2009,31(4):459-463.
    [126]杜晓岩,毛艳,李慕勤等.羟基磷灰石-磷酸三钙/壳聚糖骨碎补复合材料修复骨缺损的实验研究[J].中国美容医学,2009,18(8):1125-1127.
    [127]林晓雯,韩德满.羟基磷灰石复合材料的制备及吸附性能的研究[J].科学技术与工程,2009,9(9):2527-2528.
    [128]肖云飞,闫玉华,万涛等.PMMA基复合骨板的制备及含胶量对理化性能的影响[J].生物骨科材料与临床研究,2009,6(2):44-46.
    [129]季金苟,李曦,周治国等.多孔Nano-dHA/PLA/BCP复合支架的制备及性能研究[J].无机材料学报,2009,24(3):480-484.
    [130]任英磊,赵宇航,索忠源等.非晶合金与羟基磷灰石复合材料的研究[J].功能材料,2009,40(3):397-400.
    [131]杨菊林,周长忍,田冶等.壳聚糖/羟基磷灰石膜的制备及对细胞生长的影响[J].生物医学工程学杂志,2009,26(3):580-584.
    [132]赵燚,徐武清,赵喆等.氧化铝羟基磷灰石修复兔桡骨节断性缺损的组织学观察[J].中国组织工程研究与临床康复,2008,12(49):9717-9721.
    [133]陈福平,胡巧玲,伍佳等.超顺磁性羟基磷灰石/壳聚糖棒材的制备[J].材料研究学报,2006,20(3):250-254.
    [134]陈福平,胡巧玲,陈亮等.原位沉析法制备磁性氧化铁羟基磷灰石/壳聚糖棒材[J].高分子学报,2006,(6):756-760.
    [135]李保强,胡巧玲,汪茫等.原位复合法制备层状结构的壳聚糖/羟基磷灰石纳米材料[J].高等化学学报,2004,25(10):1949-1952.
    [136]Haifeng Chen, Brian H. Clarkson, et al. Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure[J]. Journal of Colloid and Interface Science, 2005,288(1):97-103.
    [137]徐国富,牟申周,廖素兰等.用仿生自组装法制备的新型生物复合材料及表征[J].稀有金属快报,2006,25(5):25-29.
    [138]林晓艳,范红松,李旭东等.纳米羟基磷灰石/胶原复合材料的制备及生物学评价[J].中国生物医学工程学报,2006,25(1):63-68.
    [139]张琴,罗淼良,张强等.NaCl添加量对SF/HA复合多孔材料结构和性能的影响[J].苏州大学学报,2009,29(4):1-4.
    [140]卢晓英,王秀红,刘治等.反应pH值对原位水热沉积法制备纳米羟基磷灰石/壳聚糖复合材料的影响[J].复合材料学报,2009,26(4):53-58.
    [141]沈荣臻,陈民芳,刘德宝等.基于纳米羟基磷灰石溶胶的n-HA/PA66复合粉体制备与表征[J].无机化学学报,2009,25(2):236-242.
    [142]黄琼瑜,佘厚德,肖秀峰等.羟基磷灰石/聚几内酯-壳聚糖复合材料的制备与表征[J].复合材料学报,2009,26(1):24-30.
    [143]刘德宝,陈民芳,王晓伟.HA/Mg生物复合材料的制备及其腐蚀特性[J].稀有金属材料与工程,2008,37(12):2201-2205.
    [144]李明欧,肖秀峰,刘榕芳.含锌羟基磷灰石的水热合成与结构表征[J].硅酸盐学报,2008,36(3):378-382.
    [145]黄勇,王迎军,宁成云等.微弧氧化法制备含La羟基磷灰石生物活性涂层[J].稀有金属材料与工程,2008,37(7):1277-1280.
    [146]陈德敏,夏琳,刘雪阳.掺锶羟基磷灰石固溶体陶瓷不同孔径对成骨能力的影响[J].功能材料,1385-1388.
    [147]岳进,郭大刚,孙翔等.掺锶磷酸钙骨水泥的体外细胞生物学性能评价及其与掺锶量的相关性[J].西安交通大学学报(医学版),2008,29(5):522-526.
    [148]赵萍,孙康宁,朱广楠等.碳纤维增强磷酸钙骨水泥复合材料[J].硅酸盐学报,2005,33(1):32-35.
    [149]万涛,闫玉华,陈波等.PMMA/HA-GF复合材料[J].中国有色金属学报,2002,12(5):935-939.
    [150]孙康宁,李爱民,尹衍升等.碳纳米管/羟基磷灰石复合材料的制备研究[J].中国生物医学工程学报,2004,23(6):573-578.
    [151]曹丽云,郑斌,黄剑锋等.氧化锆纤维增强PMMA-PMA基复合材料的制备[J].稀有金属材料与工程,2007,36(1):781-783.
    [152]赵红,李旭,杨德安.固化液对α-磷酸钙-磷酸四钙骨水泥强度的影响[J].天津理工大学学报,2006,22(5):31-33.
    [153]杨洪,李慧.复合明胶的透磷灰石骨水泥性质研究[J].河南师范大学学报(自然科学版),2008,36(3):79-81.
    [154]郭连峰,张文光,王成焘.纳米羟基磷灰石的制备及结晶尺寸的控制[J].无机化学学报,2004,20(3):134-137.
    [156]庞晓峰,曾红娟.纳米羟基磷灰石粉体的生物活性研究[J].材料工程,2009,(4):14-18.
    [155]吴刚强,刘进荣,郎中敏等.羟基磷灰石纳米粉体的制备与表征[J].无机盐工业,2009,41(10):32-34.
    [157]Kim W, Saito F. Sonochemical synthesis of hydroxyapatite from H3PO4 solution with Ca(OH)2[J]. Ultrason sonochem,2001,(8):85-88.
    [158]Cuneyt T A. Combustion synthesis of calcium phosphate bioceramic powders[J]. Journal of Europe Ceramic Society,2000,20(23):89-94.
    [159]肖素岗,周振君,童昀等.凝胶注模法制备多孔羟基磷灰石陶瓷[J].应用化工,2009,38(1):73-77.
    [160]谢林,陈晓峰,赵娜如等.有机泡沫浸渍法制备多孔生物玻璃支架的研究[J].无机材料学报,2009,24(2):280-284.
    [161]唐晓恋,肖秀峰,刘榕芳.含硅羟基磷灰石的水热合成与结构表征[J].无机化学学报,2005,121(10):1500-1504.
    [162]肖凤娟,常虹,韩玉芳等.含硅羟基磷灰石粉体的合成及其与蛋白质的相互作用研究[J].功能材料,2007,12(38):2059-2063.
    [163]Knowles J C, Callcut S, Georgiou G Characterisation of the rheological properties and zeta potential of a range of hydroxyapatite powders[J]. Biomaterials,2000, 21:1387-1392.
    [164]张力,汪超,苑庆兰.沉淀法制备羟基磷灰石影响产物结晶和晶粒粒度的因素[J].武警医学院学报,2002.12(2):144-147.
    [165]陈亦平.新型磷酸钙骨水泥的制备和性能研究[D].天津:天津大学,2004.
    [166]Brown WE, Chow LC. Dental restorative cement pastes. US Pat.4518430 1985;21st May.
    [167]郑治,王剑龙,赵自平.磷酸钙骨水泥临床应用进展[J].中国医学工程杂质,2003,11(6):78.
    [168]Bigi A, Boanini E, Botter R, et al. α-Tricalcium phosphate hydrolysis to octacalcium phosphate:effect of sodium polyacrylate. Biomaterials,2002,23:1849-1854.
    [169]Friedman CD, Costantino PD, Takagi S, et al. BoneSource hydroxyapatite cement:a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J. Biomed. Mater. Res. (Appl. Biomater.),1998,43:428-432.
    [170]Ratier A, Gibson IR, Best SM, et al. Setting characteristics and mechanical behaviour of a calcium phosphate bone cement containing tetracycline. Biomaterials,2001, 22:897-901.
    [171]Lewandrowski KU, Gresser JD, Wise DL, et al. Osteoconductivity of an injectable and bioresorbable poly(propylene glycol-co-fumaric acid) bone cement. Biomaterials,2000, 21:293-298.
    [172]Wang X H, Ma J B, Feng Q L, et al. Skeletal repair in rabbits with calcium phosphate cements incorporated phosphorylated chitin. Biomaterials,2002,23:4591-4600.
    [173]王慧宇,周萘,周何铤.碳纤维表面处理对生物骨水泥结合性能的影响[J].功能材料,2008,5(39):845-850.
    [174]朱晏军,王玮竹,陈晓明等.复合材料人工颅骨的制备与力学性能[J].中国临床康复,2003,7(4):2078-2079.
    [175]朱晏军,闫玉华.无机纤维增强PMMA/HAp人工颅骨复合材料的研究及应用[D].武汉:武汉理工大学,2004.
    [176]倪杰,周根陶,曲晓飞.卵磷脂与双甘氨肽对碳酸钙变体和表面微结构的影响[J].高校地质学报,2007,13(4):644-645.
    [177]Wang Ziren, Chen Minghuang, Lin Jianhua, et al. Study of physical properties of hydroxyapatite cement artificial bone[J].F J Medical,2003,25(1):119-121.
    [178]ISO9917:1991,DentalWater-Based Cements[S].
    [179]刘昌胜,陈飞跃,黄粤.原料颗粒对CPC水化硬化过程的影响[J].硅酸盐学报,1999,27(2):139-147.
    [180]FINEBRA M P, FERNANDEZ E, BOLTONG M C, et al. Compliance of an apatite calcium phosphate cement with some short-time clinical requirements in bone surgery, orthoplasties and dentistry[J]. Clinic Materials,1994,17(2):99-102.
    [181]曹丽云,郑斌,黄剑锋等.氧化锆纤维增强PMMA-PMA基复合材料的制备[J].稀 有金属材料与工程,2007,S1:781-783.
    [182]周福刚,董向红,万怡灶等.碳纤维增强聚乳酸(C/PLA)复合材料的力学性能(Ⅰ)[J].,材料工程,2000,5:16-17.
    [183]Li Zhongming, Yang Mingbo, Feng Jianmin et al. Composite of Wheat Straw/PP[J]. China Plastics Industry,2000,28(4):9-11.
    [184]Cai Hong. Mechanical Property of Sisal Fiber/Phenol Formaldehyde Composites[J]. Plastics,2004,33(5):70-73.
    [185]薛茹君,吴玉程.硅烷偶联剂表面修饰纳米氧化铝[J].应用化学,2007,24(11):1236-1239.
    [186]张士华,陈光,崔崇等.偶联剂处理对玻璃纤维/尼龙复合材料力学性能的影响[J].复合材料学报,2006,23(3):31-35.
    [187]廖建国,王学江,左奕等.硅烷偶联剂对纳米羟基磷灰石表面改性的研究[J].无机材料学报,2008,23(1):145-149.
    [188]陈德敏.磷灰石骨水泥材料的物性研究[J].第四届全国口腔材料学术交流会论文汇编.上海,1998.10:25.
    [189]陈德敏.羟基磷灰石骨水泥固化液组成变化对压缩强度的影响[J].口腔材料器械杂志,1999,8(3):118-119.
    [190]Doboer J, Vermilyea S G, Brady R E. The Effect of Carbon Fiber Orientation on the Fatigue Resistance and Bending Properties of Two Denture Resins[J]. Journal of Prosthetic Dentistry,1984,51:119-121.
    [191]Kim YS, Kang YH, Kim JK. The effect of bone mineral particles on the porosity of bone cement[J]. Biomed Mater Eng 1994,4(1):37-46.
    [192]Dalbya MJ, Silvioa L. Di, Harperb EJ, et al. Increasing hydroxyapatite incorporation into poly(methylmethacrylate) cement increases osteoblast adhesion and response [J]. Biomaterials 2002,23(2):569-576.
    [193]韩红梅,李贺军,张守阳等.三维编织碳/碳复合材料的拉伸性能及损伤[J].机械科学与技术,2002,21(3):451-453.
    [194]S Suresh, Subra. Fatigue of materials[M]. England:Cambridge University Press,1991: 117-119.
    [195]徐耀祖.相变原理[M].北京,科学出版社,1988:78-95.
    [196]段友容,吕万新,王朝元等.在动态模拟体液中致密CaP陶瓷表面形貌对类骨磷灰石层形成的影响研究[J].生物医学工程学杂志,2002,19(2):186-190.
    [197]刘敬肖,史非,于玲等.模拟体液中纳米羟基磷灰石/壳聚糖的制备及表征[J].大连 轻工业学院学报,2007,26(4):332-337.
    [198]许勇,朱立新,田京等.纳米羟基磷灰石/壳聚糖复合材料与兔骨髓间充质干细胞的生物性[J].中国组织工程研究与临床康复,2009,13(8):1423-1427.
    [199]张建湘,汤建,徐斌.壳聚糖钉固定兔胫骨逝端截骨的实验研究[J].生物医学工程学杂志,1998,15(2):179-182.
    [200]程先苗,李玉宝,张利等.纳米羟基磷灰石/壳聚糖复合膜的制备及表征[J].功能材料,2008,39(6):983-987.
    [201]涂献玉,高林,邓德明等.碳纤维增强壳聚糖内固定棒的研制及力学性能评价[J].长江大学学报,2005,2(12):333-335.
    [202]张利,李玉宝,魏杰等.纳米羟基磷灰石/壳聚糖复合骨修复材料的共沉淀法制备及性能表征[J].功能材料,2005,36(3):441-445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700