用户名: 密码: 验证码:
羟基磷灰石纳米材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体的骨骼和牙齿的主要成分与羟基磷灰石十分相似,因而引起了研究者的广泛关注。随着羟基磷灰石的成功合成,人们也逐渐发现了它具有良好的生物相容性和生物活性,可以引导骨的生长,并可与骨组织形成牢固的骨性结合,因而被公认为性能良好的骨修复替代材料。纳米材料具有尺寸小、表面积大等诸多特点,决定了其具有优异的性能。在羟基磷灰石中掺杂稀土发光离子,可以起到生物示踪的作用。因而制备出羟基磷灰石纳米材料是一个具有生物应用前景的重要课题。
     本文以CaCO3、NH4H2PO4为原料,CTAB为模板,利用水热法在不同温度下制备了羟基磷灰石纳米棒;以CTAB和EDTA为双模板,利用水热法制备了羟基磷灰石纳米棒;以EDTA为模板制备了铕、铽掺杂羟基磷灰石。同时,以Ca(CH3COO)2·H2O、H3PO4、PVP、DMF为主要原料,利用静电纺丝法制备了棒状羟基磷灰石及铕、铽掺杂羟基磷灰石多孔薄膜。采用XRD、FESEM、FTIR、UV-Vis,荧光光谱等分析技术对样品进行了系统表征。结果表明,所制备的铕、铽掺杂羟基磷灰石纳米棒都具有较好的发光性质,而且无生物毒性,可以在生物体内起到生物示踪作用,获得了一些有意义的结果,为羟基磷灰石纳米材料的进一步深入研究奠定了基础。
The main ingredients of skeleton and teeth of human are similar with chemical composition of hydroxyapatite, and therefore, researchers pay more attention to it. With the successful synthesis of hydroxyapatite, people also realize that it has better biocompatibility and bioactivity, which leads bone to grow up. It can combine with bones and therefore it is publicly called as good substitute materials for bone modification. Nanomaterials have the characteristics of small size and big surface area, which insure its better properties. If rare earth ions are incorporated into hydroxyapatite, it will play an important part in biological tracer. Thence, it will be an important research subject of good biological application to fabricate hydroxyapatite nanomaterials.
     In this dissertation, at the different temperature conditions, using CaCO3 and NH4H2PO4 as starting materials, hydroxyapatite nanorods were prepared via hydrothermal method using CTAB as a template. Hydroxyapatite naonorods were prepared via hydrothermal method using both CTAB and EDTA as templates. Europium-doped and terbium-doped hydroxyapatite nanorods were prepared via hydrothermal method using EDTA as a template. In addition, rod-shaped hydroxyapatite. Europium-doped and terbium-doped hydroxyapatite thin membranes were prepared by electrospinning using Ca(CH3COO)2·H2O, H3PO4, PVP and DMF as main starting materials. The samples were systematically characterized by XRD, FESEM. EDS, FTIR, Fluorescence, etc. The results show that Europium-doped and terbium-doped hydroxyapatite naonorods have better fluorescence properties without any biological toxicity, which can be used as biological tracer. Some significant results were achieved, and solid foundations were built for the future study of hydroxyapatite nanomaterials.
引文
[1]孙玉绣.羟基磷灰石生物陶瓷纳米粒子的制备、表征及生长机理的研究[D].北京:北京化工大学应用化学.2007.
    [2]刘莹.功能性纳米羟基磷灰石的制备.表征及性能研究[D].吉林大学博士学位论文.吉林:吉林大学物理化学,2009.
    [3]王仲山.朱庆纲.谈荣生,方星伯.稀土元素在国民经济中的应用及其前景[J].科技情报开发与经济,1999,5:28-30.
    [4]薛茂权,熊党生.闫杰.稀土润滑材料的摩擦学研究[J].稀有金属,2004.28(1):248-251.
    [5]吴刚强.刘进荣.纳米级羟基磷灰石粉体的制备工艺[J].内蒙古石油化工,2006.7:14-15.
    [6]朱晏军.王玮竹.闫玉华.纳米级羟基磷灰石的制备方法及应用[J].佛山陶瓷,2003.7(13):9-11.
    [7]Nims L F J.Preparatiove techniques based on the dissociation constants of hosphoric acid[J].Amer Chem Soc.,1934.56: 1110-1115.
    [8]Korber F, Tromel G Z.The formation of HAP through a solid state reaction between tri and tetra-calcium pho sphates[J].Electro chem.,1932.38:578-580.
    [9]Tromel G Z.The optimum conditions for the formation of HAP[J].Physic Chem..1932.158(A):422-425.
    [10]Lim G K, Wang J. Ng S C. Gan L M. Nanosized Hydroxyapatite Powders from Microemulsions and Emulsions Stabi-lized by a Biodegradable Surfactant[J].Mater. Chemistry,1999.9:1635-1639.
    [11]Bose S. Saha S K.Synthesis and Characterization of Hydroxyapatite Nanopowders by Emulsion Technique[J].Chem Mater..2003,15(23):4464-4469.
    [12]江听,韩颖超.快速均匀沉淀法制备纳米级HAP粉体[J].硅酸盐学报.2002.1:44-46.
    [13]吴刚强,郎忠敏,郝文秀,王正德.沉淀法制备纳米级羟基磷灰石的结晶动力学研究[J].无机盐工业,2009,4(17):29-31.
    [14]Kumar R, Prakash K H. Cheang P, Khor K A. Temperature Driven Morphological Changes of Chemically Precipitated Hydroxyapatite Nanoparticles[J].Langmuir.2004.20:5196-5200.
    [15]Tas C. Synthesis ofbiomimetic Ca-hydroxyapatite powder at 37℃ in synthetic body fluid[J].Biomaterials2000,21(14):1429-1438.
    [16]袁媛.刘昌胜.溶胶-凝胶法制备纳米级羟基磷灰石[J].中国医学科学学报.2002.2(24):129-133.
    [17]Kim S. Kumta P N. Sol-gel synthesis and characterization of nanostructured hydroxyapatite powder[J]. Mater.Sci. Eng B.2004,111(2-3):232-236.
    [18]Wang F. Li M S. Lu Y P. Qi Y X.A simple sol-gel technique for preparing hydroxyapatite nanopowders[J].Mater Lett.2005,59(8-9):916-919.
    [19]Bigi A. Boanini E, Rubini K.Hydroxyapatite gels and nanocrystals prepared through a sol-gel process[J].J Solid State Chem.,2004,177(9):3092-3098.
    [20]韩颖超.王欣宇.李世普.闫玉华.自然烧法合成纳米HAP粉末[J].硅酸盐学报,2002.3(30):387-389.
    [21]廖其龙.纳米羟基磷灰石的水热合成[J].功能材料.2002.33(3):338-340.
    [22]Guo X Y. Xiao P. Liu J. Shen Z J. Fabrication of Nanostructured Hydroxyapatite via Hydrothermal Synthesis and Spark Plasma Sintering[J].J Am Ceram Soc.,2005,88(4):1026-1029.
    [23]Chen J, Wang Y, Wei K. Zhang S. Shi X.Self-organization of hydroxyapatite nanorods through oriented attachment[J].Biomaterials,2007,28:2275-2280.
    [24]Li H Y, Chen Y F, Zang L K.Hydrothermal preparation of acicular hydroxyapatite[J].Materials Review.2000,14(2): 305-308.
    [25]李玲.刘玉侃.陶锦晖.张铭.潘海华.唐睿康.Tb掺杂的纳米羟基磷灰石生物荧光探针的合成与表征[J].无机化学学报,2008.24(9):1369-1373.
    [26]Tanaka K, Miura T, Umezawa N, Urano Y, Kikuchi K, Higuchi T, Nagano T. Rational Design of Fluorescein-Based Fluorescence Probes. Mechanism-Based Design of a Maximum Fluorescence Probe for Singlet Oxygen[J]. J.Am. Chem. Soc.,2001,123(11):2530-2536.
    [27]Tatton N A, Kish S J. In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-p henyl-1,2,3,6-tetrahydropyridine-treatedmice using terminal deoxynucleodtidyl[J].Neurosci.,1997,77(4):1037-104 8.
    [28]Zondervan R, Kulzer F, Kol'chenko M A, Orrit M. Photobleaching of Rhodamine 6G in Poly(vinyl alcohol) at the Ensemble and Single-Molecule Levels[J].Phys.Chem. A,2004,108(10):1657-1665.
    [29]Gao X, Cui Y, Levenson R M, ChungL W K, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots[J].Nature Biotechnology.2004,22(8):969-976.
    [30]叶冬平.梁伟国.周子强.掺锶羟基磷灰石的材料学特性及生物学评价[J].中国组织工程研究与临床康复,2009.34(13):6737-6740.
    [31]Ergun C, Webster T J, Bizios R, Doremus H R.Hydroxyapatite with substituted magnesium.zinc.cadmium and yttrium. Ⅰ.Structure and microstructure[J].J Biomed Mater Res.,2002,59(1):305-311.
    [32]Webster T J. Ergun C, Doremus R H. Bizios R.Hydroxyapatite with substituted magnesium.zinc.cadmium.and yttrium. Ⅱ.Mechanisms of osteoblast adhesion[J].J Biomed Mater Res..2002,59(2):312-317.
    [33]刘泉.莫安春.钇-羟基磷灰石纳米微粒对人牙周膜细胞生物学行为的影响[J].牙体牙髓牙周病学杂志.2008.18(3):139-143.
    [34]曹献英.纳米级羟基磷灰石诱导肝癌细胞死亡的作用靶点和机理研究[D].武汉理工大学博士学位论文.2005.
    [35]Zhang S C. Li S P. Yuan R Z.Effects of hydroxyapatite ultra-fine powder on colony formation and cytoskeletons of MGC-803 cell[J].Bioceramics,1996,9:225-227.
    [36]夏东.刁路明,杨飞.江曼.胡雪峰.张正彬.张玉霞.闫玉华.冯凌云.陈晓明.曹献英.无机纳米粒子对人肺癌细胞A549和小鼠成纤维细胞L929生物学特性研究[J].湖北医科大学学报.2002,21(2):109-111.
    [37]Feng L Y. Li S P. Yan Y H.The Effect of CaCO3 and TiO2 Nanometer Particles on A549 and L929 Cells [J].Bioceramics.2000,13:325-328.
    [38]Han Y C, Li S P. Wang X.Influence of apatite nanoparticles on cancer cells[J].Nanoscience.2006,11 (2):102-106.
    [39]Yin M Z, Han Y C. Bauer I W. Chen P, Li S P.Effect of hydroxyapatite nanoparticles on the ultrastructure and function of hepatocellular carcinoma cells in vitro[J].Biomedical Materials.2006,1(1):38-41.
    [40]卢世璧.纳米技术在生物科学发展中的地位和作用[J].中国医学院学报.2002.24(2):112-113.
    [41]Ijntema K. Heuvelsland W J. Dirix C A.Hydroxyapatite micro-carriers forbiocontrolled release of protein drugs[J].International Journal of Pharmacy.1994,112(3):215-224.
    [42]曹敏花,郭彩欣.杨宇.胡长文.一维纳米结构材料研究进展[J].功能材料.2004,(35):2731-2735.
    [43]Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991.354:56-58.
    [44]Zhu Y Q. Hu W B. Hsu W K, Terrones M, Grobert N, Karali T. Terrones H. Hare J, Townsend P D. Kroto H W. Walton D R M. A simple route to silicon-based nanostructures[J]. Adv. Mater..1999.11 (10):844-847.
    [45]Liang C H. Meng G W, Lei Y, Phillipp F. Zhang L D. Catalytic growth of semiconducting In2O3 nanofibers[J].Adv. Mater.,2001.13(17):1330-1332.
    [46]Chang K W, Wu J J. Low-temperature catalytic synthesis of gallium nitride nanowires[J].J. Phys. Chem., B,2002. 106(32):7796-7799.
    [47]Peng X S, Meng G W. Wang X F. Wang Y W. Zhang J. Liu X, Zhang L D. Synthesis of oxygen-deficien t indium-tin-oxide (ITO) nanofibers[J].Chem.Mater..2002,14(1):4490-4493.
    [48]Chen C C, Yeh C C. Large-scale catalytic synthesis of crystalline gallium nitride nanowires[J].Adv. Mater.,2000,12 (10):738-741.
    [49]Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires[J]. Science,1998,279(5348):208-211.
    [50]Yu D P. Lee C S. Bello I. Sun X S. Tang Y H.Zhou G W.Bai Z G.Zhang Z.Feng S Q. Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature[J].Solid State Commun.,1998,105(6):403-407.
    [51]Imai H. Takei Y, Shimizu K, Matsuda M, Hirashima H. Direct preparation of anatase TiO2 nanotubes in porous alumina membranes[J]. J. Mater. Chem.,1999,9:2971-2972.
    [52]Satishkumar B C, Govindaraj A, Natha M, Rao C N. Synthesis of metal oxide nanorods using carbon nanotubesas templates[J]. J. Mater. Chem..2000,10:2115-2119.
    [53]Han Y J. Kim J M. Stucky G D. Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15[J]. Chem Mater.,2000,12 (8):2068-2069.
    [54]Fendler J H. Fendler E J. Catalysis in Micellar and Macromolecular Systems[M]. New York. Academic Press:1975.
    [55]Jana N R. Gearheart L, Murphy C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods[J]. J. Phys. Chem.. B,2001.105(19):4047-4065.
    [56]Jana N R, Gearheart L. Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controlladble aspect ratio[J].Chem. Commun.,2001. (7):617-618.
    [57]Murphy C J, Jana N R. Controlling the aspect ratio of inorganic nanorods and nanowires[J].Adv. Mater.,2002,14(1): 80-82.
    [58]Cao M H. Hu C W, Peng G. Qi Y J.Wang E B. Selected-Control Synthesis of PbO2 and Pb3O4 Single-Crystalline Nanorods[J]. J. Am. Chem. Soc.,2003,125:4982-4983.
    [59]Cao M H. Hu C W.Wang Y H. Guo Y H. Guo C X. Wang E B. A controllable synthetic route to Cu. Cu2O. and CuO nanotubes and nanorods[J].Chem. Commun.,2003,1884-1885.
    [60]吴大诚.杜仲良.高绪珊.纳米纤维[M].北京:化学工业出版社.2003.
    [61]Rayleigh L.On the Equilibrium of Liquid Conducting Masses Charged with Electricity[J].Phil.Mag.,1882. 14:184-186.
    [62]Zeleny J. The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces[J].Phys.Rev.,1914.3(2):69-91.
    [63]Formhals A. Process and apparatus for preparing artificial threads[p].U.S.Patent No.1975,504:1934-1940.
    [64]Taylor G.I. Disintegration of Water Drops in an Electric field[J].Proc.Roy.Soc..London A,1964,280:383-397.
    [65]Baumgarten P.K. Electrostatic spinning of acrylic microfibers[J].J.Colloid Interface Sci.,1971,36(1):71-79.
    [66]Larrando L.and Manley R.ST.J.Electrostatic fiber spinning from polymer melts.Ⅱ. Examination of the flow field in an electrically driven jet[J]. Polym.Sci., Part B:Polym.Phys.,1981,19(6):921-932.
    [67]Larrando L.and Manley R.ST.J. Electrostatic fiber spinning from polymer melts.Ⅰ.Experimental observations on fiber formation and properties[J].J.Polym.Sci.. Part B:Polym.Phys.,1981,19(6):909-920.
    [68]Larrando L.and Manley R.ST.J. Electrostatic fiber spinning from polymer melts.Ⅲ.Electrostatic deformation of a pendant drop of polymer melt[J]. Polym.Sci., Part B:Polym.Phys.,1981,19(6):933-940.
    [69]王永芝,杨清彪,杜建时.电纺丝技术-一种高效低耗的纳米纤维制备方法[.J].化工新型材料,2005.33(6):12-14.
    [70]Loscertales I G, Barrero A, Guerrero I. Cortijo R. Marquez M, Calvo A M G. Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets[J].J. Science.2002,295:1695-1698.
    [71]Li D. Xia Y. Electrospinning of Nanofibers:Reinventing the Wheel[J] Nano let..2004.ASAP Article.
    [72]Kameoka J. Ort H R. Yang Y. Czaplewski D,Mathers R,Coates G W.Craighead H G.A scanning tip electrospinning source for deposition of oriented nanofibres[J].J.Nanotechnology.2003,14:1124-1130.
    [73]Dersch R, Liu T. Schaper A K, Greiner A, Wendorff J H. Electrospun nanofibers:Internal structure and intrinsic orientation [J].J. Polym Sci Part A:Polym Chem..2003,41:545-553.
    [74]Boland E D.Wnek G E.Simpson D G. Pawlowski K J. Bowlin G L.Tailoring tissue engineering scaffoldusing electrosta ticprocessing techniques:a study of poly(glycolicacid) electrospinning[J].J Macromol Sci Pur Appl Chem..2001.38(12):1231-1243.
    [75]Matthews J A. Wnek G E. Simpson D G. Bowlin G L.Electrospinning of Collagen Nanofibers[J].Biomacro molecules.2002.3(2):232-238.
    [76]Theron A, Zussman E. Yarin A L. Electrostatic field-assisted alignment of electrospun nanofibres[J].Nanotech nology.2001.12:384-390.
    [77]Deitzel J M. Kleinmeyer J D. Hirvonen J K. Tan N C B.Controlled deposition of electrospun poly(ethylene oxide) fibers[J].J Polymer.2001.42:8163-8170.
    [78]Sundaray B. Subramanian V. Natarajan T S, Xiang R Z. Chang C C, Fann W S. Electrospinning of continuous aligned polymer fibers[J].J Appl Phys Lett..2004,84(7):1222-1224.
    [79]Ohkawa K. Cha D, Kim H, Nishida A. Yamamoto H. Electrospinning of chitosan[J].Macromol Rapid Commun..2004. 25:1600-1605.
    [80]冯淑芹.付中玉.李从举.溶剂对静电纺PA6纤维可纺性的影响[J].合成纤维工业.2007,30(1):8-10.
    [81]张玉军,陆春,陈平.李建丰,于祺.溶剂在高压静电纺丝中的作用[A].全国高分子学术论文报告会论文集[C].北京:2005:725.
    [82]Kenawy E, Layman J M. Watkins J R. Bowling G L. Matthews J A. Simpson D G. Wnek G E. Electrospinning of poly (ethylene.covinyl alcohol)fibers[J].Biomaterials.2003.24(6):907-913.
    [83]Fong H, Chun I. Reneker D H. Beaded nanofibers formed during electrospinning[J].Polymer.1999.40:4585-4592.
    [84]Doshi J. Reneker D H. Electrospinning process and applications of electrospun fibers[J].Journal of Electrostatics.1995, 35(2):151-160.
    [85]Megelski S, Stephens J S, Chase D B. Rabolt J F.Micro-and nanostructured surface mosphology on electrospun polymer fibers[J].Macromolecules,2002,35:8456-8466.
    [86]Mit-uppatham C. Nithitanakul M, Supaphol P. Ultrafme electrospun polyarnide-6 fibers:Effect of solution conditions on morphology and average fiber diameter[J].Macromol Chem Physic..2004.205:2327-2338.
    [87]Baumgarten P K. Electrostatic spining of acrylic microfiber[J].J of Colloid and Interface Sci..1971.36:71-79.
    [88]Deitzel J M, Tan N C B, James K D. Joseph R. David T.Generation of nanofibers through electrospining[R]. U.S. Army Research. Laboratory Technical Report,1999.
    [89]A Koskj. K Yim. S Shivkumar. Effect of molecular weight on fibrous PVA produced by electrospinning[J].Matefials Letters.2004,58:493-497.
    [90]杨清彪,王策,洪友良,李振宇,赵一阳,裘世伦.危岩.聚丙烯腈纳米纤维的再细化[J].高等学校化学学报.2004.25(3):589-591.
    [91]J S Choi. S W Lee, L Jeong. S H Bae, B C Min. J H Youk, W H Park.Effect of organosoluble salts on t he nanofibrous structure of electrospun poly(3-hydroxybutyrate-co-3hydroxyvalerate)[J].J Biological Macromolecu les.2004,34:249-256.
    [92]X H Qin, Y Q Wan, J H He, J Zhang, J Y Yu, S Y Wang. Effect of LiCl on electrospinning of PAN polymer solution: theoretical analysis and experimental verification[J].Polymer,2004,45(18):6409-6413.
    [93]B Kim. H Park. S H Lee. Poly (acrylic acid) nanofibers by electrospinning[J].Mater Lett..2005,59(7):829-832.
    [94]覃小红.王善元.纺丝液的导电性对静电纺丝单根纤维的直径及稳定长度的影响[J].东华大学学报(自然科学版).2007,33(2):270-273.
    [95]Chrestopher J Buchko, Loui C Chen, Yu Shen. David C Martin. Processing and microstructual characterization of porous biocompatible protein polymer thin films[J].Polymer.1999,40:7397-7407.
    [96]Demir M M. Yilgor I. Yilgor E. Erman B.Electrospinning of polyurethane fibers[J].Polymer.2002.43:3303-3309.
    [97]R Jaeger. H Schonherr. G J Vancso. Chain packing in electrospun poly(ethleneoxide) visualized by atomic force[J].Macromolecules,1996,29:7634-7636.
    [98]Renker D H, Chun I. Nanometre diameter fibres of polymer produced by electrospinning[J].Nanotechnology.1996.7: 216-223.
    [99]Zhong X H. Kim K S, Fang D F. Ran S F. Benjamin S H. Benjamin C. Structure and process relationship of Electrospun bioabsorbable nanofiber membranes[J].Polymer.2002.43:4403-4412.
    [100]Deitzel J M. Kleinmeyer J. Harris D. Tan N C B. The effect of processing variables onthe morphology of electrospun nanofibers and texiles[J].Polymer.2001.42:261-272.
    [101]Krishnappa R V N. Desai K. Sung C M. Morphological study of electrospun polycarbonates as a function of the solvent and processing voltage[J].Mater.Sci.,2003,38:2357-2365.
    [102]史铁钧,翟林峰.周玉波.尼龙6.6电纺纳米纤维膜的纤维分散形态和结晶性能[J].高分子材料科学与工程.2007.23(2):149-152.
    [103]常丽娜.张幼珠,张晓东.静电纺丝工艺参数对丝素/壳聚糖纳米纤维的形貌及直径的影响[J].合成纤维.2006,35(2):14-17.
    [104]PEDICI-NI A, FARR IS R J.Thermally induced color change in electrospun fiber mats[J].J Polym Sci Polym Phys.,2004,42:752-755.
    [105]DING B, YAMAZAKIM, SHIRATOR I S. Electrospun fibrous polyacrylic acid membrane-based gas sensors [J].Sensors and Actuators,2005,106:477-483.
    [106]ZHU Y. ZHANG J, ZHENG Y,Huang Z, Feng L. Jiang L. Stable, superhydrophobic. and conductive polyaniline /polystyrenefilms for corrosive environments[J].Advaned Fuctional Materials.2006,16:568-574.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700