用户名: 密码: 验证码:
卵磷脂囊泡的结构及对羟基磷灰石纳米晶体的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用超声分散制备的卵磷脂(PC)囊泡作为骨矿化时骨细胞膜模拟体系,用于改变骨主要无机矿物纳米羟基磷灰石(Hap)的反应微环境,控制生成纳米Hap晶体的粒径大小、形状和晶型结构。借助激光散射仪和透射电镜(TEM)等现代分析技术,研究了不同酸度、反应温度和不同盐(Na~+、Ca~(2+))溶液对囊泡的大小、形态和稳定性的影响,发现水溶液中有两种囊泡结构:单室囊泡(SUV),其平均粒径35~45nm;多室囊泡(MLV),其平均粒径180~320 nm。随着溶液离子浓度的增大,囊泡平均粒径增大,形态改变并伴有团聚出现,稳定性减弱,其中Ca~(2+)离子对囊泡性质的影响比Na~+更为复杂,Ca~(2+)浓度为0.02~0.06 mol/L时,出现了管状囊泡,平均粒径较小,少有团聚,稳定性好于其他Ca~(2+)浓度(如0.02 mol/L以下或0.06 mol/L以上)下形成的囊泡。通过X射线粉末衍射仪(XRD)和透射电镜(TEM)等主要表征手段,研究了在不同环境形成的囊泡中,得到的纳米Hap晶体的粒径、晶型和分散性,当Ca~(2+)离子浓度为0.06 mol/L时,Hap晶体的直径约10 nm,粒子呈圆粒状且具有较好分散性。本实验初步弄清了囊泡体系对Hap晶体在粒径、晶型和分散性上调控的机制,为更好地利用囊泡控制Hap及其它无机矿物的大小、晶型和结构等提供了启示,同时也有助于对骨的生物矿化过程的了解。
In this paper, the vesicles of lecithin were prepared as a model of cellular membrane in bone biomineralization by ultrasonic method, and used for changing the reacting micro-environment of nano-hydroxyapatite (n-Hap) and for controlling the diameters and morphology of n-Hap crystals. By means of laser scattering spectrum and transmission electron microscopy (TEM), the effects of the acidity, temperature and inorganic ions in the solution on the diameters, shapes and stability of vesicles were studied. The results show that two kinds of vesicles were formed, One is smaller unilamellar vesicle (SUV) with mean diameters of 35-45 nm, and the other larger multilamellar vesicle (MLV) with mean diameters 180-320 nm. With the increase of ion concentration, the mean diameter of the vesicles increases, and the system becomes less stable. The effect of Ca2+ ions on the properties of vesicles is more complicated than that of Na+ ions. When the concentration of Ca2+ ions is between 0.02 mol/L and 0.06 mol/L, tube vesicles form in the solution. The mean diameter of vesicles is smaller and the vesicles are stable than that in other Ca2+concentration (below 0.02 mol/L or over 0.06 mol/L). In the different vesicles, the n-Hap formed has different sizes, morphology and dispersivity. When the Ca2+ concentration is 0.06 mol/L, the mean particle diameter of n-Haps is about 10 nm, and the shape is round and the particles are dispersed. Our results provide some useful inspiration in controlling particle sizes, shapes and structures of n-Haps or other inorganic particles by vesicles, and in understanding the bone biomineralization process.
引文
[1] Bangham AD, Standish M M,Watkins J C. J Mol Biol.,1965,13:25.
    [2] 于网林,赵国玺.囊泡的形成与两亲分子结构.化学通报,1996,6:21-25.
    [3] Klibanov A.I, Maruyama K, Torchilin V.P, et al. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett., 1990, 268:235-237.
    [4] 杨艳红,郝永梅,赵凤林等.非离子表面活性剂囊泡包封药物头孢唑啉钠的研究.化学通报,2002,7:467-471.
    [5] Fuhrhop J-H, Spiroski D, Boettcher C. Molecular monolayer rods and tubules made of α-(L -lysine), ω-(Amino) bolaamphiphiles. J. Am .Chem. Soc., 1993, 115:1600-1601.
    [6] 吴立新,李国文,申德振.含Schiff碱基囊泡双分子膜的聚集结构与相变,高等学校化学学报,1998,19(1):132-134.
    [7] Parthasarth iG, Udupa N, Pillai G K.ind. J Pharm Sci, 1994, 56(3):90.
    [8] 王大林,盛坤贤.非离子表面活性剂囊泡作为药物载体的进展.中国医药工业杂志,1998,29(5):235-240.
    [9] Mann S., Hannington J.P., Williams R. J. P.. Phospholipid vesicle as a model system for biomineralization. Nature, 1986, 324(11):565-567.
    [10] Murphy W.L., Messersmith P.B.. Compartmental control of mineral formation: adaptation of a biomineralization strategy for biomedical use. Polyhedron, 2000, 19: 357-363.
    [11] 姚松年,钟桂荣.卵磷脂有序体系中碳酸钙超微颗粒的研究.物理化学学报,1994,10(10):950-953.
    [12] 姚松年,缪炜,童华等.W/O、O/W型卵磷脂乳状液对CaCO_3晶型的影响.无机化学学报,1998,14(2):222-225.
    [13] 吴冰,姚松年,童华等.胆固醇对卵磷脂有序体系中生成的CaCO_3晶型的影响.无机化学学报,1999,15(3):341-346.
    [14] 姚松年,王春林,张操墨等.卵磷脂-水有序结构对CaCO_3晶型的影响.物理化学学报,1997,13(3):270-273.
    [15] Ouyang J.M., Duan L., He J.H., Tiekeyy B. Crystallization of calcium oxalate in liposome solutions of di.erent carboxylates. Chem. Lett., 2003, 32:268~269.
    
    
    [16] Ouyang J-M, Duan L, Tieke B. Effects of carboxyl acids on the crystal growth of calcium oxalate nanoparticles in lecithin-water liposome systems. Langmuir, 2003, 19(21):8980-8985.
    [17] Li Y., Huang F-Z, Li Z-C, et al. The lecithin vesicle mediated mineraliz- -ation of cadmium sulphide. Journal of Materials Science Letters, 1999, 18:1821-1823.
    [18] Vassiltsovaa O.V., Chuvilinb A.L., Parmon V.N..Control of the size and photochemical properties of Q-CdS particles attached to the inner and/or outer surface of the lecithin vesicle bilayer membrane by the nature of its precursors. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 125:127-134.
    [19] 杨艳红,郝永梅,赵凤林等.非离子表面活性剂囊泡包封药物头孢唑啉钠的研究.化学通报,2002,7:467-471.
    [20] Guo J-X, Ping Q-N, Sun G-Q, Jiao C-H. Lecithin vesicular carriers for transdermal delivery of cyclosporin A. International Journal of Pharmaceutics, 2000, 194:201-207.
    [21] Kreuter J.. Nanoparticulate systems for brain delivery of drugs. Advanced Drug Delivery Reviews, 2001, 47:65-81.
    [22] Govender T., Stolnik S., Garnett M.C., et al. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluable drug. Journal of Controlled Release, 1999, 57:171-185.
    [23] Campos A.M.De., Sanchez A., Alonso M.J..Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A, International Journal of Pharmaceutics, 2001, 224:159-168.
    [24] Soppimath K.S., Aminabhavi T.M., Kulkarni A.R.. Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 2001, 70:1-20.
    [25] Crommelin D.J.A. Liposomes as carries for drugs and antigens: approaches to preserve their long term stability. Drug Dev Ind Pharm, 1994, 20 (4):547.
    [26] Lasic D D. Liposomes. From physics to application [M]. Elvevier: Amsterdam, 1993.
    [27] Bisby, R.H.,in "Aggregation processes in solution" (E.W.Jones,and J.Gormally, Eds.), pp. 186-210. Elsevier, Amsterdam/New York, 1983.
    [28] 汤顺清,周长忍,邹翰.生物材料的发展现状与展望(综述).暨南大学学报(自然科学
    
    版),2000,21(5):122-125.
    [29] Andersen J M. Biomaterials and medical implant science, present and future perspectives, a summary report. Biomed Mater Res, 1996, 32:143.
    [30] LeGeris R.Z.. Calcium phosphate materials in reconstructive dentistry: A review, Adv. Dent Res, 1988, 2:164-183.
    [31] Suchanck W., Yoshmura M.. Processing and properties of hydroxyapatite based biomaterials for use as hard tissue replacement implants. Mater, Res, 1998, 13:94-117.
    [32] 王海亭,陈磊,金雪玲.羟基磷灰石(Hap)材料在生物材料中的研究与开发.山东陶瓷,2002,25(2):3-8.
    [33] 汤顺清,傅伟军,邹翰.羟基磷灰石基人工骨材料的研究.中国血液流变学杂志,1998,8(4):40.
    [34] Sim icnescu C.I., Dum itriu S.. Apatite:a new catalyst in synthetic organic chemistry. Chem Techol, 1978, 12:585-589.
    [35] Qiying M, Ingan T J, Traina S J. Lead immchilization frm aqueous solutions and contam inated soils using phosphate rocks. Environ Sci and Technol, 1995, 29:1118-1126.
    [36] Yuki I, Yokom izo Y.. Inorganic phosphate materials. Sensa Gyntsn, 1981, 1:23-27.
    [37] 朱晏军,王玮竹,闫玉华.纳米羟基磷灰石(Hap)的制备方法及应用,佛山陶瓷,2003,77:9-11.
    [38] 张力,汪超,苑庆兰,李哲.沉淀法制备羟基磷灰石影响产物结晶和晶粒粒度的因素.武警医学院学报,2003,12(2):143-149.
    [39] Kawasaki T. Chromatography [M], 1990, 515:125-132.
    [40] 资文华,陈庆华,谬松兰等.羟基磷灰石生物陶瓷的研究状况及发展趋势.中国陶瓷工业,2003,10(1):38-43.
    [41] Deng X-M, Hao J-Y, Wang C-S. Preparation and mechanical properties of nanocomposites of poly(D,L-Lactide) with Ca-deficient hydroxyapatite nanocrystals. Biomaterials, 2001, 22(20):2867-2873.
    [42] Doremus R.H.. Review bioceramics. J Mater Sci, 1992, 27(1-3):285-297.
    [43] Teraoa K, Ito A, Onumn K, et al. Bending strength of synthetic OH-carbonated hydroxyapatite single crystals[J]. J Biomed Mater Res, 1997, 34(2):269-272.
    
    
    [44] 韩顺昌.纳米材料的结构特性及其表征。材料开发与应用,1998,11(1):38-43.
    [45] 胡文祥,桑宝华,谭生建等.分子纳米技术在生物医药学领域的应用.化学通报,1998,5:32-38.
    [46] Li S-P, Zhang S-C, Chen W-J. Effect of hydroxyapatite ultrafine power on colony formation and cytoskeletons of MGC-803 cell. Biocrtamics. 1996, 9:225-230.
    [47] 曹献英,戴红莲,贾莉等.羟基磷灰石纳米粒子体外抗肝癌的实验研究.肿瘤学杂志,2002,8(5):274-276.
    [48] 张士成.羟基磷灰石超微粉对癌细胞作用初探[D].武汉:武汉工业大学,1996.21-29.
    [49] 李世普.生物医用材料导论[M].武汉工业大学出版社.2000,9:88-123.
    [50] 吕奎龙,孟祥才,李星逸等.纳米羟基磷灰石制备的研究进展.佳木斯大学学报(自然科学版),2002,20(4):384-388.
    [51] 廖其龙,徐光亮,周大利等.水热合成纳米羟基磷灰石粉末及其结构表征.2002,34(3):69-71.
    [52] 任卫,曹献英,冯凌云等.纳米羟基磷灰石合成及表面改性的途径和方法.硅酸盐通报,2002,1:38-43.
    [53] 童义平,余木磷,钟秀兰等.羟基磷灰石工艺研究.化学研究与应用,2002,14:101-102
    [54] Lim G K, Wang J, Ng S C, et al. Processing of hydroxyapatite via miacoemulsion and emulsion routes. Biomaterials, 1997, 18(21):1433-1439.
    [55] Nir, S., Bentz,J., Wilschut,J.,et al. Progr. Surf. Sci. 1983.13:1.
    [56] Gregoriadis G. Liposome technology [M]. Boca Raton:CRC Press,1984.
    [57] Takahara H.. Aggregation of Egg-Lecithin Vesicles Induced by Iron(Ⅲ) Chloride. Journal of Colloid and Interface Science, 1999, 211:171~174.
    [58] Silvander M., Karlsson G.R., Edwards K., et al. Vesicle Solubilization by Alkyl Sulfate Surfactants: A Cryo-TEM Study of the Vesicle to Micelle Transition. Journal of Colloid and Interface Science, 1996, 179:104~113.
    [59] 黄建滨,赵国玺,朱瑶.正负离子表面活性剂混合溶液中囊泡的稳定性.北京大学学报(自然科学版),1999,35:144~150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700