用户名: 密码: 验证码:
PS加固对非饱和遗址土的渗透特性影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土遗址的防风化加固是岩土工程界普遍关注的热点问题。高模数硅酸钾溶液(简称PS)以其良好的加固效果在西北地区土遗址的加固工程中得到广泛应用。但也面临一些关键技术问题,例如PS的入渗特性,PS加固后遗址土的渗透性,以及PS的加固效果等,这些问题的解决有利于扩大推广PS加固土遗址的应用,特别是提高PS加固土遗址的效果。
     本论文以新疆高昌故城夯土为研究对象,通过现场试验和室内研究相结合的手段,运用非饱和土的理论和技术方法,较为系统的研究这三个关键技术问题。主要内容包括以下三个部分:
     (1)在交河故城施工现场人工夯筑两段试验墙,模拟遗址中需要加固的夯土部位,通过Ps的入渗试验,研究了PS在现场开放条件下的入渗特性,结果证实低浓度PS(3%-7%)具有和水相近的入渗规律和渗透速度。同时进行的非饱和状态下的渗透试验表明,在土样含水率为9%时PS的入渗性能最佳,含水率达到15%时仍具有较好的渗透性;在持续饱水的状态下,PS加固样仍具有更大的抗剪强度,表现出良好的水稳定性。
     (2)利用压力膜仪测试了PS加固土的土-水特征曲线,同未加固土相比,饱和含水率θs和残余含水率θr下降,曲线斜率和进气值增大。结合PS与土颗粒的反应机理以及相关试验对此进行了分析,认为矿物成分、孔隙结构、土体的收缩性等因素是导致土-水特征曲线变化的主要原因。
     在室内进行了封闭条件下的PS入渗试验以及加固土的渗透性试验,利用SWCC和Mualem-Van Genuchten模型推导出非饱和土的相对渗透系数,结果表明PS加固对非饱和土的渗透性能产生了有利的影响,渗透性大幅提高。粒度分析、X射线衍射分析、扫描电镜测试等表明,粘土颗粒加固前为层状、片状的结构,各颗粒之间相互分离,颗粒多有明显的棱角,加固以后,几何形状发生变化,片状结构变为致密的网状结构,颗粒粒径增大,大量棱角弱化或消失,孔隙表面粗糙度随之降低,有效孔隙相对增大,这些变化大幅提高了土体的渗透性。
     (3)模拟现场的环境变化及特殊的环境条件,对Ps加固和未加固试样进行水稳定性测试、耐风蚀的风洞试验、冻融循环破坏、温度循环破坏及湿度循环破坏等相关试验,以评价Ps加固后的土遗址耐环境诸因素影响的性能。结果证明,经PS加固以后试样抗环境影响的能力数倍甚至十几倍的提高,也说明用PS加固丝绸之路沿线地区的土遗址是切实可行的,可以有效的抵御环境因素的不利影响,起到抢险加固的效果。
Recently, the anti-weathering consolidation of the earthen sites has been (a serious concern in geotechnical engineering. Potassium Silicate with modulus 3.8-4.0(PS) is widely utilized in consolidation projects of the earthen sites in northwest of China due to its favorable effect. However, some key technologies, such as infiltration properties of PS, permeability characteristics of unsaturated soil reinforced by PS and the effect of PS consolidation for the earthen sites, must be solved, which is important in popularizing the utilization of PS and increasing the effect of PS consolidation for the earthen sites.
     In this paper, through the combination of field tests and laboratory studies, the three key technologies mentioned above were systematically investigated with the soil obtained from the ancient ruins of Gaochang based on the theory and techniques of unsaturated soil. Three research contents are as follows:
     (1) The characteristics of PS infiltration were subjected to fundamental studies in the open environment under the similar soil condition with the earthen site of the ancient city of Jiaohe, the results of which indicated that low PS concentration (3%-7%) was similar with water in infiltration disciplinarian and infiltration velocity. And the infiltration experiments under unsaturated condition suggested that the permeability of PS was optimal when the water content of soil was 9%, and permeability of PS was very well until the water content was 15%. The soil sample reinforced by PS expressed higher shear strength than that without PS, and also expressed good water stability.
     (2) The soil-water characteristic curves (SWCC) of unsaturated soil reinforced with PS were studied by using pressure plate apparatus. It can be found seen from the curves that the saturated water content (θs) and residual water content (θr) decreased while the air entry value and the slope of the SWCC increased. It can be concluded that the main influencing factors of SWCC were mineral components, pore structure and shrinkage according to the reaction theory between PS and soil particles.
     The permeability experiments of PS were carried on in the lab and the coefficient of permeability of unsaturated clay was obtained according to SWCC and Mualem-Van Genuchten model. The results showed PS consolidation was advantageous to the permeability of the unsaturated clay and the permeability coefficient increased to some extent. The results of particle size analysis and XRD, SEM tests demonstrated that the original structures of clay, including laminated structure, the separation of particles, more edges and corners, changed to compact net structures, bigger particles, less edges and corners, lower degree of roughness and bending factor, higher effective porosity after consolidated by PS, which increased the permeability of soil samples.
     (3) Many tests including the disintegration test in water, simulation test of wind erosion and rain erosion, temperature fluctuation test, humidity variation test and freeze-thaw test were carried out, and these experimental results were conducted to evaluate the anti-environmental factors under simulation environment of real field environment variation and condition. The results indicated that the anti-environmental stability of soil consolidated by PS was several to several or ten times higher than that unconsolidated. It also demonstrated that it was feasible to consolidate the earthen sites with PS, which was useful to resist the adverse effect and to increase the consolidation effect of the earthen sites.
引文
[1]李最雄.丝绸之路古遗址保护[M].北京:科学出版社,2008:234-238.
    [2]王旭东.中国西北干早环境下石窟和土遗址保护加固研究[D].兰州:兰州大学博十学位论文,2003.
    [3]潘别桐,黄克忠.文物保护和环境地质[M].北京:中国地质大学出版社,1992.
    [4]郭宏.文物保护环境概论[M].北京:科学出版社,2001.
    [5]赵海英.甘肃境内战国秦长城和汉长城保护研究[D].兰州:兰州大学博士学位论文,2005.
    [6]钱正安,吴统文,宋敏红,等.干旱灾害和我国西北干旱气候的研究进展及问题[J].地球科学进展,2001,16(1):28-38.
    [7]Jimenez Delgado M.C., Guerrero L. C..The selection of soils for unstabilised earth building: A normative review[J].Construction and Building Materials,2007.21(2):237-251.
    [8]LI Zui-xiong. Consolidation of neolithic earthen site with Potassium, compiled by the getty conservation Institute[C]//6th International Conference on the Conservation of Earthen, Architecture. New Mexico, U.S.A:the Getty Conservation Institute, Los Angeles,1990: 295-301.
    [9]GCI. The GCI project bibliographies series:Terra, sorted by author[N]. The GCI Newsletter, 2002.
    [10]Hardy M., Project TERRA:earthen architecture[N]. ICCROM Newsletter,2003.29:18.
    [11]Dayton L., Saving Mud Monuments[J]. New Scientists,1991.25:38-42.
    [12]Vissac C., Study of a historical garden soil at the Grand-Pressigny site (Indre-et-Loire, France):evidence of landscape management[J] Journal of cultural heritage,2005.6:61-67.
    [13]Crocker E.. Earthen architecture and seismic codes; lessons from the field[R].Crocker Ltd. Architectural Conservation,2003.
    [14]Caperton T.J.. An evaluation of geotextile shelters:Fort Selden, New Mexico[N].1994. Available from:http://www.icomos.org.
    [15]GCI. Conservation[N]. The GCI Newsletter,2003,18(1):30.
    [16]周双林.土遗址防风化保护概况[J].中原文物,2003,(6):78-83.
    [17]宋迪生,文物与化学[M].成都:四川教育出版社,1992.
    [18]汪东云,刘东燕,张赞勋.摩岩石刻文物保护防风化研究现状及深化方向[J].重庆建筑大学学报,1997,(2):106-112.
    [19]王俭,王伟,王中华.地震作用下土与结构物相互作用机理分析探讨[J].房材与应用,2003,(6):32-34.
    [20]侯卫东.文物保护原则与方法论浅议[J].考古与文物,1995,(6):10-12.
    [21]解耀华.交河故城的历史及保护修缮工程[C]//解耀华编.交河故城保护与研究.乌鲁木齐:新疆人民出版社,1999:31-32.
    [22]赵海英,李最雄,韩文峰,等.西北干早区土遗址的主要病害及成因[J].岩石力学与工程学报,2003,22(增2):2875-2880.
    [23]贺行洋,陈益民,张文生.土的组成、结构与固化技术[J].岩土工程技术,2003,(3):129-133.
    [24]刘林学,张宗仁,薛茜,等.古文化遗址风化机理及其保护的初步研究[J].文博,1988(6):71-75.
    [25]张万学.半坡遗址风化问题浅析[J].文博,1985,(4):54-56.
    [26]张秉坚,周环.建筑石材的生物腐蚀[J].腐蚀与防护,2001,(6):233-236.
    [27]贾文熙.土质史物的风化机理与保护色议[C]//贾文熙编著.文物养护与复制适用技术.西安:陕西旅游出版社,1997.
    [28]张志军.秦兵马俑文物保护研究[M].西安:陕西人民教育出版社,1998:104-106.
    [29]周双林.谈谈考古发掘中文物的现场保护[J].文物世界,1999,(4):17-20.
    [30]李肖.交河故城的形制布局[M].北京:文物出版社,2003.
    [31]姜波.汉唐都城礼制建筑研究[M].北京:文物出版社,2003.
    [32]秦俑坑土遗址保护课题组.秦俑坑土遗址的研究与保护[C]//秦始皇兵马俑博物馆编.秦俑学研究.西安:陕西人民教育出版社,1996,(8):1388-1403.
    [33]李最雄,王旭东.古代土建筑遗址保护加固研究的新进展[J].敦煌研究,1997,(4):167-172.
    [34]李最雄,张虎元,王旭东.古代土建筑遗址的加固研究[J].敦煌研究,1995,(3):1-17.
    [35]内蒙古博物馆.大窑遗址四道沟地层剖面“PS”材料保护加固实验报告[J].内蒙古文物考古,2002,(1):135-139.
    [36]和玲,梁国止.偏氟聚物加固保护土质文物的研究[J].敦煌研究,2002,(6):92-108.
    [37]周双林,原思训,杨宪伟,等.丙烯酸非水分散体等几种土遗址防风化加固剂的效果比较[J].文物保护与考古科学,2003,15(2):40-48.
    [38]周双林,王雪莹,胡原,等.辽宁牛河梁红山文化遗址土体加固保护材料的筛选[J].岩土工程学报,2005,27(5):567-570.
    [39]周双林.文物保护用有机高分子材料及要求[J].四川文物,2003,(3):94-96.
    [40]周双林,原思训.有机硅改性丙烯酸树脂非水分散体的制备及在土遗址保护中的试用[J].文物保护与考古科学,2004,16(4):50-52.
    [41]周双林.土遗址防风化加固保护材料研制及在秦俑土遗址的试用[D].北京:北京大学博士学位论文,2000.
    [42]苏伯民,李最雄,胡之德.PS与土遗址作用机理的初步探讨[J].敦煌研究,2000,(1):30-35.
    [43]王银梅.西北干旱区土建筑遗址加固概述[J].工程地质学报,2003,(2):189-192.
    [44]梁尉英.李最雄石窟保护论文集[M].兰州:甘肃民族出版社,1994:18-22.
    [45]陆彩飞,罗宏杰,李伟东.PS材料加同土遗址微观机理研究[C]//国际岩石力学学会,古遗址保护国际学术讨论会会议论文集.2008:333-338.
    [46]中国对外翻译出版公司,联合国教科文组织出版办公室.文物保护工作中的适用技术[M].北京:中国建筑出版社,1985.
    [47]范章.SV-Ⅱ灌缝胶及其在古建筑土坯墙体加固中的应用[J].西北建筑与建材,2003,(5):26-28.
    [48]杨涛,李最雄,谌文武.PS-F灌浆材料的物理力学性能[J].敦煌研究,2005,(4).40-50.
    [49]庞正智.加固交河古代遗址裂缝[J].文物,1997,(11):88-91.
    [50]韩冬梅,郭广生,石志敏,等.化学加固材料在石质文物保护中的应用[J].文物保护与考古科学,1999,11(2):41-44.
    [51]郭宏,黄槐武.文物保护中的“水害”问题[J].文物保护与考古科学,2002,(1):56-62.
    [52]Rizzarelli P., Rosa C.L., Torrisi A..Testing a fluorinated compound as a protective material for calcarenite[J]. Journal of Cultural Heritage,2001,2:55-62.
    [53]孙崇玉.论古遗址的保护[J].丝绸之路,2004,52:26-30.
    [54]俞历.石材表面防护技术探讨[J].石材,1999,(1):14-16.
    [55]Tabasso M.L.,杨军吕,黄继忠.石质品的保护处理[J].文物保护与考古科学,1996,8(1):55-63.
    [56]黄克忠.岩土文物建筑的保护[M].北京:中国建筑工业出版社,1998.
    [57]王旭东,张鲁,李最雄,等.银川西夏3号陵的现状及保护加固研究[J].敦煌研究,2002,(4):64-72.
    [58]程良奎.岩土锚固的现状与发展[J].土木工程学报,2001,34(3):7-12.
    [59]韩军,丁秀丽,朱杰兵.岩土锚固技术的新进展[J].长江科学院院报,2001,18(5):65-72.
    [60]张乐文,汪稔.岩土锚固理论研究之现状[J].岩土力学,2002,23(5):627-631.
    [6I]张生华.全长粘结锚杆锚固能力分析研究[J].矿冶,2003,12(3):17-20.
    [62]朱浮声,郑雨天.全长粘结式锚杆的加固作用分析[J].岩石力学与工程学报,1996,15(4):333-337.
    [63]张旭辉.十钉与锚杆的关系探讨[J].岩石力学与工程学报,2002,21(11):1744-1746.
    [64]高大钊.岩土工程的回顾与前瞻[M].北京:人民交通出版社,2001.
    [65]李最雄,王旭东,张志军.秦俑坑土遗址的加固试验[J].敦煌研究,1998,(4):151-158.
    [66]李最雄.PS加固土质石质文物的稳定性和强度问题[J].敦煌研究,1996,(3):96-111.
    [67]李最雄.一种硅酸钾加固材料及其生产方法,知识产权出版社,中华人民共和国专利局1998,中国.
    [68]李最雄,王旭东,田琳.交河古城土建筑遗址的加固试验[J].敦煌研究,1997,(3):171-188.
    [69]李最雄,王旭东,郝利民.室内土建筑遗址的加固试验-半坡土建筑遗址的加固试验敦煌研究,1998,(4):144-150,185.
    [70]赵海英,李最雄,汪稔,等.PS材料加固土遗址风蚀试验研究[J].岩十力学,2008,29(2):392-396.
    [71]李黎,陈锐,邵明申,等.经PS加固土遗址水饱和强度及加固效果的环境影响研究[J].岩石力学与工程学报.2009,28(5):1074-1080.
    [72]赵海英,王旭东,李最雄,等.PS材料模数、浓度对干早区十建筑遗址加固效果的影响[J].岩石力学与工程学报.2006,25(3):557-562.
    [1]Richards L.A. Capillary conduction of liquids in porous mediums[J].Physics,1931,1:318-333.
    [2]Bouwer H. Chap 8:Surface-subsurface water relations[M]Groundwater Hydrology. New York:Mc Graw-Hill,1978.
    [3]Chow V.T., Maidment D.R., Mays L.W..Applied hydrology[M].Singapore:Mc Graw-Hill, 1988,99-126.
    [4]#12
    [5]#12
    [6]朱伟,程南军,陈学东,等.浅谈非饱和渗流的几个基本问题[J].岩土工程学报,2006,28(2):235-240.
    [7]J.贝尔.多孔介质流体动力学[M].张朝深等译.北京:中国建筑工业出版社,1996.
    [8]雷志栋,杨诗秀,谢森传.十壤水动力学[M].北京:清华大学出版社,1988.
    [9]Childs E.C., Collis-George G.N..The permeability of porous materials[C]//Proceedings of the Royal Society of London. Series A,1950.
    [10]Buckingham E..Studies on the movement of soil moisure[J].USDA Bureau of Soils Bull., 1907,38:28-61
    [11]Fredlund D.G., Harianto Rahardjo.非饱和土土力学[M].陈仲颐等译.北京:中国建筑工业出版社,1997.
    [12]Khalili N., Khabbaz M.H.. A unique relationship for χ for the determination of the shear strength of unsaturated soils[J] Geotechnique,1998,48 (5):681-6871.
    [13]Rassam D.W., Cook F..Predicting the shear strength envelope of unsaturated soils[J] Geotechnical Testing Journal, ASTM,2002,25 (2):215-2201.
    [14]陈正汉,周海清,孙树国,等.非饱和土与特殊土的理论与实践探索20年[C]//郑颖人等编.岩土力学与工程进展.重庆:重庆出版社,2003,29-41.
    [15]Williams, P.J.. The surface of the Earth, an introduction to geotechnical science[M]. Longman Inc., New York.1982.
    [16]党进谦,李靖,王力.非饱和黄土水分特征曲线的研究[J].西北农业大学学报,1997,25(3):55-58.
    [17]黄润秋,戚国庆.非饱和渗流基质吸力对边坡稳定性的影响[J].工程地质学报,2002,10(4):343-348.
    [18]戚国庆,黄润秋,速宝玉,等.岩质边坡降雨入渗过程的数值模拟[J].岩石力学与工程学报,2003,22(4):625-629.
    [19]Brooks R.H., Corey A.T. Hydraulic properties of porous medium[M].Colorado:Colorado State University (Fort Collins),1964.
    [20]Van Genuchten M.T..A Closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Sci. Soc. Am. J.1980,44:892-898.
    [21]Stoicescu J. T., Huang M. D., Fredlund D.C..The soil-water characteristics of sand bentonite mixtures used for lines and covers[C]//2"d UNSAT, Beijing,1998.
    [22]Lebedeff A.F..The movement of ground and soil waters[C]//Proc. Int. Cong. Soil.1927,1: 459-494.
    [23]Sillers W. S.., Fredlund D.G..Statistical assessment of soil-water characteristic curve models for geotechnical engineering[J]. Canadian Geotechnical Journal.2001,38:1297-1313.
    [24]Vanapalli S. K., Fredlund D.G., Pufahl D. E., et al. Model for the prediction of shear strength with respect of soil suction[J].Canadian Geotechnical Journal.1996,33:379-392.
    [25]龚壁卫,刘艳华,詹良通.非饱和膨胀土残余含水率与缩限的关系[C]//长江科学院.南水北调膨胀土渠坡稳定和滑动早期预报研究论文集.1998.11.
    [26]周建.非饱和土滞水规律试验研究[C]//第二界全国非饱和十学术研讨会论文集,杭州,浙江大学,2005.
    [27]李守德,Law K.T.,王保田.土水特征曲线的滞回特性与干湿路径[C]//第二界全国非饱和土学术研讨会论文集,杭州,浙江大学,2005.2.
    [28]Claudia E. Z.. Uncertainty In soil-water-characteristic curve and impacts on unsaturated shear strength predictions[D].Arizona:Arizona State University.1999.11:38-42.
    [29]Fredlund D.G.,Anqing Xing. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal.1994,31:521-532.
    [30]Gardner W. R.. Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water table[J]. Soil Science.1958.
    [31]Williams J., Preeble R. E., Williams W. T.,et al. The Influence of texture, structure and clay mineralogy on the soil moisture characteristics[J].Australian Journal of Soil Research. 1983,21:15-32.
    [32]Mckee C. R., Bumb A. C..The Importance of unsaturated flow parameters in designing a monitoring system for hazardous waters and environmental emergencies[C]//In Proceedings, Haazardous Materials Control Research Institute National Conference,Houston, Tex. March 1984:50-58.
    [33]Mckee C. R.,Bumb A.C..Flow-testing coalbed methane production wells in presence of water and gas[J]. SPE Formation Evaluation,1987, (12):599-608.
    [34]Vanapalli S. K..Simple test procedures and their interpretation in evaluating the shear strength of an unsaturated soil[D].University of Saskatchewan.Saskatoon, Sask, Canada.1994.
    [35]叶为民,钱丽鑫,白云,等.由土-水特征曲线预测上海非饱和软土渗透系数[J].岩土工程学报,2005,(11):1262-1265.
    [36]李悼芬,陈虹.雨水渗透与香港滑坡灾害[J].水文地质工程地质.1997,(4):23-25.
    [37]郑明新,王金才.降雨滑坡的时空预测新方法[J].中国地质灾害与防治学报,1997,8:14-16
    [38]詹良通,吴宏伟,包承纲,等.降雨入渗条件下非饱和膨胀土边坡原位监测[J].岩十力学,2003,24:13-15.
    [39]Fredlund.D.G.. Slope stability analysis incorporating the effect of soil suction[C]//In:Slope Stability, Anderson M. Grand Richards New York:Wiley.1987:113-144.
    [40]吴宏伟,陈守义,庞宇威.雨水入渗对非饱和十坡稳定性影响的参数研究[J].岩土力学,1999.20:33-36.
    [41]Fredlund D.G.,Xing A, Huang S.G.. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve[J].Canadian Geotechnical Journal,1994,31: 533-546.
    [42]Hillel D..Introduction to soil physics[M]. New York:Academic Press,1972:364.
    [43]Klute A.. Laboratory measurement of hydraulic conductivity of unsaturated soil[C]//In:Black C. A., Evans D. D.,White J. L., et al.. Methods of Soil Analysis, Madison:American Society of Agronomy,1965:253-261.
    [44]王文焰,张建丰.在一个水平十柱上同时测定非饱和十壤水各运动参数的试验研究[J].水利学报,1990,(7):26-30.
    [45]陈正汉.非饱和土固结的混和物理论-数学模型、试验研究、边值问题[D].西安:陕西机械学院博士学位论文,1991.5.
    [46]陈正汉,谢定义,王永胜.非饱和土的水气运动规律及其工程性质研究[J].岩土工程(?)报.1993,15(3):9-20.
    [47]王永胜.非饱和土中水、气运动规律与水、气压力演化特性的研究[D].西安:西安理工大学硕十学位论文,1991,2.
    [48]刘奉银,谢定义,王培贤,等.非饱和十渗水渗气的机理与参数测试方法的探讨[J].西安公路,交通大学学报,1996,16:195-199
    [49]刘奉银.非饱和土力学基本试验设备的研制与新有效应力原理的探讨[D].西安:西安理工大学博士学位论文,1999,10.
    [50]Liu Fengyin, Xie Dingyi. Movement characteristics measurement of pore water-air in unsaturated soils[C]//Proceedings of the 2nd International Conference on Unsaturated soils, Beijing,1998:395-401.
    [51]高永宝,刘奉银,李宁.确定非饱和土渗透特性的一种新方法[J].岩石力学与工程学,2005,24(18):3258-3261.
    [52]Liu FengYin, Gao YongBao. Experimental research on water permeability of unsaturated loess[C]//In:Proceedings of International Conference on Problematic Soils, Eastern Mediterranean University, Famagusta, N. Cyprus,2005,3:167-174.
    [53]高永宝.微机控制非饱和土水-气运动联测仪的研制及浸水试验研究[D].西安:西安理工大学硕十学位论文,2006,3.
    [54]Campbell J.D..Pore pressures and volume changes in unsaturated soils[D].Urbana Champaign University of Illinois:1973.
    [55]Davidson J. M., Stone L.R., Nielsen D. R., et al.. Field Measurement and Use of Soil-water Properties[M]. Water Resources Research.1969.
    [56]Averjanov S. F.. About permeability of subsurface soils in case of incomplete saturation in English Collection[C]//P Palubatinova Ya. The Theory of Ground Water Movement.1950.7
    [57]张引科,咎会萍,黄义.非饱和十的渗透函数方程[J].西安理工大学学报,2001,(2):174-177.
    [58]Marshall T. J.. A relation between permeability and sizedistribution of pores[J]. Journal of Soil Science,1958.
    [59]Kunze R. J., Uehara G., Graham K.. Factors important in thecalculation of hydraulic conductivity[C]//Soil Science Society of America.1968.
    [60]Fredlund D. G., Xing A.. Predicting the permeability for unsaturated soils using the soil-water characteristic curve[J].Canadian Geotechnical Journal,1994.
    [61]Mualem Y. Hydraulic conductivity of unsaturated soils:prediction and formulas [C]//Madison, Wis.American Society of Agronomy. Methods of Soil Analysis. Partl.1986:799-823.
    [62]Broadbridge P., White I..Constant rate rainfall infiltration:a versatile nonlinear model. analytic solution [J]. Water Resour. Res,1988,24, (1):145-154.
    [63]Burdine N. T.. Relative permeability calculations from po re size distribution data[J].Tran A IM E,1953,198:71-77.
    [64]邵明安,李开元,钟良平.根据土壤水分特征曲线推求土壤的导水参数[J].中国科学院西北水土保持研究所集刊,1991,6:13-22.
    [65]Gomez J. A., Vanderlinden K., Nearing M. A.. Spatial variability of surface roughness and hydraulic conductivity after disk tillage:implications for runoff variability[J].Journal of Hydrology,2005,311:1-4.
    [66]ZHANG D, LU Z. An Efficient, Higher-order perturbation approach for flow in randomly heterogeneous porous media via Karhunen-Loeve Decomposition[J].Journal of Computational Physics,2004,194 (2):773-794.
    [67]Vanapalli S. K., Fredlund D. G., Pufahl D. E.. Comparison of saturated-unsaturated shear strength and hydraulic conductivity behavior of a compacted sandy-clay till[C]//50th Canadian Geotechnical Conference, Ottawa,1997,625-632.
    [68]黄文熙.土的工程性质[M].北京:水利电力出版社,1983:110-119.
    [69]徐永福,叶翠明,赵书权,等.压应力对非饱和渗透系数的影响[J].上海交通大学学报,2004,38(6):982-986.
    [1]宋迪生.文物与化学[M].成都:四川教育出版社,1992.
    [2]韩冬梅,郭广生,石志敏,等.化学加固材料在石质文物保护中的应用[J].文物保护与考古科学,1999,11(2):41-44.
    [3]郭宏,黄槐武.文物保护中的“水害”问题[J].文物保护与考古科学,2002,(1):56-62.
    [4]Rizzarelli, P., Rosa C. L., Torrisi A..Testing a fluorinated compound as a protective material for calcarenite[J].Journal of Cultural Heritage,2001,2:55-62.
    [5]孙崇玉.论古遗址的保护[J].丝绸之路,2004,52:26-30.
    [6]俞历.石材表面防护技术探讨[J].石材,1999,(1):14-16.
    [7]Tabasso M. L.,杨军吕,黄继忠.石质品的保护处理[J],文物保护与考古科学,1996,8(1):55-63.
    [8]和玲,梁国正.偏氟聚物加固保护土质文物的研究[J].敦煌研究,2002,(6):92-108.
    [9]周双林,原思训,杨宪伟,等.丙烯酸非水分散体等几种土遗址防风化加固剂的效果比较[J].文物保护与考古科学,2003,15(2):40-48.
    [10]周双林,王雪莹,胡原,等.辽宁牛河梁红山文化遗址土体加固保护材料的筛选[J].岩土工程学报,2005,27(5):567-570.
    [11]周双林,原思训.有机硅改性丙烯酸树脂非水分散体的制备及在土遗址保护中的试用[J].文物保护与考古科学,2004,16(4):50-52.
    [12]周双林.文物保护用有机高分子材料及要求[J].四川文物,2003,(3):94-96.
    [13]周双林.土遗址防风化保护概况[J].中原文物,2003,6):78-83.
    [14]周环,张秉坚,陈港泉,等.潮湿环境下古代十遗址的原位保护加固研究[J].岩十力学,2008,29(4):954-962.
    [15]Bouwer H.. Intake rate:Cyliner infiltrometer[C]//Klute A.. Methods of soil analysis. Monograph No.9 Am Soc Agron Madison, WI,1986:825-843.
    [16]Hillel D.. Environmental Soil Physics [M]. New York:Academic Press,1998:385-426.
    [17]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988:77-131.
    [18]陈瑶,张科利,罗利芳,等.黄土坡耕地弃耕后土壤入渗变化规律及影响因素[J].泥沙研究,2005,(5):45-50.
    [19]袁建平,张素丽,张春燕,等.黄土丘陵区小流域土壤稳定入渗速率空间变异[J].土壤学报,2001,38(4):579-583.
    [20]田积莹.黄土地区土壤的物理性质与黄土成因的关系[J].中国科学院西北水保所集刊,1987,(5):1210-1212.
    [21]李肖.交河故城的形制布局[M].北京:文物出版社,2003:240-243.
    [22]张虎元,赵天宇,王旭东.中国古代土工建造方法[J].敦煌研究.2008,(5):81-90.
    [23]李最雄,王旭东,孙满利.交河故城保护加固技术研究[M].北京:科学出版社,2008:221-223
    [24]Green W. H., Ampt G. A.. Studies on soil physics:I. Flow of air and water through soils[J]. J. A. gric Sci,1911,4:1-24.
    [25]Philip J. R..An infiltration equation with physical significance[J]. Soil Sci,1954,77:153-157.
    [26]Horton R. E.. An approach toward a physical interpretation of infiltration-capacity[J].Soil Sci Soc Am Proc,1940,5:399-417.
    [27]Gottardi G., Venutelli M.. Richards:computer program for the numerical simulation of one-dimensional infiltration into unsaturated soil[J].Computer & Geosciences,1993,19(9): 1239-1266.
    [28]余新晓,陈丽华.人工降雨条件下入渗实验研究[J].水土保持学报,1989,3(4):15-22.
    [29]王全九,王文焰,吕殿青,等.水平一维土壤水分入渗特性分析[J].水利学报,2000(6):34-38.
    [30]Fredlund D. G., Harianto R..非饱和土土力学[M].陈仲颐,等泽.北京:中国建筑工业出版社,1997.
    [31]敦煌研究院,兰州大学文物保护研究中心.高吕故城抢险加固工程勘察报告[R].兰州,2005
    [32]李最雄,赵林毅,孙满利.中国丝绸之路土遗址的病害及PS加固[J].岩石力学与工程学报.2009,28(5):1047-1054.
    [33]梁尉英.李最雄石窟保护论文集[M].兰州:甘肃民族出版社,1994.18-22.
    [34]赵海英,李最雄,汀稔,等.PS材料加固土遗址风蚀试验研究[J].岩土力学,2008,29(2):392-396.
    [35]李黎,陈锐,邵明中,等.经PS加固土遗址水饱和强度及加固效果的环境影响研究[J].岩石力学与工程学报.2009,28(5):1074-1080.
    [36]苏伯民,李最雄,胡之德.PS与土遗址作用机理的初步探讨[J].敦煌研究,2000(1):30-35.
    [37]陆彩飞,罗宏杰,李伟东.PS材料加固土遗址微观机理研究[C]//国际岩石力学学会,古遗址保护国际学术讨论会会议论文集.2008:333-338.
    [1]Fredlund D. G., Rahardjo H..非饱和土力学[M].陈仲颐,张在明,陈愈炯,等泽.北京:中国建筑工业出版社,1997.
    [2]Van Genuchten M.T.. A Closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Sci. Soc. Am. J.1980,44:892-898.
    [3]Miller C. J.. Impact of soil type and compaction conditions on soil water characteristic[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2002,128(9):733-742.
    [4]Vanapalli S. K., Fredlund D. G., Pufahl D. E.. Relationship between soil-water characteristic curves and the as-compacted water content versus soil for a clay till[C]//Proceedings of XI Pan-American Conference on Soil Mechanics and Foundation Engineering. Brazil:Iguanzu Falls,1999:991-998.
    [5]Pereira J. H. F., Fredlund D. G.. Volume change behavior of collapsible compacted gneiss soil[J].Journal of Geotechnical and Geoenvironmental Engineering. ASCE,2000,126(10): 907-916.
    [6]Kawaik, Karubed, Katos. The model of water retention curve considering effects of void ratio[C]//Rahardjo H, Tolld D G, Leong E C. Unsaturated Soils for Asia. Rotterdam:Balkema, 2000:329-334.
    [7]Charles W. W. NG, PANG Y. W.. Influence of stress state on soil-water characteristics and slope stability [J] Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2000, 126(2):157-166.
    [8]ZHOU Jian, YU Jianlin. Influences affecting the soil-water characteristics curve[J]. Journal of Zhejiang University Science,2005,6A(8):797-804.
    [9]李志清,胡瑞林,王立朝,等.非饱和膨胀土SWCC研究[J].岩石力学,2006,27(5):730-734.
    [10]刘艳华,龚壁卫,苏鸿.非饱和土的土水特征曲线研究[J].工程勘察,2002,(3):8-11.
    [11]詹良通,包承纲,龚壁卫.土-水特征曲线及其在非饱和土力学中的应用[C]//南水北调膨胀土渠坡稳定和滑动早期预报研究论文集.长江科学院,1998.11.
    [12]LI Zui-xiong. Consolidation of neolithic earthen site with Potassium, compiled by the getty conservation Institute[C]//6th International Conference on the Conservation of Earthen, Architecture. New Mexico, U.S.A:the Getty Conservation Institute, Los Angeles,1990: 295-301.
    [13]李最雄.丝绸之路古遗址保护[M].北京:科学出版社,2003.
    [14]李最雄.交河故城保护加固技术研究[M].北京:科学出版社,2008.
    [15]李最雄,王旭东.古代土建筑遗址保护加固研究的新进展[J].敦煌研究,1997,(4):167-172.
    [16]Li Huo-ming, Zhang Bing-jian,Liu Qiang. A potential protectmaterial in stone conservation: biomimetic inorganic material[J]. Sciences of Conservation and Archaeology,2005,17 (1): 59-64.
    [17]王旭东.中国西北干旱环境下石窟与土建筑遗址保护加固研究[D].兰州:兰州大学博十学位论文,2002.27-52.
    [18]尹小涛,赵海英,李最雄,等.K2Si03溶液对粘性土孔隙分形特性的影响分析[J].岩土力学,2008,29(10):2847-2852.
    [19]李黎,陈锐,邵明中,等.经PS加固土遗址水饱和强度及加固效果的环境影响研究[J].岩石力学与工程学报,2009,28(5):1074-1080.
    [20]苏伯民,李最雄,胡之德.PS与土遗址作用机制的初步探讨[J].敦煌研究,2000,(1):3-35.
    [21]王银梅.西北干旱区土建筑遗址加固概述[J].工程地质学报,2003,11(2):189-192.
    [22]陆彩飞,罗宏杰,李伟东.PS材料加固十遗址微观机理研究[C]//国际岩石力学学会,古遗址保护国际学术讨论会会议论文集.2008:333-338.
    [23]廖世文.膨胀土与铁路工程[M].北京:中国铁道出版社,1984.
    [24]Mualem Y.. Hydraulic conductivity of unsaturated soils:prediction and formulas[C]//Methods of Soil Analysis.Madison, Wis:American Society of Agronomy, Part 1.1986:799-823.
    [25]Jarvis N. J., Messing I.. Near-saturated hydraulic conductivity in soils of contrasting texture as measured by tension infiltrometers[J]. Soil Science Society of America,1995,59:27-34.
    [26]王盛萍,张志强,武军,等.土壤水分运动特征参数空间异质性理论分析、取样与影响因素[J].中国水土保持科学,2003,1(3):95-98.
    [27]Gomez J. A., Vanderlinden K., Nearing M. A.. Spatial variability of surface roughness and hydraulic conductivity after disk tillage:implications for runoff variability [J]. Journal of Hydrology,2005,311:1-4.
    [28]黄文熙.土的工程性质[M].北京:水利电力出版社,1983:110-119.
    [1]李最雄.丝绸之路古遗址保护[M].北京:科学出版社,2003:132-186.
    [2]李最雄.交河故城保护加固技术研究[M].北京:科学出版社,2008:164-256.
    [3]Li Huoming, Zhang Bingjian, Liu Qiang. A potential protectma-terial in stone conservation: biomimetic inorganic material[J].Sciences of Conservation and Archaeology,2005,17(1): 59-64.
    [4]李最雄,王旭东.古代土建筑遗址保护加固研究的新进展[J].敦煌研究,1997,(4):167-172.
    [5]王旭东.中国西北干旱环境下石窟与土建筑遗址保护加固研究[D].兰州:兰州大学博士学位论文,2002.
    [6]李最雄,王旭东,田琳.交河故城土建筑遗址的加固试验[J].敦煌研究,1997,(3):17-181.
    [7]李最雄,赵林毅,孙满利.中国丝绸之路土遗址的病害及PS加固[J].岩石力学与工程学报.2009,28(5):1047-1054
    [8]赵海英,王旭东,李最雄,等.PS材料模数、浓度对干旱区土建筑遗址加固效果的影响[J].岩石力学与工程学报.2006,25(3):557-562.
    [9]李黎,陈锐,邵明中,等.经PS加固土遗址水饱和强度及加固效果的环境影响研究[J].岩石力学与工程学报.2009,28(5):1074-1080.
    [10]赵海英,李最雄,汪稔,等.PS材料加固土遗址风蚀试验研究[J].岩土力学,2008,29(2):392-396.
    [11]刘小平,董治宝.湿沙的风蚀起动风速试验研究[J].水土保持通报,2002.22(2):1-4.
    [12]张春来,董光荣,董治宝,等.用风洞试验方法计算土壤风蚀量的时距问题[J].中国沙漠.1996,16(2):200-204
    [13]董治宝.建立小流域风蚀量统计模型初探[J].水土保持通报.1998,18(5):55-62.
    [14]敦煌研究院.风蚀、雨蚀现场模拟试验[R].兰州,2008.
    [15]敦煌研究院,兰州大学文物保护研究中心.交河故城抢险加固工程勘察报告[R].兰州,2005.
    [16]屈建军,王家澄,程国栋,等.西北地区古代生土建筑物冻融风蚀机理的试验研究[J].冰川冻土.2002,24(1):51-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700