用户名: 密码: 验证码:
发展型方程的混合有限体积元方法及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合有限体积元方法是将混合有限元方法和有限体积元方法相结合的一种数值方法,该方法又称为混合控制体积方法,最早是由Russell于1995年在求解一类二阶线性椭圆型问题时提出,随后Cai和Jones等人通过数值算例验证该方法的有效性,Chou和Kwak等人在该方法的理论分析方面做了大量的工作.该方法具有如下优点:采用混合元思想引入辅助变量(如梯度函数,流函数等)将高阶问题转化为低阶问题,降低对有限元空间的光滑度的要求;易于处理复杂区域和边界条件,具有有限体积元方法的格式简单性;方法的定义采用混合变分形式,可以从混合变分形式出发进行理论分析;计算量比混合有限元方法小,收敛阶和混合有限元方法相同;能够保持某些物理量(如质量,动量)的局部守恒性质.
     Rui和Lu于2005年将扩展混合元方法和有限体积元方法相结合,对一类二阶椭圆问题构造了矩形网格剖分下的扩展混合有限体积元方法,该方法继承了扩展元方法和有限体积元方法的优势,可以同时数值计算三个未知变量.目前关于此类方法的研究主要是基于矩形网格剖分,而在三角网格剖分下的研究还非常少,本文主要是在三角网格剖分下将此类方法求解含对流项Sobolev方程,并给出误差分析和数值模拟.
     近年来随着解决复杂实际数学物理问题的需要,对数值方法在计算效率上也有了更高的要求.本文结合分裂思想对扩展混合有限体积元方法进行简化,提出了一类新型的分裂扩展混合有限体积元方法.该方法在数值计算时可以先求解两个方程的耦合系统得到两个变量的数值解,再利用这两个数值解求解第三个方程得到第三个变量的数值解,这种办法在很大程度上降低了线性方程组的规模从而大幅度的减少计算时间.
     本文应用混合有限体积元、扩展混合有限体积元以及分裂扩展混合有限体积元方法从理论分析和数值计算两个方面对几类发展型方程进行研究,由于每一类方程都有不同的特点,从而所构造的数值格式也不相同,而且需要根据每一类方程的特点进行相应的理论分析和数值实验.在第一章中简单介绍一下混合有限元方法和混合有限体积元方法的特点和发展现状.
     在第二章到第四章中应用混合有限体积元方法研究三类发展型方程.其中在第二章研究了一维正则长波方程的混合有限体积元方法.通过引入一维网格剖分下的迁移算子,构造了半离散、非线性和线性向后Euler全离散混合有限体积元格式,利用椭圆投影和L2正交投影算子给出三种离散格式的最优阶误差估计,最后通过数值算例验证格式的有效性和收敛精度.第三章和第四章应用混合有限体积元方法在三角网格剖分下数值求解一类二维伪双曲型方程和非线性阻尼Sine-Gordon方程.选用最低阶Raviart-Thomas有限元空间和分片常函数空间作为解函数空间,并引入迁移算子γh将最低阶Raviart-Thomas有限元空间映射成试探函数空间,对两类方程分别构造了半离散和关于时间隐式的全离散混合有限体积元格式.通过引入广义混合有限体积投影得到半离散和全离散格式的最优误差估计,最后对两类方程分别给出一些数值结果验证了该方法的可行性.
     第五章将扩展混合元和混合有限体积元方法相结合构造了一类含对流项Sobolev方程的初边值问题的扩展混合有限体积元方法.该方法引入辅助变量λ=-▽u和σ=-(a▽u+6Vut),将原问题降为一阶微分方程系统,选用最低阶Raviart-Thomas有限元空间作为变量λ和σ的解函数空间,并使用分片常函数空间作为u的解函数空间,利用迁移算子γh在三角网格剖分下构造了半离散和向后Euler全离散的扩展混合有限体积元格式.应用微分方程理论证明了半离散格式解的存在唯一性,利用迁移算子的性质和扩展混合有限体积投影得到半离散和全离散格式的最优阶误差估计.最后给出数值算例验证了方法的可行性和理论分析的正确性.
     第六章将扩展混合有限体积元方法和分裂思想相结合,引入和第五章一样的辅助变量λ和σ,构造了含对流项Sobolev方程的一种新型分裂扩展混合有限体积元格式.这一格式与扩展混合有限体积元格式的区别在于:扩展混合有限体积元格式需要同时求解三个方程的的耦合系统,从而在数值计算过程中生成的线性方程组的系数矩阵规模比较大,而此格式在数值计算时可以先求解两个方程的耦合系统得到变量λ和σ的数值解,再利用这两个数值解求解第三个方程得到变量u的数值解,这种办法在很大程度上降低了线性方程组的规模从而大幅度的减少计算时间.最后给出一些数值结果来验证该方法的有效性和理论结果的正确性.
     第七章研究了一类抛物型积分微分方程的初边值问题的分裂扩展混合有限体积元方法.引入辅助变量λ(x,t)=-(?)u(x,t)和σ(x,t)=-(a(x)(?)u(x,t)+∫0t(x,t,τ)(?)u(x,τ)dτ),利用迁移算子γh构造了半离散和向后Euler全离散分裂扩展混合有限体积元格式,其中在全离散格式中利用左矩形数值积分公式离散积分项,利用向后Euler格式离散时间导数项.引入Volterra型扩展混合有限体积投影并利用迁移算子的性质得到了两种格式的最优阶误差估计,最后通过数值算例验证了理论分析结果.
Mixed finite volume element methods which combine mixed finite element methods with finite volume element methods, also called as mixed covolume methods, were first introduced by Russell in1995for solving a class of second-order linear elliptic type prob-lem. Soon afterwards, Cai and Jones et al illustrated the effectiveness of the proposed methods, Chou and Kwak et al had done a lot of work in the aspect of theoretical analysis. The methods have the following advantages:the methods use the idea of mixed methods and introduce auxiliary variables (such as gradient function, flux function etc.) to refor-mulate higher order problems as lower order problems, and then reduce the regularity requirement of the finite element spaces; it is easy to handle the complex regions and boundary conditions, and the methods have the simple format similar to finite volume element methods; the definition of the methods uses mixed variational form which is help-ful to make theoretical analysis; the computational effort is less than mixed finite element methods, and convergence accuracy is the same as the mixed finite element methods; the local conservation properties of some physical quantities (such as Mass, momentum etc.) are maintained. Based on the above features and advantages, mixed finite volume element methods have become the important numerical methods for solving differential equations.
     Rui and Lu (in2005) combined expanded mixed methods with finite volume element methods, and constructed an expanded mixed finite volume element method based on the rectangular grids for a class of second-order elliptic problem. This method Inherits the advantages of expanded mixed methods and finite volume element methods, and can simultaneously calculate three unknown variables. The study of this method is mainly based on rectangular grids, however, the analysis on triangular grids is relatively few. In this thesis, we apply expanded mixed finite volume element method based on triangular girds to solving a class of Sobolev equation with convection term, and give the error analysis and numerical simulation.
     In recent years, with the need to solve complex practical problems of mathematical physics, numerical methods have higher requirements on the computational efficiency. In this thesis, we simplify the expanded mixed finite volume element methods by combining with splitting idea, and propose a new splitting expanded mixed finite volume element. In the numerical simulation process, this method can first solve the coupling system of two equations to get the numerical solutions of the two variables, and then solve the third equation to get the numerical solution of the third variable, thus, greatly reduce the size of linear equations and the computational time.
     In this thesis, we will apply the mixed finite volume element methods, expanded mixed finite volume element methods and splitting expanded mixed finite volume element methods to studying some evolution type equations from the aspects of the theoretical analysis and numerical calculation. Due to the different characteristics of each class of equations, the numerical formats we constructed are not the same, and the corresponding theoretical analysis and numerical experiments need to be carried out according to the characteristics of each class of equations. In Chapter1, the features and development status of the mixed finite element methods and mixed finite volume element methods are introduced briefly.
     In Chapter2to Chapter4, we apply the mixed finite volume element method to solv-ing three classes of evolution type equations. In Chapter2, a mixed finite volume element method for one-dimensional regularized long wave equation is studied. The semidiscrete, nonlinear and linear backward Euler fully discrete schemes for the proposed problem are constructed by introducing the transfer operator based on one-dimensional grids. The optimal error estimates for three schemes are derived by using elliptic projection and L2-orthogonal projection operators. Finally, a numerical example is provided to verify the ef-fectiveness and convergence rate. In Chapter3and Chapter4, we apply the method based on triangular grids to numerically solving a class of two-dimensional pseudo-hyperbolic type equation and nonlinear damped Sine-Gordon equation. By using the lowest order Raviart-Thomas space and piecewise constant function space as the solution function spaces, and introducing the transfer operator γh which maps the lowest order Raviart-Thomas space into the test function space, both the semidiscrete and time-in-implicit fully discrete mixed finite volume element schemes are formulated for two proposed equations, respectively. Optimal error estimates are derived by introducing generalized mixed finite volume projection. Finally, some numerical results for two given equations are provided to test the effectiveness of the proposed schemes.
     In Chapter5, an expanded mixed finite volume element procedure for a class of Sobolev equation with convection term is formulated by combining the expanded mixed methods with finite volume element methods. This method introduces two auxiliary vari-ables λ=-(>)u and σ=-(a(?)u+b(>)ut) to rewrite the original equation as the system of first-order differential equations, uses the lowest order Raviart-Thomas space as the solution function spaces of the variables λ and σ, and uses the piecewise constant func-tion space as the solution function space of the variable u. Then, both the semidiscrete and backward Euler fully discrete expanded mixed finite volume element schemes are con-structed based on triangular grids by using the transfer operator γh. The existence and uniqueness of semidiscrete scheme solutions are proved by applying the theory of differ-ential equations, and the optimal error estimates for the semidiscrete and fully discrete schemes are derived by using the properties of transfer operator and expanded mixed finite volume projection. Finally, a numerical example is given to illustrate the feasibility and the correctness of the theoretical results.
     In Chapter6, we introduce two auxiliary variables λ and σ defined in Chapter5, and construct a new splitting expanded mixed finite volume element scheme for the Sobolev equation with convection term. The difference between this scheme and the expanded mixed finite volume element scheme is in that:expanded mixed finite volume element scheme needs to solve the coupling system of three equations, and then the size of the coefficient matrix in the process of numerical calculation is relatively large; however, the expanded splitting mixed finite volume element scheme can first solve the coupling system of two equations to get the numerical solutions of the variables λ and σ, and then solve the third equation to get the numerical solution of the variable u, thus, greatly reduce the size of linear equations and the computational time. Finally, some numerical results are given to illustrate the feasibility and the correctness of the theoretical results.
     In Chapter7, a splitting expanded mixed finite volume element method for a class of parabolic type integro-differential equation is formulated. By using transfer operator γh and introducing auxiliary variables λ(x,t)=-(?)u(x,t) and σ(x, t)=-(a(x)(?)u(x,t)+∫0tk(x, t,τ)(?)u(x, τ)dτ), both the semidiscrete and backward Euler fully discrete splitting expanded mixed finite volume element schemes are constructed. In the fully discrete scheme, left rectangle quadrature rule and backward Euler scheme are applied to getting the discretization of the integral term and the time derivative term, respectively. The optimal error estimates for two schemes are derived by introducing the Volterra type expanded mixed finite volume projection and using the properties of the transfer operator. Finally, a numerical example is given to confirm the theoretical results.
引文
[1]Ablowitz M. J., Herbst B. M., Schober C., On the numerical solution of the Sine-Gordon equation, J. Comput. Phys.,1996,126:299-314.
    [2]Adams R., Sobolev spaces, New York:Academic Press,1975.
    [3]Alexander M. E., Morris J. L., Galerkin methods applied to some model equations for non-linear dispersive waves, J. Comput. Phy.,1979,30:428-451.
    [4]Arbogast T., Wheeler M., Yotov I., Mixed finite elements for elliptic problems with tensor coeffi-cients as cell-centered finite differences, SIAM J. Numer. Anal.,1997,34:828-852.
    [5]Arbogast T., Wheeler M. F., Zhang N. Y., A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media, SIAM J. Numer. Anal.,1996,33(4):1669-1687.
    [6]Argyris J., Haase M., Heinrich J.C., Finite element approximation to two-dimensional sine-Gordon solitons, Comput. Methods Appl. Mech. Eng.,1991,86:1-26.
    [7]Babuska I., Error-bounds for finite element method, Numer. Math.,1971,16:322-333.
    [8]Bank R. E., Rose D. J., Some error estimates for the box method, SIAM J. Numer. Anal.,1987, 24:777-787.
    [9]Barenblatt G. I., Zheltov I. P., and Kochina I. N., Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech.,1960,24:1286-1303.
    [10]Benjamin T. B., Bona J. L., Mahony J. J., Model equations for long waves in non-linear dispersive systems, Philos. Trans. R. Soc. London Ser. A,1972,272:47-48.
    [11]Bi C. J., Superconvergence of finite volume element method for a nonlinear elliptic problem, Numer. Methods Partial Differential Eq.,2007,23:220-233.
    [12]Bi C. J., Superconvergence of mixed covolume method for elliptic problems on triangular grids, J. Comput. Appl. Math.,2008,216(2):534-544.
    [13]Bi C. J., Liu M. M., A discontinuous finite volume element method for second-order elliptic prob-lems, Numer. Methods Partial Differential Eq.,2012,28:425-440.
    [14]Bratsos A. G., An explicit numerical scheme for the Sine-Gordon equation in 2+1 dimensions, Appl. Num. Anal. Comp.,2005,2:189-211.
    [15]Brezzi F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Model. Math. Anal. Numer.,1974,8:129-151.
    [16]Brezzi F., Douglas J. J., Fortin M., Marini L. D., Efficient rectangular mixed finite elements in two and three apace variables, RAIRO Model. Math. Aanl. Numer.,1987,21:581-604.
    [17]Brezzi F., Fortin M., Mixed and hybrid finite element methods, NewYork:Springer-Verlag,1991.
    [18]Brunner H., A survey of recent advances in the numerical treatment of Volterra integral and integral-differential equations, J. Comput. Appl. Math.,1982,8:76-102.
    [19]Budak B., Pavlov A., A difference method of solving boundary value problems for a quasilinear integro-differential equation of parabolic bype, Soviet Math. Dokl.,1974,14:565-569.
    [20]Cai Z., On the finite volume element method, Numer. Math.,1991,58:713-735.
    [21]Cai, Z., Jones, J. E., Mccormick, S. F., Russell, T. F., Control-volume mixed finite element meth-ods, Comput. Geosci.,1997,1:289-315.
    [22]Cai Z., Mandel J., McCormick S., The finite volume element for diffusion equation on general triangulations, SIAM J. Numer. Anal.,1991,28:392-402.
    [23]Cai Z., McCormick S., On the accuracy of the finite volume element method for diffusion equations on composite grids, SIAM J. Numer. Anal.,1990,27:636-655.
    [24]Cai Z., Jones J. E., Mccormick S. F., Russell T. F., Control-volume mixed finite element methods, Comput. Geosci.,1997,1:289-315.
    [25]Cannon J. R., Lin Y., Nonclassical H1-projection and Galerkin methods for nonlinear parabolic integro-differential equations, Calcolo.,1988,25(3):187-201.
    [26]Caputo J. G., Flytzanis N., Gaididei Y., Split mode method for the elliptic 2D sine-Gordon equa-tion:application to Josephson junction in overlap geometry, Int. J. Mod. Phys. C,1998,9:301-323.
    [27]Carstensen C., Lazarov R., Tomov S., Explcit and averaging a posteriori error estimates for adaptive finite volume methods, SIAM J. Numer. Anal.,2005,42:2496-2521.
    [28]Che H. T., Jiang Z. W., A characteristics-mixed covolume method for a convection-dominated transport problem, J. Comput. Appl. Math.,2009,231:760-770.
    [29]Chen Z. X., Expanded mixed finite element methods for linear second order elliptic problems, IMA preprint series # 1219, Institute for Mathematics and Its Applications, University of Minnesota, Minneapolis, Minn, USA,1994.
    [30]Chen Z. X., Expanded mixed finite element methods for linear second order elliptic problems I, RAIRO Model. Math. Anal. Numer.,1998,32(4):479-499.
    [31]Chen Z. X., Expanded mixed finite element methods for quasilinear second order elliptic problems II, RAIRO Model. Math. Anal. Numer.,1998,32(4):501-520.
    [32]Chen Z. X., Analysis of expanded mixed methods for fourth-order elliptic problems, Numer. Meth-ods Partial Differential Eq.,1997,13:483-503.
    [33]Chen Z. X., Characteristic mixed discontinuous finite element methods for advection-dominated diffusion problems, Comput. Methods Appl. Mech. Engrg.,2002,191:2509-2538.
    [34]Chen Z. X., On the control volume finite element methods and their applications to multiphase flow, Netw. Heterog. Media,2006, 1(4):689-706.
    [35]陈仲英,热传导方程的一种广义差分法,中山大学学报(自然科学版),1990,1:6;-13.
    [36]Chen Z. Y., The error estimate of generalized difference method of 3rd-order Hermite type for elliptic partial differential equations, Northeastern Math. J.,1992,8:127-135.
    [37]Chen Z. Y., L2-estimates for one-dimensional schemes for generalized difference methods, Acta Sci. Natur. Univ. Sunyatseni,1994,33(4):22-28.
    [38]Chen Y. P., Global superconvergence for a mixed finite element method for the wave equation, Systems Sci. Math. Sci.,1999,12(2):159-165.
    [39]Chen Z. X., Cockburn B., Jerome J. W., Shu C. W., Mixed-RKDG finite element methods for the 2D hydrodynamic model for semiconductor device simulation, VLSI Des.1995,3:145-158.
    [40]Chen P.J., Gurtin M.E., On a theory of heat conduction involving two temperatures, Z Angew Math Phys 19 (1968),614-627.
    [41]Chen Z. Y., He C. N., Wu B., High order finite volume methods for singular perturbation problems, Sci. China Ser. A,2008,51(8):1391-1400.
    [42]Chen Y.P., Huang Y.Q., The superconvergence of mixed finite element methods for nonlinear hyperbolic equations, Comm. Nonlinear Sci. Numer. Simulation,1998,3(3):155-158.
    [43]Chen Y. P., Huang Y. Q., Yu D. H., A two-grid method for expanded mixed finite element solution of semilinear reaction-diffusion equations, Internat. J. Numer. Meth. Eng.,2003,57:193-209.
    [44]Chen Y. P., Li L., Lp error estimates of two-grid schemes of expanded mixed finite element methods, Appl. Math. Comput.,2009,209:197-205.
    [45]Chen Z. Y., Li R. H., Zhou A. H., A note on the optimal L2-estimate of the finite volume element method, Adv. Comput. Math.,2002,16(4):291-303.
    [46]Chen C., Thomee V., Wahlbin L. B., Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel, Math. Comp.,1992,58:587-602.
    [47]Chen H. Z., Wang H., An optimal-order error estimate on an.H1-Galerkin mixed method for a nonlinear parabolic equation in porous medium flow, Numer. Methods Partial Differential Eq., 2010,26:188-205.
    [48]Chen Z. X., Chou S. H., Kwak D. Y., Characteristic-mixed covolume methods for advection-dominated diffusion problems, Numer. Linear Algebra Appl.,2006,13:677-697.
    [49]Chou S. H., Analysis and convergence of a covolume method for the generalized Stokes problem, Math. Comp.,1997,36:85-104.
    [50]Chou S. H., Kwak D. Y., A covolume method based on rotated bilinears for the generalized Stokes problem, SIAM J. Numer. Anal.,1998,35(2):494-507.
    [51]Chou S. H., Kwak D. Y., Mixed covolume methods on rectangular grids for elliptic problems, SIAM J. Numer. Anal.,2000,37:758-771.
    [52]Chou S. H., Kwak D. Y., Multigrid algorithms for a vertex centered covolume method for elliptic problems, Numer. Math.,2002,90:441-458.
    [53]Chou S. H., Kwak D. Y., Kim K. Y., A general framework for constructing and analyzing mixed volume methods on quadrilateral grids:the overlapping covolume case, SIAM J. Numer. Anal., 2001,39(4):1170-1196.
    [54]Chou S. H., Kwak D. Y., Kim K. Y., Mixed finite volume methods on nonstaggered quadrilateral grids for elliptic problems, Math. Comp.,2002,72(242):525-539.
    [55]Chou S. H., Kwak D. Y., Vassilevski P.S., Mixed covolume methods for the elliptic problems on triangular grids, SIAM J. Numer. Anal.,1998,35:1850-1861.
    [56]Chou S. H., Kwak D. y., Vassilevski S., Mixed upwinding covolume methods on rectangular grids for convection-diffusion problems, SIAM J. Sci. Comput.,1999,21(1):145-165.
    [57]Chou S. H., Li Q., Error estimates in.L2,Hl and L∞ in covolume methods for elliptic and parabolic problems:a unified approach, Math. Comp.,2000,69(229):103-120.
    [58]Chou S. H., Tang S. R., Comparing two approaches of analyzing mixed finite volume methods, J. KSIAM,2001,1:55-78.
    [59]Chou S. H., Vassilevski P. S., A general mixed covolume framework for constructing conservative schemes for elliptic problems, Math. Comp.,1999,68(227):991-1011.
    [60]Christiansen P. L., Lomdahl P. S., Numerical study of 2+1 dimensional sine-Gordon solitons, Physica D.,1981,2:482-494.
    [61]Cotter C. J., Ham D. A., Pain C. C., A mixed discontinuous/continuous finite element pair for shallow-water ocean modelling, Ocean Modelling,2009,26:86-90.
    [62]Courant R., Variational methods for the solution of problems of equilibrium and vibrations, Bull. Amer. Math. Soc.,1943,49:1-23.
    [63]Cowsar L. C., Dupont T. F., Wheeler M. F., A priori estimates for mixed finite element methods for the wave equation, Comput. Methods App. Mech. Engrg.,1990,82:205-222.
    [64]Cowsar L. C., Dupont T. F., Wheeler M. F., A priori estimates for mixed finite element approxi-mations of second-order hyperbolic equations with absobing boundary conditions, SIAM J. Numer. Anal.1996,33:492-504.
    [65]Croisille J. P., Finite volume box-schemes and mixed methods, Math. Model. Numer. Anal.,2000, 34(5):1987-1106.
    [66]Dag I., Saka B., Irk D., Galerkin method for the numerical solution of the RLW equation using quintic B-splines, J. Comput. Appl. Math.,2006,190:532-547.
    [67]Dean E. J., Glowinski R., Domain decomposition methods for mixed finite element approximations of wave problems, Comput. Math. Appl.,1999,38:207-214.
    [68]Dehghan M., Mirzaei D., The dual reciprocity boundary element method (DRBEM) for two-dimensional sine-Gordon equation, Comput. Methods Appl. Mech. Engrg.,2008,197:476-486.
    [69]Dehghan M., Shokri A., A numerical method for one-dimensional nonlinear sine-Gordon equation using collocation and radial basis functions, Numer. Methods Partial Differential Eq.,2008,24: 687-698.
    [70]Djadel K., Nicaise S., A non-conforming finite volume element method of weighted upstream type for the two-dimensional stationary Navier-Stokes system, Appl. Numer. Math.,2008,58:615-643.
    [71]Douglas J., Jones J. B., Numerical method for integral-differential equations of parabolic and hyperbolic type, Numer. Math.,1962,4:92-102.
    [72]Douglas J., Roberts J. E., Global estimates for mixed methods for second order elliptic equations, Math. Comp.,1985,44:39-52.
    [73]Elibeck J. C., McGuire G. R., Numerical study of the RLW equation Ⅱ:Interaction of solitary waves, J. Comput. Phys.,1977,23:63-73.
    [74]Ewing R. E., Numerical solution of Sobolev partial differential equations, SIAM J. Numer. Anal., 1975,12:345-363.
    [75]Ewing R. E., Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations, SIAM J. Numer. Anal.,1978,15:1125-1150.
    [76]Ewing R., Lazarov R., Lin Y. P., Finite volume element approximations of nonlocal reactive flows in porous media, Numer. Methods Partial Differential Eq.,2000,16(3):285-311.
    [77]Ewing R. E., Lin T., Lin Y. P., On the accuracy of the finite volume element method based on piecewise linear polynomials, SIAM J. Numer. Anal.,2002,39(6):1865-1888.
    [78]Ewing R. E., Lin Y. P., Sun T., Wang J. P., Zhang S. H., Sharp L2-error estimates and supercon-vergence of mixed finite element methods for non-fickian flows in porous media, SIAM J. Numer. Anal.,2002,40(4):1538-1560.
    [79]Falk R. S., Osborn J. E., Error estimates for mixed methods, RAIRO Anal. Numer.,1980,14(3): 249-277.
    [80]冯康,基于变分原理的差分格式,应用数学与计算数学,1965,2(4):238-262.
    [81]Gao F. Z., Rui H. X., A split least-squares characteristic mixed finite element method for Sobolev equations with convection term, Math. Comput. Simulation,2009,80:341-351.
    [82]Gardner L. R. T., Gardner G. A., Dag I., A B-spline finite element method for the regularized long wave equation, Commum. Numer. Meth. Eng.,1995,11:59-68.
    [83]Gatica G. N., Heuer N., An expanded mixed finite element approach via a dual-dual formulation and the minimum residual method, J. Comput. Appl. Math.,2001,132:371-385.
    [84]Gou B. Y., Cao W. M., The Fourier pseudospectral method with a restrain operator for the RLW equation, J. Comput. Phys.,1988,74:110-126.
    [85]Gu H. M., Characteristic finite element methods for nonlinear Sobolev equations, Appl. Math. Comput.,1999,102:51-62.
    [86]Gu H. M., Chen N., Least-squares mixed finite element methods for the RLW equations, Numer. Methods Partial Differential Eq.,2008,24(3):749-758.
    [87]Guo H., A splitting positive definite mixed finite element method for two classes of integro-differential equations, J. Appl. Math. Comput.,2012,39:271-301.
    [88]Guo L., Chen H. Z., An expanded characteristic-mixed finite element method for a convection-dominated transport problem, J. Comput. Math.,2005,23(5):479-490.
    [89]郭玲,陈焕贞,Sobolev方程的H1-Galerkin混合有限元方法,系统科学与数学,2006,26(3):301-314.
    [90]Guo L., Chen H. Z.,H1-Galerkin mixed finite element method for the regularized long wave equation, computing,2006,77:205-221.
    [91]Guo B. Y., Pascual P. J., Rodriguez M. J., Vazquez L., Numerical solution of the sine-Gordon equation, Appl. Math. Comput.,1986,18:1-14.
    [92]Guo H., Rui H. X., Least-squares Galerkin procedures for parabolic integro-differential equations, Appl. Math. Comp.,2004,150:749-762.
    [93]Guo H., Rui H. X., Crank-Nicolson Least-squares Galerkin procedures for parabolic integro-differential equations, Appl. Math. Comp.,2006,180:622-634.
    [94]Guo H., Rui H. X., Least-squares Galerkin procedures for pseudo-hyperbolic equations, Appl. Math. Comput.,2007,189:425-439.
    [95]Guo H., Rui H. X., Lin C., A remark on least-squares Galerkin procedures for pseudohyperbolic equations, J. Comput. Appl. Math.,2009,229:108-119.
    [96]Gurtin M., Pipkin A., A general theory of heat conduction with finite wave speeds, Arch. Rational Mech. Anal.,1968,31:113-126.
    [97]Habetler G. T., Schiffman R. L., A finite difference method for analyzing the compression of poro-viscoelastic media, Comput.,1970,6:342-348.
    [98]Hackbusch W., On first and second order box schemes, Computing,1989,41:277-296.
    [99]Heard M., An abstract parabolic Volterra integral-differential equation, SIAM J. Math. Anal., 1982,13:81-105.
    [100]Hirota R., Exact three-soliton solution of the two-dimensional sine-Gordon equation, J. Phys. Soc. Jpn.,1973,35:15-66.
    [101]Huang J. G., Li L. K., Some superconvergence results for the covolume method for elliptic problems, Commun. Numer. Meth. Engng.,2001,17:291-302.
    [102]Hughes T. J. R., Masud A., Wan J., A stabilized mixed discontinuous Galerkin method for Darcy flow, Comput. Methods Appl. Mech. Engrg.,2006,195:3347-3381.
    [103]Jenkins E. W., Riviere B., Wheeler M. F., A priori error estimates for mixed finite element ap-proximations of the acoustic wave equations, SIAM J. Numer. Anal.,2002,40(5):1698-1715.
    [104]Jiang Z. W., L∞(L2) and L∞(L∞) error estimates for mixed methods for integro-differential equa-tions of parabolic type, Math. Modelling Numer. Anal.,1999,33(3):531-546.
    [105]Jiang Z. W., Chen H. Z., Error estimates for mixed finite element methods for sobolev equation, Northeast Math. J.,2001,17(3):301-314.
    [106]Jiang Z. W., Li A. Q., Expanded mixed finite element methods for the problem of purely longitu-dinal motion of a homogeneous bar, J. Comput. Appl. Math.,2011,235:2157-2169.
    [107]Johson C., Thomee V., Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Model. Math. Aanl. Numer.,1981,15:41-78.
    [108]Jones J. E., A Mixed finite volume element method for accurate computation of fluid velocities in porous media, Ph. D., University of Colorado, Denver,1995.
    [109]Josephson J. D., Supercurrents through barriers, Advances in Physics,1965,14:419-451.
    [110]Kaliappan P., Lakshmanan M., Kadomtsev-Petviashvili and two-dimensional sine-Gordon equa-tions:reduction to Painleve transcendents, J. Phys. A.,1979,12:L249-L252.
    [111]Kim D., Park E., A posteriori error estimator for expanded mixed hybrid methods, Numer. Methods Partial Differential Eq.,2007,23(2):330-349.
    [112]Kiselev O. M., Perturbation of a solitary wave of the nonlinear Klein-Gordon equation, Siberian Math. J.,2000,41:345-358.
    [113]Djidjeli K., Price W. G., Twizell E. H., Numerical solutions of a damped Sine-Gordon equation in two space variables, J. Engrg. Math.,1995,29:347-369.
    [114]Kwak D. Y., Kim K. Y., Mixed covolume methods for quasi-linear second-order elliptic problems, SIAM J. Numer. Anal.,2000,38:1057-1072.
    [115]Larson M. G., Malqvist A., A posteriori error estimates for mixed finite element approximations of parabolic problems, Numer. Math.,2011,118:33-48.
    [116]Larsson S., Thomee V., Wahlbin L. B., Numerical solution of parabolic integro-differential equa-tions by the discontinuous Galerkin method, Math. Comp.,1998,67:45-71.
    [117]Leibbrandt G., New exact solutions of the classical sine-Gordon equation in 2+1 and 3+1 dimen-sions, Phys. Rev. Lett.,1978,41:435-438.
    [118]李荣华,两点边值问题的广义差分法,吉林大学自然科学学报,1982,1:26-40.
    [119]Li R. H., Generalized difference methods for a nonlinear Dirichlet problem, SIAM J. Numer. Anal., 1987,24(1):77-88.
    [120]李潜,二维抛物型方程的广义Galerkin方法,山东大学学报(自然科学版),1982,41-52.
    [121]李潜,一类非线性双曲型方程的广义Galerkin方法,计算数学,1986,2:150-158.
    [122]李荣华,陈仲英,微分方程广义差分法,长春:吉林大学出版社,1994.
    [123]Li R. H., Chen Z. Y., Wu W., Generalized difference methods for differential equations:numerical analysis of finite volume element methods, New York:Marcel Dekker Inc.,2000.
    [124]Li Y. H., Li R. H., Generalized difference methods on arbitrary quadrilateral networks, J. Comput. Math.,1999,17(6):653-672.
    [125]李宏,罗振东,安静,孙萍,Sobolev方程的全离散有限体积元格式及数值模拟,计算数学,2012,34(2):163-172.
    [126]Li R. H., Shen J. H., On a class of high-accuracy upwind schemes, Northeastern Math. J.,1991, 7:11-26.
    [127]李先崇,孙萍,安静,罗振东,粘弹性方程一种新的分裂正定混合元法,计算数学,2013,35(1):49-58.
    [128]李宏,周文文,方志朝,Sobolev方程的CN全离散化有限元格式,计算数学,2013,35(1):40-48.
    [129]李荣华,祝丕琦,二阶椭圆偏微分方程的广义差分法(三角网情形),高等学校计算数学学报,1982,2:140-152.
    [130]Lin Y. P., Thomee V., Wahlbin L. B., Ritz-Volterra projections to finite element spaces and applications to integrodifferential and related equations, SIAM J. Numer. Anal.,1991,28:1047-1070.
    [131]Liu Y., Li H., H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations, Appl. Math. Comput.,2009,212:446-457.
    [132]Liu Y., Li H., Numerical solutions of H1-Galerkin mixed finite element method for a damped Sine-Gordon equation, Math. Appl.,2009,22(3):579-588.
    [133]Liu Y., Li H., A new mixed finite element method for pseudo-hyperbolic equation, Math. Appl., 2010,23(1):150-157.
    [134]刘洋,李宏,H1-Galerkin mixed finite element method for the linear Schrodinger equation,数学进展,2010,39(4):429-442.
    [135]刘洋,李宏,高巍,何斯日古楞,伪双曲方程的新分裂式正定混合元方法,应用数学,2011,24(1):104-111.
    [136]Liu Y., Li H., Gao W., He S., Wang J. F., Splitting positive definite mixed element method for viscoelasticity wave equation, Front. Math. China.,2012,7(4):725-742.
    [137]刘洋,李宏,何斯日古楞,伪双曲型积分-微分方程的H1-Galerkin混合元法误差估计,高等学校计算数学学报,2010,32(1):1-20.
    [138]Liu Y., Li H., Wang J. F., Error estimates of H1-Galerkin mixed finite element method for Schrodinger equation, Appl. Math. J. Chinese Univ.,2009,24(1):83-89.
    [139]Liu Y., Li H., Wang J. F., Gao W., A new positive definite expanded mixed finite element method for parabolic integrodifferential equations, J. Appl. Math.,2012, doi:10.1155/2012/391372.
    [140]Liu Y., Li H., Wang J. F., He S., Splitting positive definite mixed element methods for pseudo-hyperbolic equations, Numer. Methods Partial Differential Eq.,2012,28(2):670-688.
    [141]罗振东,二阶椭圆问题的混合有限元分析,应用数学学报,2003,16(4):473-476.
    [142]罗振东,混合有限元法基础及其应用,北京:科学出版社,2006.
    [143]Zhendong Luo, Hong Li, A reduced mixed finite volume element formulation and implementa-tion of algorithm based on POD method for the non-stationary conduction-convection problems, Submitted for publication to Quarterly of Applied Mathematics.
    [144]Zhendong Luo, Hong Li, A stabilized reduced mixed finite volume element formulation and im-plementation of algorithm based on POD method for the non-stationary conduction-convection problems. Submitted for publication to Journal of Algorithms.
    [145]Luo Z. D., Li H., Sun P., An J., Navon I. M., A reduced-order finite volume element formulation based on POD method and numerical simulation for two-dimensional solute transport problems, Math. Comput. Simulation,2012,4:1-19.
    [146]Luo Z. D., Li H., Zhou Y. J., Huang X. M., A reduced FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem, J. Math. Anal. Appl.,2012,385:310-321.
    [147]Luo Z. D., Liu R. X., Mixed finite element analysis and numerical solitary solution for the RLW equation, SIAM J. Numer. Anal.,1998,36(1):89-104.
    [148]罗振东,刘儒勋,Burgers方程的混合元分析及其数值模拟,计算数学,1999,21(3):257-268.
    [149]Luo Z. D., Xie Z. H., Shang Y. Q., Chen J., A reduced finite volume element formulation and numerical simulations based on POD for parabolic problems, J. Comput. Appl. Math.,2011,235: 2098-2111.
    [150]罗振东,朱江,王会军,定常的Navier-Stokes方程的非线性Galerkin/Petrov最小二乘混合元法,应用数学和力学,2002,23(7):697-706.
    [151]Man H. Y., Shi Z. C., P1-nonconforming quadrilateral finite volume element method and its cas-cadic multigrid algorithm for elliptic problems, J. Comput. Math.,2006,24(1):59-80.
    [152]Mi Ray Ohm, Hyun Young Lee, Jun Yong Shin, L2-error analysis of discontinuous Galerkin qp-proximations for nonlinear Sobolev equations, Japan J. Indust. Appl. Math.,2013,30:91-110.
    [153]Millor R. K., An integro-differential equation for rigid heat conductions with memory, J. Math. Anal. Appl.,1978,66:313-332.
    [154]Mustapha K., Brunner H., Mustapha H., Schotzau D., An hp-version discontinuous Galerkin method for integro-differential equations of parabolic type, SIAM J. Numer. Anal.,2011,49(4): 1369-1396.
    [155]Nagumo J., Arimoto S., Yoshizawa S., An active pulse transmission line simulating nerve axon, Proc. IRE,1962,50:91-102.
    [156]Nakao M. T., Error estimate of a Galerkin method for some nonlinear Sobolev equations in one space dimension, Numer. Math.,1985,47:139-157.
    [157]Nicaise S., A posteriori error estimations of some cell-centered finite volume methods, SIAM J. Numer. Anal.,2005,43(4):1481-1503.
    [158]Nicaise S., A posteriori error estimations of some cell-centered finite volume methods for diffusion-convection-reaction problems, SIAM J. Numer. Anal.,2006,44(3):949-978.
    [159]倪平,吴微,广义Galerkin方法的超收敛估计,高等学校计算数学学报,1986,2:153-158.
    [160]Pani A. K., An H1-Galerkin mixed finite element methods for parabolic partial differential equa-tions, SIAM J. Numer. Anal.,1998,35:712-727.
    [161]Pani A. K., Fairweather G.,H1-Galerkin mixed finite element methods for parabolic partial integro-differential equations, IMA J. Numer. Anal.,2002,22(2):231-252.
    [162]Pani A. K., Fairweather G., An H1-Galerkin mixed finite element method for an evolution equation with a positive-type memory term, SIAM J. Numer. Anal.,2002,40(4):1475-1490.
    [163]Pani A. K., Yuan J. Y., Mixed finite element methods for a strongly damped wave equation, Numer. Methods Partial Differential Eq.,2001,17:105-119.
    [164]Pani A. K., Sinha R. K., Otta A. K., An H1-Galerkin mixed method for second order hyperbolic equations, Internat. J. Numer. Anal. Modeling,2004,1(2):111-129.
    [165]Pao C. V., Solution of a nonlinear integro-differential system arising in nuclear reactor dynamics, J. Math. Anal. Appl.,1974,48:470-492.
    [166]Park E. J., Mixed finite element methods for nonlinear second-order elliptic problems, SIAM J. Numer. Anal.,1995,32:865-885.
    [167]Peregrine D. H., Calculations of the development of an undular bore, J. Fluid. Mech.1966,25(2): 321-330.
    [168]Raviart P. A., Thomas J. M., A mixed finite element methods for second order elliptic problems, Lecture Notes in Mathematics, vol.606, Springer, Berlin,1977,292-315.
    [169]Rui H. X., Symmetric mixed covolume methods for parabolic problems, Numer. Methods Partial Differential Eq.,2002,18:561-583.
    [170]Rui H. X., Superconvergence of a mixed covolume method for elliptic problems, Computing,2003, 71(3):247-263.
    [171]Rui H. X., Convergence of an upwind control-volume mixed finite element method for convection-diffusion problems, Computing,2007,81:297-315.
    [172]Rui H. X., Lu T. C., An expanded mixed covolume method for elliptic problems, Numer. Methods Partial Differential Eq.,2005,21:8-23.
    [173]Russell T. F., Rigorous block-centered discretizations on irregular grids:improved simulation of complex reservoir systems, Technical Report No.3, Project Report, Reservoir Simulation Research Corporation, Denver,1995.
    [174]Russell T. F., Wheeler M. F., Yotov I., Superconvergence for control-volume mixed finite element methods on rectangular grids, SIAM J. Numer. Anal.,2007,45(1):223-235.
    [175]Sanz-Serna J.M., Christie I., Petrov-Galerkin methods for non linear dispersive wave, J. Comput. Phys.,1981,39:94-102.
    [176]Schmidt T., Box schemes on quadrilateral meshes, Computing,1993,51:271-292.
    [177]Sheng Q., Khaliq A.Q.M., Voss D.A., Numerical simulation of two-dimensional Sine-Gordon soli-tons via a split cosine scheme, Math. Comput. Simul.,2005,68:355-373.
    [178]Shi D. M., On the initial boundary value problem of nonlinear the equation of the migration of the moisture in soil, Acta Math. Appl. Sinica,1990,13:31-38.
    [179]石东洋,关宏波,粘弹性方程的非协调变网格有限元方法,高校应用数学学报,2008,23(4):452-458.
    [180]Shi D. Y., Ren J. C., A least squares Galerkin-Petrov nonconforming mixed finite element method for the stationary Conduction-Convection problem, Nonlinear Anal.,2010,72(3-4):1653-1667.
    [181]Shi D.Y., Wang H.H., Nonconforming.H1-Galerkin mixed FEM for Sobolev equations on anisotropic meshes, Acta Math. Appl. Sinica,2009,25:335-344.
    [182]Shi D.Y., Zhang Y.D., High accuracy analysis of a new nonconforming mixed finite element scheme for Sobolev equations, Appl. Math. Comput.,2011,218:3176-3186.
    [183]石东洋,张斐然,Sine-Gordon方程的一类低阶非协调有限元分析,计算数学,2011,33(3):289-297.
    [184]Sinha R. K., Ewing R. E., Lazarov R. D., Some new error estimates of a semidiscrete finite volume element method for a parabolic integro-differential equation with nonsmooth initial data, SIAM J. Numer. Anal.,2006,43(6):2320-2343.
    [185]Sinha R. K., Ewing R. E., Lazarov R. D., Mixed finite element approximations of parabolic integro-differential equations nonsmooth initial data, SIAM J. Numer. Anal.,2009,47(5):3269-3292.
    [186]Song H. L., Yuan Y. R., The expanded upwind-mixed multi-step method for the miscible displace-ment problem in three dimensions, Appl. Math. Comput.,2008,195:100-109.
    [187]孙萍,罗振东,陈静,二阶椭圆问题的混合有限元法的泡函数稳定性及其后验误差估计,计算数学,2008,30(3):327-336.
    [188]Sun T. J., Ma K. Y., A space-time discontinuous Galerkin method for linear convection-dominated Sobolev equations, Appl. Math. Comput.,2009,210:490-503.
    [189]Sun T. J., Yang D. P., The finite element difference streamline-diffusion methods for Sobolev equation with convection-dominated term, Appl. Math. Comput.,2002,125:325-345.
    [190]Sun T. J., Yang D. P., A priori error estimates for interior penalty discontinuous Galerkin method applied to nonlinear Sobolev equations, Appl. Math. Comput.,2008,200:147-159.
    [191]Thomee V., Zhang N. Y., Error estimates for semidiscrete finite element methods for parabolic integro-differential equations, Math. Comp.,1989,53:121-139.
    [192]Tian W. F., Li Y. H., Superconvergence of mixed covolume method on quadrilateral grids for elliptic problems, J. Syst. Sci. Complex,2012,25(2):385-397.
    [193]王同科,一类二维粘性波动方程的交替方向有限体积元方法,数值计算与计算机应用,2010,31(1):64-75.
    [194]Wang J. P., A superconvergence analysis for finite element solutions by the least-squares surface fitting on irregular methes for smooth problems, J. Math. Study,2000,33(3):229-243.
    [195]Woodward C. S., Dawson C. N., Analysis of expanded mixed finite element methods for a nonlinear parabolic equaion modeling flow into variably saturated porous media, SIAM J. Numer. Anal.,2000, 27(3):701-724.
    [196]吴微,李荣华,解一维二阶椭圆抛物微分方程的广义差分法,数学年刊,1984,5A(3):303-312.
    [197]Yang D. P., A splitting positive definite mixed element method for miscible displacement of com-pressible flow in porous media, Numer. Methods Partial Differential Eq.,2001,17:229-249.
    [198]Yang D. P., Least-square mixed finite element methods for nonlinear parabolic problems, J. Com-put. Math.,2002,20(2):153-164.
    [199]杨青,半导体瞬态问题的混合迎风有限体积元格式,系统科学与数学,2011,31(2):65-79.
    [200]Yang S.X., Jiang Z. W., Mixed covolume method for parabolic problems on triangular grids, Appl. Math. Comput.,2009,215:1251-1265.
    [201]Yang Q., Jiang Z. W., A discontinuous mixed covolume method for elliptic problems, J. Comput. Appl. Math.,2011,235(8):2467-2476.
    [202]Ye X., A new discontinuous finite volume method for elliptic problems, SIAM J. Numer. Anal., 2004,42:1062-1072.
    [203]Ye X., A discontinuous finite volume method for the Stokes problems, SIAM J. Numer. Anal., 2006,44:183-198.
    [204]Yin Z., Jiang Z. W., Xu Q., A discontinuous finite volume method for the Darcy-Stokes equations, Hindawi Publishing Corporation, J. Appl. Math., doi:10.1155/2012/761242.
    [205]Yu C. H., Li Y. H., Biquadratic finite volume element method based on optimal stress points for second order hyperbolic equations, J. Comp. App. Math.,2011,236:1055-1086.
    [206]Zagrodzinsky J., Particular solutions of the sine-Gordon equation in 2+1 dimensions, Phys. Lett., 1979,72:284-286.
    [207]张铁,偏微分积分方程的有限元方法,北京:科学出版社,2009.
    [208]Zhang L., On superconvergence of isoparametric bilinear finite elements, Commun. Numer. Meth. Engng.,1996,12:849-862.
    [209]Zhang T., Huang M. Y., Superconvergence of Ritz-Volterra projection on finite element spaces, Numer. Math., A J. of Chinese University,1996,2:197-206.
    [210]张建松,羊丹平,多孔介质中可压缩驱动问题的全离散分裂正定混合元方法,山东大学学报(理学版),2006,41(1):1-10.
    [211]Zhang J. S., Yang D. P., A splitting positive definite mixed element method for second-order hyperbolic equations, Numer. Methods Partial Differential Eq.,2009,25:622-636.
    [212]赵洁,李宏,方志朝,刘洋,二维Sobolev方程的有限体积元法,内蒙古大学学报(自然科学版),2012,43(1):41-47.
    [213]朱爱玲,姜子文,线性Sobolev方程的扩展混合体积元方法,山东师范大学学报(自然科学版),2007,22(4):1-4.
    [214]朱爱玲,姜子文,徐强,线性抛物型积分微分方程的扩展混合体积元方法,高等学校计算数学学报,2009,31(3):193-205.
    [215]祝丕琦,李荣华,二阶椭圆偏微分方程的广义差分法(四边形网情形),高等学校计算数学学报,1982.4:360-375.
    [216]Zwillinger D., Handbook of differential equations, Academic Press, Boston, Mass, USA,3rd edition, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700