用户名: 密码: 验证码:
压电智能结构自适应滤波振动主动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电智能结构振动主动控制方法与技术涉及先进材料、控制理论、力学分析、数学建模、科学计算、实验技术等诸多领域,是多学科交叉的前沿课题,具有重要的科研学术意义和工程应用价值。
     作为压电智能结构主动减振研究的一个重要发展方向,自适应控制策略成为当前研究的热点,其中自适应滤波控制技术在理论方法和实验验证方面取得了较好的实现效果;但目前面向压电智能结构振动主动控制的自适应滤波控制方法依然存在很多不足,突出体现在控制器设计和算法过程的具体实施适应性上,同时算法缺乏比较完善的系统稳定性及控制效果分析方法,并在工程实现方面也存在较多的问题,需要进一步的深入探索和研究。
     本文基于国家自然科学基金科研课题的研究背景,以一种模拟临近空间飞行器压电智能框架结构为实验模型对象,着重进行自适应滤波振动控制方法及其实现算法研究,同时针对模型结构动力学分析方法与压电元件优化配置策略进行积极探索,并在此基础上构建整体实验平台和开发综合测控系统,以验证相关方法技术的可行性和有效性;全文工作可以概括为结构动力学分析与压电元件优化配置、自适应滤波振动控制方法与控制器设计、实验平台构建与实验验证分析三大部分。所做主要工作如下:
     (1)以压电智能框架结构为实验对象,将分布式压电元件作为传感器和驱动器粘贴于结构表面,构建了一种模拟临近空间飞行器压电智能框架实验模型结构,并与开发的自适应滤波振动控制系统结合,形成了一套压电智能结构自适应滤波振动主动控制实验系统。
     (2)采用行波分析法,对压电智能结构进行动力学分析,同时引入智能结构振动模态有限元分析技术,结合压电智能结构振动特性,分析了压电传感器/作动器的位置优化问题,并以框架组成单元梁为研究对象,给出优化目标函数,引入粒子群优化方法针对目标函数进行优化,实现分布式压电传感器/作动器元件的优化配置。
     (3)鉴于经典自适应滤波-X LMS算法过程中需要预知与外激扰信号相关的参考信号,导致该方法存在工程适用性和技术实用性缺陷。本文提出了一种基于滤波-X改进型的参考信号自提取振动控制算法,着重考虑通过从振动结构中直接提取振动响应残差信号,进而基于控制器结构和算法过程数据构造出参考信号,满足与激扰信号的相关性并进入算法控制过程;仿真分析和实验验证表明:所提出改进的控制算法控制效果良好,不仅实现了参考信号的振动结构直接提取策略,并具有较快的收敛速度和良好的控制效果。
     (4)在经典的自适应滤波-X LMS算法实施过程中,存在控制通道模型参数辨识问题,一般可采用离线辨识策略获得控制通道模型参数,但也很大程度上导致该方法在工程实际应用时具有较大的不实现性。本文提出一种控制通道模型在线辨识的自适应滤波振动主动控制方法,其基本思想是在控制输出端引入一个随机噪声信号,采用FIR滤波器作为受控通道模型进行实时在线辨识,同时控制环节采用滤波-X控制算法。经过仿真分析和实验验证表明,本文所提的在线辨识控制器设计方法及其实现算法控制效果良好,为进一步深入实用化研究奠定了基础。
     (5)由于滤波-X控制器的传输函数是一个全零点的结构,其不考虑控制输出信号的反馈对参考信号的影响,而在实际的系统中这种影响是不能忽略的。滤波-U结构的传输函数中含有零极点,它可以在一定程度上解决振动反馈可能带来的控制系统的不稳定问题。本文以滤波-U为基础结构,分别研究了参考信号自提和控制通道在线辨识问题,分别提出了基于滤波-U的参考信号自提取振动控制方法和控制通道在线辨识的振动控制方法。经过仿真分析和实验验证表明,所提控制方法及其实现算法控制效果良好。
     (6)在完成压电智能框架结构振动主动控制平台构建,以及结构振动控制系统软件开发的基础上,对本文所研究的自适应滤波振动控制方法及其实现算法进行了实验分析与验证工作。方法研究与实验验证表明,多通道自适应滤波结构振动控制方法具有较强的自适应能力,能够较快地跟踪受控结构系统参数及外扰响应的变化;本文所提出的自适应滤波振动控制算法与经典滤波-X、滤波-U算法相比,虽然收敛速度略慢,但控制效果良好,尤其为提高自适应滤波控制方法的技术实用性和工程适用性,提供了有益的技术方法思路。
Piezoelectric smart structure active vibration control methods and techniques isan interdisciplinary forefront research topic, which is involved in advanced materials,control theory, mechanical analysis, mathematical modeling, scientific computing,experimental technology, et al. And it has important scientific and academicsignificance and project application value.
     As an important research development direction for piezoelectric smartstructure active vibration control, adaptive control strategy is a current researchfocus. Though great progresses have been made for adaptive filter control technology,more research is needed for engineering realization and specific implementation ofadaptive controller design and algorithm process, as well as system stability andcontrol performance analysis.
     The research in this dissertation is based on National Natural ScienceFoundation research project. Taking a piezoelectric smart frame structure, whichsimulates model near space vehicle, as the experimental model object, thisdissertation is focused on adaptive filter vibration control methods andimplementation algorithms. Structural dynamics analysis method and optimalpiezoelectric sensors and actuators placement strategy is investigated. Experimentalplatform and integrated measurement and control system is developed to verify thefeasibility and effectiveness of the methods and techniques. The dissertation can besummarized as three parts, structural dynamics analysis and optimal piezoelectricpatches placement, adaptive filter vibration control method and controller design,experimental platform development and experimental validation analysis. Thecontribution of this dissertation is as follows:
     (1) Taking piezoelectric smart frame as experiment object, distributedpiezoelectric sensors and actuators are pasted on the structure surface. With theconstructed experimental piezoelectric smart near space vehicle mode, experimentaladaptive filter control system is developed.
     (2) Traveling-wave analysis is used for dynamic analysis of piezoelectric smartstructure, while finite element analysis is introduced to analyze the optimalplacement of piezoelectric sensors/actuators. Taking the main component beam units of the framework, the objective target function is given. Particle swarmoptimization method is used to optimize the target function. Optimal placement ofthe distributed piezoelectric sensor/actuators is achieved.
     (3) As classical adaptive filtered-X LMS algorithm needs a reference signal,that is related to the excitation signal, there are defects for engineering application.An improved filtered-X algorithm with reference signal extraction is presented byconstructing reference signal from vibration residual signal with the controller itselfdirectly. Simulation analysis and experimental verification shows that the improvedcontrol algorithm, not only realizes reference signal extraction but also has fastconvergence rate and good control performance.
     (4) In the implementation of the classical adaptive filter-X LMS algorithm,control channel model parameter identification is very important. Though offlineidentification strategy could gain the channel model parameters, but it is not practicalfor engineering application. An adaptive filter active vibration control method withonline control channel model identification is proposed. The basic idea is tointroduce a random noise signal into the control output, while the FIR filter is usedfor real-time online identification, filtered-X control algorithm is used as the controlalgorithm. Simulation analysis and experimental verification shows that theproposed controller design method and its implementation algorithm have goodcontrol performance, which laid foundation for further practical research.
     (5) Since the transfer function of the filtered-X controller is an all-zero structure,it does not consider the feedback of the output signal. But this effect can not beignored in the actual system. As the transfer function of the filtered-U structurecontaining poles and zeros, the instability problem of vibration feedback can besolved to a great extent. Reference signal extraction and online control channelidentification is investigated respectively. And filtered-U vibration control algorithmwith online identification and reference signal extraction is proposed. Simulationanalysis and experimental verification shows that the proposed control method andits implementation algorithm has good control performance.
     (6) The structural vibration active control platform for piezoelectric smart frameis developed, as well as control system software. Experimental analysis andverifications for the proposed methods and algorithms are done. Research andexperimental verification shows that the multi-channel adaptive filter vibration control methods have strong adaptive ability, which are able to track the changes ofsystem parameters and external disturbance responses. Although the convergencerate of the proposed adaptive filter vibration control algorithms are somewhatslower, than the classical filtered-X, and filtered-U algorithm, the controlperformance is good. Meanwhile the practicality and engineering applicability of theadaptive filter method is improved by the proposed methods and algorithms.
引文
[1] Kramer B, Liebowitz H. Intelligent Materials Processing[C]. in InternationalConference on Intelligent Manufacturing Systems, Budapest, Hungary,1986,3:141-145.
    [2] Gabbert P.S, Brown D.E. An Intelligent Materials Handling DesignSystem[C]. in Expert Systems in Business '87Proceedings, New York, NY,USA,1987,87-94.
    [3] Rogers C. Intelligent Material Systems--the Dawn of a New Materials Age[J]. Journal of Intelligent Material Systems and Structures,1993,4(1):4-12.
    [4]徐志伟,黄雪峰,沈星.基于PT和MFC的飞机垂直尾翼振动主动控制[J].南京航空航天大学学报,2008,40(3):313-318
    [5] Malgaca L, Karagulle H. Simulation and Experimental Analysis of ActiveVibration Control of Smart Beams under Harmonic Excitation[J]. SmartStructures and Systems,2009,5(1):55-68.
    [6] Kerur S, Ghoshy A. Active Vibration Control of Composite Plate Using AfcActuator and Pvdf Sensor[J]. Internation Journal of Structural Stability andDynamics,2011,11(2):237-255.
    [7]蒋建平,李东旭.压电层合结构力学模型评述[J].噪声与振动控制,2008,28(5):11-20.
    [8] Sinha A, Kao C.K. Independent Modal Sliding Mode Control of Vibration inFlexible Structures[J]. Journal of Sound and Vibration,1991,147(2):352-358.
    [9] Elbuni M.S, Higashiguchi M. Control of Large Flexible Structures UsingPole Placement Technique[J]. Transactions of the Society of Instrument andControl Engineers,1991,27(2):161-168.
    [10] Hanagud S, Obal M.W, Calise A.J. Optimal Vibration Control by the Use ofPiezoceramic Sensors and Actuators[J]. Journal of Guidance, Control, andDynamics,1992,15(5):1199-1206.
    [11] Konieczny J, Kowal J. A Pole Placement Controller for Active VehicleSuspension[J]. Archives of Control Sciences,2005,15(1):97-116.
    [12] Mottershead J.E, Tehrani M.G, James S, et al. Active Vibration Suppressionby Pole-Zero Placement Using Measured Receptances[J]. Journal of Soundand Vibration,2008,311(3):1391-1408.
    [13] Basu B, Nielsen S.R.K. A Multi-modal Control Using a HybridPole-placement-integral Resonant Controller (PPIR) with ExperimentalInvestigations[J]. Structural Control&Health monitoring,2011,18(2):191-206.
    [14] Sethi V, Song G. Pole-placement Vibration Control of a Flexible CompositeI-Beam Using Piezoceramic Sensors and Actuators[J]. Journal ofThermoplastic Composite Material,2006,19(3):293-307.
    [15] Chandiramani N, Librescu L, Saxena V, et al. Optimal Vibration Control of aRotating Composite Beam with Distributed Piezoelectric Sensing andActuation[J]. Smart Materials&Structures,2004,13(2):433-442.
    [16] Wu H.N, Cai K.Y. Mode-Independent Robust Stabilization for UncertainMarkovian Jump Nonlinear Systems Via Fuzzy Control[J]. IEEETransactions on System Man and Cybernetics,2006,36(3):509-519.
    [17] Oates W.S, Smith R.C. Nonlinear Optimal Control Techniques for VibrationAttenuation Using Magnetostrictive Actuators[J]. Journal of IntelligentMaterial Systems and Structures,2008,19(2):193-209.
    [18] Wei H, Ge S.S. Robust Adaptive Boundary Control of a Vibrating Stringunder Unknown Time-Varying Disturbance [J]. IEEE Transactions onControl Systems Technology,2012,20(1):48-58.
    [19] Akesson H, Smirnova T, Claesson I, et al. On the Development of a Simpleand Robust Active Control System for Boring Bar Vibration in Industry[J].International Journal of Acoustics and Vibration,2007,12(4):139-152.
    [20] Popescu D, Sendrescu D, Bobasu E. Modelling and Robust Control of aFlexible Beam Quanser Experiment[J]. Acta Montanistica Slovaca,2008,13(1):127-135.
    [21] Azadi M, Fazelzadeh S.A, Eghtesad M, et al. Vibration Suppression andAdaptive-Robust Control of a Smart Flexible Satellite with Three AxesManeuvering[J]. Acta Astronautica,2011,69(5-6):307-322.
    [22] Khadraoui S, Rakotondrabe M, Lutz P. Interval Modeling and RobustControl of Piezoelectric Microactuators[J]. IEEE Transactions on ControlSystems Technology,2012,20(2):486-494.
    [23] Hongwei S, Dongxu L. Active Control of Vibration Using a Fuzzy ControlMethod Based on Scaling Universes of Discourse[J]. Smart Materials andStructures,2007,16(3):555-560.
    [24] Nakazono K, Ohnishi K, Kinjo H, et al. Vibration Control of Load for RotaryCrane System Using Neural Network with Ga-Based Training[J]. ArtificialLife and Robotics,2008,13(1):98-101.
    [25]钱锋.层合压电智能结构振动主动控制数值模拟及其优化[D].博士学位论文,合肥工业大学,2011.
    [26]姚康德,成国祥.智能材料[M].北京:化学工业出版社,2002.
    [27] Jordan T, Ounaie Z. Piezoelectric Ceramics Characterizatio[M]. ICASEReport N,2001.
    [28] Jaffe B, Roth R.S, Marzullo S. Piezoelectric Properties of LeadZirconate-Lead Titanate Solid-Solution Ceramics[J]. Journal of AppliedPhysics,1954,25:809-810.
    [29] Bailey T, Hubbard J.E. Distributed Piezoelectric-Polymer Active VibrationControl of a Cantilever Beam[J]. Journal of Guidance, Control, andDynamics,1985,8(5):605-611.
    [30] Crawley E, Luis D.E. Use of Piezoelectric Actuators as Elements ofIntelligent Structures[J]. AIAA journal,1987,25(10):1373-1385.
    [31] Tzou H.S, Gadre M. Theoretical Analysis of a Multi-Layered Thin ShellCoupled with Piezoelectric Shell Actuators for Distributed VibrationControls[J]. Journal of Sound and Vibration,1989,132(3):433-450.
    [32] Miller S.E, Oshman Y, Abramovich H. Modal Control of PiezolaminatedAnisotropic Rectangular Plates. Part1: Modal Transducer Theory[J]. AIAAjournal,1996,34(9):1868-1875.
    [33] Miller S.E, Oshman Y, Abramovich H. Modal Control of PiezolaminatedAnisotropic Rectangular Plates. Part2: Control Theory[J]. AIAA journal,1996,34(9):1876-1884.
    [34] Chee C.Y.K, Tong L, Steven G P. A Review on the Modelling of PiezoelectricSensors and Actuators Incorporated in Intelligent Structures[J]. Journal ofIntelligent Material Systems and Structures,1998,9(1):3-19.
    [35] Maillard J.P, Fuller C.R. Active Control of Sound Radiation from Cylinderswith Piezoelectric Actuators and Structural Acoustic Sensing[J]. Journal ofSound and Vibration,1999,222(3):363-387.
    [36] Giurgiutiu V, Zagrai A, Bao J.J. Piezoelectric Wafer Embedded ActiveSensors for Aging Aircraft Structural Health Monitoring[J]. Structural HealthMonitoring,2002,1(1):41-61.
    [37] Suleman A, Costa A.P. Adaptive Control of an Aeroelastic Flight VehicleUsing Piezoelectric Actuators[J]. Computers&structures,2004,82(17-19):1303-1314.
    [38] Hansson J, Takano M, Takigami T, et al. Vibration Suppression of RailwayCar Body with Piezoelectric Elements[J]. JSME International Journal SeriesC-Mechanical Systems Machine Elements and Manufacturing,2004,47(2):451-456.
    [39] Sethi V, Song G. Multimode Vibration Control of a Smart Model FrameStructure[J]. Smart Materials and Structures,2006,15:473-479.
    [40] Kozek M, Benatzky C, Schirrer A, et al. Vibration Damping of a Flexible CarBody Structure Using Piezo-Stack Actuators[J]. Control Engineering Practice,2009,19(3):298-310.
    [41]朱军强,马少波,王社良等.单层网壳结构振动压电控制分析与试验研究[J].地震工程与工程振动,2011,31(4):114-119.
    [42]赵大海,李宏男.模型结构的压电摩擦阻尼减振控制试验研究[J].振动与冲击,2011,30(6):272-276.
    [43] Gupta V, Sharma M, Thakur N, et al. Active Vibration Control of a SmartPlate Using a Piezoelectric Sensor-actuator Pair at Elevated Temperatures[J].Smart Materials and Structures,2011,20(10):5-23.
    [44]陈震,薛定宇,郝丽娜等.压电智能悬臂梁主动振动最优控制研究[J].东北大学学报(自然科学版),2010,31(11):1550-1553.
    [45] Marinaki M, Marinakis Y, Stavroulakis G.E. Vibration Control of Beamswith Piezoelectric Sensors and Actuators Using Particle Swarm Optimization[J]. Expert Systems with Applications,2011,38(6):6872-6883.
    [46] Sahin M, Aridogan U. Performance Evaluation of PiezoelectricSensor/Actuator on Active Vibration Control of a Smart Beam[J].Proceedings of the Institution of Mechanical Engineers, Part I: Journal ofSystems and Control Engineering,2011,225(15):533-547.
    [47]缑新科,李大鹏.压电自感知柔性悬臂梁振动控制系统研究[J].压电与声光,2011,33(5):753-756.
    [48] Thinh T.I, Ngoc L.K. Static Behavior and Vibration Control of PiezoelectricCantilever Composite Plates and Comparison with Experiments[J].Computational Materials Science,2010,49(4): S276-S280.
    [49] Bruant I, Gallimard L, Nikoukar S. Optimal Piezoelectric Actuator andSensor Location for Active Vibration Control, Using Genetic Algorithm[J].Journal of Sound and Vibration,2010,329(10):1615-1635.
    [50] Balamurugan V, Narayanan S. Finite Element Modeling of StiffenedPiezolaminated Plates and Shells with Piezoelectric Layers for ActiveVibration Control[J]. Smart Materials and Structures,2010,19(10):1-21.
    [51] Forward R.L. Electronic Damping of Orthogonal Bending Modes in aCylindrical Mast-Experiment[J]. Journal of Spacecraft and Rockets,1981,18(1):11-17.
    [52] Liao C.Y, Sung C.K. An Elastodynamic Analysis and Control of FlexibleLinkages Using Piezoceramic Sensors and Actuators[J]. Journal ofMechanical Design,1993,115:658-665.
    [53] Ye R, Tzou H.S. Control of Adaptive Shells with Thermal and MechanicalExcitations[J]. Journal of Sound and Vibration,2000,231(5):1321-1338.
    [54] Chen Q, Levy C. Vibration Analysis and Control of Flexible Beam by UsingSmart Damping Structures[J]. Composites Part B: Engineering,1999,30(4):395-406.
    [55] Trindade M.A. Simultaneous Extension and Shear Piezoelectric Actuation forActive Vibration Control of Sandwich Beams[J]. Journal of IntelligentMaterial Systems and Structures,2007,18(6):591-600.
    [56] Heeg J. Analytical and Experimental Investigation of Flutter Suppression byPiezoelectric Actuation[R]. NASA,1993:1-43.
    [57] Lin C.Y, Crawley E.F, Heeg J. Open-and Closed-Loop Results of aStrain-Actuated Active Aeroelastic Wing[J]. Journal of aircraft,1996,33(5):987-994.
    [58] Lazarus K.B, Crawley E.F, Lin C.Y. Multivariable Active Lifting SurfaceControl Using Strain Actuation: Analytical and Experimental Results[J].Journal of aircraft,1997,34(3):313-321.
    [59] Richard R.E, Optimized Flutter Control for an Aeroelastic Delta Wing[D],Duke University,2002.
    [60] Saunders W.R, Cole D.G, Robertshaw H.H. Experiments in PiezostructureModal Analysis for Mimo Feedback Control[J]. Smart Materials andStructures,1994,(3):210-218.
    [61] Sadri A.M, Wynne R.J, Wright J.R. Robust Strategies for Active VibrationControl of Plate-Like Structures: Theory and Experiment[J]. Proceedings ofthe Institution of Mechanical Engineers, Part I: Journal of Systems andControl Engineering,1999,213(6):489-504.
    [62]钱振东,沈建华,黄卫等.采用压电陶瓷元件进行智能板振动控制[J].振动、测试与诊断,2000,20(3):196-201.
    [63] Tzou H.S, Wang D.W. Vibration Control of Toroidal Shells with Parallel andDiagonal Piezoelectric Actuators[J]. Journal of Pressure Vessel Technology,2003,125(2):171-176.
    [64] Ramesh Kumar K, Narayanan S. Active Vibration Control of Beams withOptimal Placement of Piezoelectric Sensor/Actuator Pairs[J]. SmartMaterials and Structures,2008,17(5):1-15.
    [65]钱锋,王建国,曲磊.压电结构振动控制及压电片位置优化的遗传算法[J].固体力学学报,2011,32(4):398-404.
    [66]蒋建平,李东旭.智能太阳翼有限元建模与振动控制研究[J].动力学与控制学报,2009,7(2):164-170.
    [67]张京军,何丽丽,王二成等.压电智能结构振动主动控制传感器/驱动器的位置优化设计[J].工程力学,2010,27(1):228-232.
    [68]钟美法,邓子辰,王志金.基于精细积分的压电层合板有限元分析及振动控制[J].西北工业大学学报,2010,28(1):123-128.
    [69] Harari S, Richard C, Gaudiller L. New Semi-Active Multi-Modal VibrationControl Using Piezoceramic Components[J]. Journal of Intelligent MaterialSystems and Structures,2009,20(13):1603-1613.
    [70]陶云刚,路小波,周洁敏.利用压电自敏感致动器的挠性结构振动主动控制实验研究[J].宇航学报,1999,20(1):71-76.
    [71]陈文俊.压电材料在柔性结构控制中的应用—国外压电学研究资料综述[J].飞航导弹,1999,(3):56-61.
    [72]罗世彬,罗文彩,王振国.高超声速巡航飞行器机体/推进系统一体化设计参数灵敏度分析[J].国防科技大学学报,2003,25(4):10-14.
    [73]罗世彬,罗文彩,王振国.基于试验设计和响应面近似的高超声速巡航飞行器多学科设计优化[J].导弹与航天运载技术,2003,266(6):2-9.
    [74]邱志成.智能结构及其在振动主动控制中的应用[J].航天控制,2002,20(4):8-15.
    [75]陈敏,常军,刘正兴.基于能量准则的梁振动控制的LQR方法[J].上海交通大学学报,2004,37(12):1942-1946.
    [76]董兴建,孟光.面向控制的压电主动结构建模方法[J].动力学与控制学报,2004,2(3):70-75.
    [77]吴大方,刘安成,麦汉超等.压电智能柔性梁振动主动控制研究[J].北京航空航天大学学报,2004,30(2):160-163.
    [78]段勇,何麟书.压电自适应桁架结构主动控制模型及实验[J].北京航空航天大学学报,2005,31(9):980-984.
    [79]谭平.粘贴式压电陶瓷作动器主动控制研究[J].南京理工大学学报(自然科学版),2005,29(6):697-699.
    [80]董兴建,孟光.压电悬臂梁的动力学建模与主动控制[J].振动与冲击,2005,24(6):54-56.
    [81]周连文,周军,李卫华.挠性航天器姿态机动的主动振动控制[J].火力与指挥控制,2006,31(6):31-33.
    [82]陈勇,熊克,王鑫伟等.飞行器智能结构系统研究进展与关键问题[J].航空学报,2004,25(1):21-25.
    [83]陈龙祥,蔡国平.柔性梁受迫振动时滞变结构控制的试验研究[J].力学学报,2009,41(3):410-417.
    [84]朱海霞.基于压电元件的振动主动控制系统[J].重庆工学院学报(自然科学版),2009,23(2):131-135.
    [85]吴昱廷,黄华林,徐俊等.压电主动控制在减振和降噪中的应用[J].压电与声光,2011,33(3):456-458.
    [86] Hollkamp J.J, Gordon R.W. An Experimental Comparison of Piezoelectricand Constrained Layer Damping[J]. Smart Materials and Structures,1996,5(11):744-750.
    [87] Moini H. Concurrent Design of a Structure and Its Distributed PiezoelectricActuators [J]. Smart Materials and Structures,1997,6(2):89-101.
    [88] Corr L.R, Clark W.W. A Novel Semi-Active Multi-Modal Vibration ControlLaw for a Piezoceramic Actuator[J]. Journal of Vibration andAcoustics-Transactions of the Asme,2003,125(2):214-222.
    [89] Sethi V, Song G. Multimodal Vibration Control of a Flexible Structure UsingPiezoceramic Sensor and Actuator[J]. Journal of Intelligent Material Systemsand Structures,2008,19(5):573-582.
    [90] Sethi V, Song G. Optimal Vibration Control of a Model Frame StructureUsing Piezoceramic Sensors and Actuators[J]. Journal of Vibration andControl,2005,11(5):671-684.
    [91]黄文虎,王心清,张景绘等.航天柔性结构振动控制的若干新进展[J].力学进展,1997,27(1):5-18.
    [92] Kojima Y, Taniwaki S, Okami Y. Dynamic Simulation of Stick-Slip Motionof a Flexible Solar Array[J]. Control Engineering Practice,2008,16(6):724-735.
    [93] Lee H, Murozono M. Vibration Characteristics and Thermal StructuralDynamic Responses of a Flexible Rolled-up Solar Array[J]. Transactions ofthe Japan Society for Aeronautical and Space Sciences,2011,54(184):111-119.
    [94]孙爱琴,王建国.层合板壳振动主动控制的研究现状与发展[J].合肥学院学报(自然科学版),2008,18(3):59-62.
    [95] Tjahyadi H, Adaptive Multi Mode Vibration Control of Dynamically LoadedFlexible Structures[D], Doctoral Dissertation, Flinders University of SouthAustralia,2007.
    [96] Jansen L.M, Dyke S.J. Semiactive Control Strategies for Mr Dampers:Comparative Study[J]. Journal of Engineering Mechanics,2000,126(8):795-803.
    [97] Glugla M, Schulz R.K. Active Vibration Control Using Delay CompensatedLMS Algorithm by Modified Gradients[J]. Low Frequency Noise, Vibrationand Active Control,2008,27(1):65-74.
    [98] Vasques C.M.A, Rodriques J.D. Numerical and Experimental Comparison ofthe Adaptive Feedforward Control of Vibration of a Beam with HybridActive-Passive Damping Treatments[J]. Journal of Intelligent MaterialSystems and Structures,2008,19(7):805-813.
    [99]罗剑波,姜长生.基于MCS自适应算法的机翼颤振主动抑制[J].航空兵器,2008,(3):19-22.
    [100] Landau I.D, Alma M, Airimitoaie T B. Adaptive Feedforward CompensationAlgorithms for Active Vibration Control with Mechanical Coupling[J].Automatica,2011,47(10):2185-2196.
    [101] Mjalli F.S, Hussain M.A. Approximate Predictive Versus Self-TuningAdaptive Control Strategies of Biodiesel Reactors[J]. Industrial&Engineering Chemistry Research,2009,48(24):11034-11047.
    [102] Sun L, Krodkiewski J, Cen Y. Self-Tuning Adaptive Control of ForcedVibration in Rotor Systems Using an Active Journal Bearing[J]. Journal ofSound and Vibration,1998,213(1):1-14.
    [103] Chen M.Y, Wu K.N, Fu L.C. Design, Implementation and Self-TuningAdaptive Control of Maglev Guiding System[J]. Mechatronics,2000,10(1-2):215-237.
    [104] HOSSEINI S K, MOUMENI H, JANABI SHARIFI F. Model ReferenceAdaptive Control Design for a Teleoperation System with OutputPrediction[J]. Journal of Intelligent&Robotic Systems,2005,59(3-4):319-339.
    [105] Ko J, Strganac T.W, Junkins J.L, et al. Structured Model Reference AdaptiveControl for a Wing Section with Structural Nonlinearity[J]. Journal ofVibration and Control,2002,8(5):553.
    [106] Nestorovi T, Koppe H, Gabbert U. Direct Model Reference Adaptive Control(Mrac) Design and Simulation for the Vibration Suppression of PiezoelectricSmart Structures[J]. Communications in Nonlinear Science and NumericalSimulation,2008,13(9):1896-1909.
    [107] Khoshnood A, Roshanian J, Khaki-Sedig A. Model Reference AdaptiveControl for a Flexible Launch Vehicle[J]. Proceedings of the Institution ofMechanical Engineers Part I-Journal of Systems and Control Engineering,2008,222(11):49-55.
    [108] Khoshnood A.M, Roshanian J, Jafari A.A, et al. An Adjustable ModelReference Adaptive Control for a Flexible Launch Vehicle[J]. Journal ofDynamic Systems Measurement and Control-Transactions of the Asme,2010,132(4):1-7.
    [109] Gu H, Song G, Malki H. Chattering-Free Fuzzy Adaptive RobustSliding-Mode Vibration Control of a Smart Flexible Beam[J]. SmartMaterials and Structures,2008,17(3):1-7.
    [110]徐亚兰,陈建军,王小兵.模型不确定压电柔性结构的鲁棒振动控制[J].机械强度,2006,28(2):185-189.
    [111]于骁,谭述君,林家浩.地震作用下建筑结构基于平衡降阶的时滞离散h∞控制[J].工程力学,2008,25(2):148-153.
    [112] Cavallo A, De Maria G, Natale C, et al. Robust Control of Flexible Structureswith Stable Bandpass Controllers[J]. Automatica,2008,44(5):1251-1260.
    [113]李冬伟,白鸿柏,何忠波等.基于压电元件的柔性板H∞鲁棒振动控制实验研究[J].中国机械工程,2008,19(15):1805-1810.
    [114] Peng C, Tian Y.C. Delay-Dependent Robust H(Infinity) Control for UncertainSystems with Time-Varying Delay[J]. Information Sciences,2009,179(18):3187-3197.
    [115]赵童,陈龙祥,蔡国平.柔性板的时滞H∞控制的理论与实验研究[J].力学学报,2011,43(6):1043-1053.
    [116]杨海峰,王晓军,邱志平.压电柔性结构振动的鲁棒控制[J].北京航空航天大学学报,2009,35(8):957-961.
    [117] Chen S.Y, Chen Y.W, Zhang W.J, et al. A Method of Extracting FuzzyControl Rules of Structural Vibration Using Fcm Algorithm[C]. in5th IEEEConference on Industrial Electronics and Applications New York,2010,3:398-403.
    [118] Ofri A, Tanchum W, Guterman H. Active Control for Large Space Structureby Fuzzy Logic Controllers[C]. in Nineteenth Convention of Electrical andElectronics Engineers in Israel, Jerusalem, Israel,1996,5-6515-518.
    [119] Wilson C.M.D, Abdullah M.M. Structural Vibration Reduction UsingSelf-Tuning Fuzzy Control of Magnetorheological Dampers[J]. Bulletin ofEarthquake Engineering,2010,8(4):1037-1054.
    [120] Cohen K, Weller T, Levitas J, et al. Model-Independent Vibration Control ofFlexible Beam-Like Structures Using a Fuzzy Based Adaptation Strategy[J].Journal of Intelligent Material Systems and Structures,1997,8(3):220-231.
    [121] Jnifene A, Andrews W. Fuzzy Logic Control of the End-Point Vibration in anExperimental Flexible Beam[J]. Journal of Vibration and Control,2004,10(4):493-506.
    [122] Gu H, Song G. Active Vibration Suppression of a Composite I-Beam UsingFuzzy Positive Position Control[J]. Smart Materials&Structures,2005,14(4):540-547.
    [123]曾光,李东旭.空间智能桁架模糊振动控制研究[J].航天控制,2007,25(1):85-90.
    [124] Si H.W, Li D.X. Active Control of Vibration Using a Fuzzy Control MethodBased on Scaling Universes of Discourse[J]. Smart Material&Structures,2007,16(3):555-560.
    [125]陈文英,褚福磊,阎绍泽.智能桁架结构自适应模糊主动振动控制[J].清华大学学报(自然科学版),2008,48(5):816-819.
    [126] Wei J.J, Qiu Z.C, Han J.D, et al. Experimental Comparison Research onActive Vibration Control for Flexible Piezoelectric Manipulator Using FuzzyController[J]. Journal of Intelligent&Robotic Systems,2010,59(1):31-56.
    [127] Canelon J.I, Malki H.A, Jacklin S.A, et al. An Adaptive Neural NetworkModel for Vibration Control in a Blackhawk Helicopter[J]. Journal of theAmerican Helicopter Society,2005,50(4):349-353.
    [128]孙浩,杨智春,张玲凌.基于神经网络的振动响应趋势预测研究[J].机械科学与技术,2006,25(12):1454-1457.
    [129] Yang S.M, Chen C.J, Huang W.L. Structural Vibration Suppression by aNeural-Network Controller with a Mass-Damper Actuator[J]. Journal ofVibration and Control,2006,12(5):495-508.
    [130]孙仲健.柔性结构神经网络分布式振动控制[J].中国水运,2006,6(5):197-199.
    [131]郑毅强,何敏. RBF神经网络在桥梁振动控制时滞问题中的应用[J].工程与建设,2007,21(4):516-517.
    [132] Monjezi M, Ghafurikalajahi M, Bahrami A. Prediction of Blast-InducedGround Vibration Using Artificial Neural Networks[J]. Tunnelling andUnderground Space Technology,2011,26(1):46-50.
    [133] Kumar K.P, Rao K, Krishna K.R, et al. Neural Network Based VibrationAnalysis with Novelty in Data Detection for a Large Steam Turbine[J].Shock and Vibration,2012,19(1):25-35.
    [134]孟小猛.自适应滤波算法研究及应用[D].硕士学位论文,北京邮电大学,2010.
    [135] Kalman R.E. Algebraic Structure of Linear Dynamical Systems, I. TheModule of Sigma[J]. Proceedings of the National Academy of Sciences of theUnited States of America,1965,54(6):1503-1508.
    [136] Gabor D. The Smoothing and Filtering of Two-Dimensional Images[J].Progress in biocybernetics,1965,2:1-9.
    [137] Haykin S. Adaptive Filter Theory[M].4thEdition ISE Upper Saddle River, NJ,Prentice Hall,2003.
    [138] Lucky R.W. Signal Filtering with the Transversal Equalizer[C]. Proceedingsof the7th Annual Allerton Conference on Circuit and System Theory,Monticello, IL, USA,1969:792-804.
    [139] Griffiths L.J. A Simple Adaptive Algorithm for Real-Time Processing inAntenna Arrays[J]. Proceedings of the IEEE,1969,57(10):1696-1705.
    [140] Lacoss R.T, Griffiths L.J. Comments on`a Simple Adaptive Algorithm forReal-Time Processing in Antenna Arrays'[J]. Proceedings of the IEEE,1970,58(5):797-798.
    [141] Sayed A.H. Adaptive Filters[M]. Wiley-IEEE Press,2008.
    [142] Fuller C.R, Rogers C.A, Robertshaw H H. Control of Sound Radiation withActive/Adaptive Structures[J]. Journal of Sound and Vibration,1992,157(1):19-39.
    [143] Burdisso R.A, Fuller C.R, Suarez L.E. Adaptive Feedforward Control ofStructures Subjected to Seismic Excitation[C]. in Proceedings of the1993American Control Conference, San Francisco, USA,1993,28:2104-2108.
    [144] Burdisso R.A, Vipperman J.S, Fuller C.R. Causality Analysis ofFeedforward-Controlled Systems with Broadband Inputs[J]. Journal of theAcoustical Society of America,1993,94(1):234-242.
    [145] Vipperman J.S, Burdisso R.A, Fuller C.R. Active Control of BroadbandStructural Vibration Using the LMS Adaptive Algorithm[J]. Journal of Soundand Vibration,1993,166(2):283-299.
    [146] Bor-Tsuen W, Burdisso R.A, Fuller C.R. Optimal Placement of PiezoelectricActuators for Active Structural Acoustic Control[J]. Journal of IntelligentMaterial Systems and Structures,1994,5(1):67-77.
    [147] Guigou C, Fuller C.R, Wagstaff P.R. Active Isolation of Vibration withAdaptive Structures[J]. Journal of the Acoustical Society of America,1994,96(1):294-299.
    [148] Smith J.P, Fuller C.R, Burdisso R.A. Control of Broadband AcousticRadiation with Adaptive Structures[J]. Journal of Intelligent MaterialSystems and Structures,1996,7(1):54-64.
    [149] Guigou C, Fuller C.R. Adaptive Feedforward and Feedback Methods forActive/Passive Sound Radiation Control Using Smart Foam[J]. Journal of theAcoustical Society of America,1998,104(1):226-231.
    [150] Cabell R.H, Fuller C.R. A Principal Component Algorithm for FeedforwardActive Noise and Vibration Control[J]. Journal of Sound and Vibration,1999,227(1):159-181.
    [151] Tu Y, Fuller C.R. Multiple Reference Feedforward Active Noise Control PartIi: Preprocessing and Experimental Results[J]. Journal of Sound andVibration,2000,233(5):761-774.
    [152] Carneal J.P, Charette F, Fuller C.R. Minimization of Sound Radiation fromPlates Using Adaptive Tuned Vibration Absorbers[J]. Journal of Sound andVibration,2004,270(4-5):781-792.
    [153]徐志伟,陈仁文,熊克.飞机某复合材料弯管的振动主动控制[J].应用力学学报,2002,19(3):136-139.
    [154]孙亚飞,陈仁文,徐志伟等.基于压电智能结构飞机座舱振动噪声主动控制研究[J].宇航学报,2003,24(1):43-48.
    [155]胡小锋,叶庆泰,彭晓春.基于自适应滤波的悬臂梁振动速度反馈控制[J].机械强度,2004,26(3):256-259.
    [156]孙建民,杨清梅,陈玉强. LMS自适应主动控制汽车悬架系统试验研究[J].中国机械工程,2003,14(24):2153-2156.
    [157]汤亮,陈义庆.不平衡振动自适应滤波控制研究[J].宇航学报,2007,28(6):1569-1574.
    [158] Park J.H, Rhim S. Experiments of Optimal Delay Extraction AlgorithmUsing Adaptive Time-Delay Filter for Improved Vibration Suppression[J].Journal of Mechanical Science and Technology,2009,23(4):997-1000.
    [159]肖作超,张锦光.主动隔振系统的辨识与自适应控制研究[J].长江大学学报(自然科学版),2011,8(5):103-105.
    [160] Mazur K, Pawelczyk M. Active Noise-Vibration Control Using theFiltered-Reference LMS Algorithm with Compensation of Vibrating PlateTemperature Variation[J]. Archives of Acoustics,2011,36(1):65-76.
    [161] Glugla M, Schulz R.K. Active Vibration Control Using Delay CompensatedLMS Algorithm by Modified Gradients[J]. Journal of Low Frequency NoiseVibration and Active Control,2008,27(1):65-74.
    [162] Semba T, White M.T. Seek Control to Suppress Vibrations of Hard DiskDrives Using Adaptive Filtering[J]. Ieee-Asme Transactions on Mechatronics,2008,13(5):502-509.
    [163]马宝山,孙建民,赵振宇.自适应LMS算法在汽车悬架振动主动控制中的仿真研究[J].噪声与振动控制,2003,23(3):3-6.
    [164] Tammi K. Active Control of Rotor Vibrations by Two Feedforward ControlAlgorithms[J]. Journal of Dynamic Systems Measurement and ControlTransactions of the Asme,2009,131(5):051012.
    [165]丁渊明,王宣银.多通道空间自适应滤波技术研究[J].浙江大学学报(工学版),2008,42(9):1558-1562.
    [166] Montazeri A, Poshtan J. A Computationally Efficient Adaptive Iir Solution toActive Noise and Vibration Control Systems[J]. IEEE Transactions onAutomatic Control,2011,55(11):2671-2676.
    [167] Montazeri A, Poshtan J. A New Adaptive Recursive RLS-Based Fast-ArrayIir Filter for Active Noise and Vibration Control Systems[J]. SignalProcessing,2011,91(1):98-113.
    [168] Widrow B. A Review of Adaptive Antennas[C]. in IEEE InternationalConference on Acoustics, Speech and Signal Processing, Washington, DC,USA,1979:273-278.
    [169] Morgan D.R. An Analysis of Multipole Correlation Cancellation Loops witha Filter in the Auxiliary Path[J]. IEEE Transactions on Acoustics, Speech andSignal Processing,1980,28(4):454-467.
    [170] Burgess J.C. Active Adaptive Sound Control in a Duct: A ComputerSimulation[J]. Journal of the Acoustical Society of America,1981,70(3):715-726.
    [171] Bao C, Sas P, Van Brussel H. A Novel Filtered-X LMS Algorithm and ItsApplication to Active Noise Control[C]. in Sixth European Signal ProcessingConference, Brussels, Belgium,1992,3:1709-1712.
    [172] Bao C, Sas P, van Brussel H. A Novel Filtered-X LMS Algorithm for ActiveNoise Control[J]. Journal A,1993,34(1):89-94.
    [173] Morgan D.R, Sanford C. A Control Theory Approach to the Stability andTransient Analysis of the Filtered-X LMS Adaptive Notch Filter[J]. IEEETransactions on Signal Processing,1992,40(9):2341-2346.
    [174] Saito N, Sone T. Influence of Modeling Error on Noise ReductionPerformance of Active Noise Control Systems Using Filtered-X LMSAlgorithm[J]. Journal of the Acoustical Society of Japan(E),1996,17(4):195-202.
    [175] Oh J.E, Park S.H, Hong J.S, et al. Active Vibration Control of FlexibleCantilever Beam Using Piezo Actuator and Filtered-X LMS Algorithm[J].Ksme International Journal,1998,12(4):665-671.
    [176] Douglas S.C. Fast Implementations of the Filtered-X LMS and LMSAlgorithms for Multichannel Active Noise Control[J]. Ieee Transactions onSpeech and Audio Processing,1999,7(4):454-465.
    [177] Qiu X.J, Hansen C.H. A Modified Filtered-X LMS Algorithm for ActiveControl of Periodic Noise with on-Line Cancellation Path Modelling[J].Journal of Low Frequency Noise, Vibration and Active Control,2000,19(1):35-46.
    [178]孙木楠.一种噪声与振动主动控制的滤波-M LMS算法[J].振动与冲击,2002,21(2):50-52.
    [179] Kang M.S, Yoon W.H. Acceleration Feedforward Control in Active MagneticBearing System Subject to Base Motion by Filtered-X LMS Algorithm[J].IEEE Transactions on Control Systems Technology,2006,14(1):134-140.
    [180] Gupta A, Yandamuri S, Kuo S.M. Active Vibration Control of a Structure byImplementing Filtered-X LMS Algorithm[J]. Noise Control EngineeringJournal,2006,54(6):396-405.
    [181] Das D.P, Panda G, Kuo S.M. New Block Filtered-X LMS Algorithms forActive Noise Control Systems[J]. Iet Signal Processing,2007,1(2):73-81.
    [182] Carnahan J.J, Richards C.M. A Modification to Filtered-X LMS Control forAirfoil Vibration and Flutter Suppression[J]. Journal of Vibration and Control,2008,14(6):831-848.
    [183]李嘉全,王永,梁青.基于次级通道前馈等效阻尼补偿的改进滤波X-LMS算法[J].振动与冲击,2009,28(4):113-116.
    [184]梁青,段小帅,陈绍青等.基于滤波X-LMS算法的磁悬浮隔振器控制研究[J].振动与冲击,29(7):201-203.
    [185] Yang Z.D, Huang Q.T, Han J.W, et al. Adaptive Inverse Control of RandomVibration Based on the Filtered-X LMS Algorithm[J]. EarthquakeEngineering and Engineering Vibration,2010,9(1):141-146.
    [186]刘凯,王永.磁悬浮隔振器参考信号提取研究[J].仪表技术,2011,(4):11-14.
    [187] Eriksson L.J. Development of the Filtered-U Algorithm for Active NoiseControl[J]. Journal of the Acoustical Society of America,1991,89(1):257-265.
    [188] Kim I.S, Na H.S, Kim K.J, et al. Constraint Filtered-X and Filtered-ULeast-Mean-Square Algorithms for the Active Control of Noise in Ducts [J].Journal of the Acoustical Society of America,1994,95(6):3379-3389.
    [189] Crawford D.H, Stewart R.W. Adaptive IIR Filtered-V Algorithms for ActiveNoise Control[J]. Journal of the Acoustical Society of America,1997,101(4):2097-2103.
    [190] Nowak M.P, VanVeen B.D. A Constrained Transform Domain Adaptive IIRFilter Structure for Active Noise Control[J]. IEEE Transactions on Speechand Audio Processing,1997,5(4):334-347.
    [191] Kim H.W, Lee S.K. Adaptive IIR Filter Using Variable Step Size for ActiveNoise Control Inside a Short Duct[C]. In Active and Passive Noise Control.Structural Acoustics, Dearborn, MI, USA,,2009:225-231.
    [192] Kim H.W, Park H.S, Lee S.K, et al. Modified-Filtered-U LMS Algorithm forActive Noise Control and Its Application to a Short Acoustic Duct[J].Mechanical Systems and Signal Processing,2011,25(1):475-484.
    [193] Park J, Lee S. A Novel Adaptive Algorithm with an IIR Filter and a VariableStep Size for Active Noise Control in a Short Duct[J]. International Journalof Automotive Technology,2012,13(2):223-229.
    [194] Wang A.K, Ren W. Convergence Analysis of the Filtered-U Algorithm forActive Noise Control[J]. Signal Processing,1999,73(3):255-266.
    [195] Mosquera C, Perez-Gonzalez F. Convergence Analysis of the Multiple-channel Filtered-U Recursive LMS Algorithm for Active Noise Control[J].Signal Processing,2000,80(5):849-856.
    [196] Fraanje R, Verhaegen M, Doelman N. Convergence Analysis of theFiltered-U LMS Algorithm for Active Noise Control in Case PerfectCancellation Is Not Possible[J]. Signal Processing,2003,83(6):1239-1254.
    [197] Collet M, Walter V, Delobelle P. Active Damping of a Micro-CantileverPiezo-Composite Beam[J]. Journal of Sound and Vibration,2003,260(3):453-476.
    [198] Azvine B, Tomlinson G.R, Wynne R.J. Use of Active Constrained-LayerDamping for Controlling Resonant Vibration[J]. Smart Materials andStructures,1995,4(1):1-6.
    [199]李道奎,雷勇军,唐国金.分段轴压阶梯梁自由振动及稳定性分析的传递函数方法[J].国防科技大学学报,2007,29(2):1-4.
    [200] Tso Y.K, Hansen C.H. Wave Propagation through Cylinder/Plate Junctions[J].Journal of Sound and Vibration,1995,186(3):447-461.
    [201] Mei C, Karpenko Y, Moody S, et al. Analytical Approach to Free and ForcedVibrations of Axially Loaded Cracked Timoshenko Beams[J]. Journal ofSound and Vibration,2006,291(3-5):1041-1060.
    [202] Allik H, Moore S, Oneil E, et al. Finite Element Analysis on the BbnButterfly Multiprocessor[J]. Computers and Structures,1987,27(1):13-21.
    [203] Balamurugan V, Narayanan S. Finite Element Formulation and ActiveVibration Control Study on Beams Using Smart Constrained Layer Damping(Scld) Treatment[J]. Journal of Sound and Vibration,2002,249(2):227-250.
    [204]马治国,闻邦椿.智能结构的若干问题与进展[J].东北大学学报(自然科学版),1998,19(5):513-516.
    [205]张光磊,杜彦良.智能材料与结构系统[M].北京:北京大学出版社,2010.
    [206]李卓球,宋显辉.智能复合材料结构体系[M].武汉理工大学出版社,2005.
    [207]李传兵,廖昌荣.压电智能结构的研究进展[J].压电与声光,2002,24(1):42-46.
    [208]薛伟辰,郑乔文,刘振勇等.结构振动控制智能材料研究及应用进展[J].地震工程与工程振动,2006,26(5):213-217.
    [209] Gawronski W, Lim K.B. Balanced Actuator and Sensor Placement forFlexible Structures[J]. International Journal of Control,1996,65(1):131-145.
    [210]严天宏,牟全臣.并置压电传感/作动器的最优配置及反馈增益研究[J].振动工程学报,1999,12(4):570-576.
    [211] Wang Q, Wang C.M. Optimal Placement and Size of Piezoelectric Patches onBeams from the Controllability Perspective[J]. SMART MATERIALS&STRUCTURES,2000,9(4):558-567.
    [212] Caruso G, Galeani S, Menini L. On Actuators/Sensors Placement forCollocated Flexible Plates[C]. In11th Mediterranean Conference on Controland Automation, Rhodes, Greece,2003,6pp.
    [213] Ning H.H. Optimal Number and Placements of Piezoelectric Patch Actuatorsin Structural Active Vibration Control[J]. Engineering Computations,2004,21(5-6):651-665.
    [214] Kim T.W, Kim J.H. Optimal Distribution of an Active Layer for TransientVibration Control of a Flexible Plate[J]. Smart Materials&Structures,2005,14(5):904-916.
    [215] Demetriou M.A. A Numerical Algorithm for the Optimal Placement ofActuators and Sensors for Flexible Structures[C]. In Proceedings of the2000American Control Conference, Chicago, IL, USA,2000,4:2290-2294.
    [216]周军,周连文,李卫华.挠性结构振动控制中压电致动器/敏感器的优化配置[J].系统工程与电子技术,2005,27(3):497-500.
    [217] Kumar K.R, Narayanan S. The Optimal Location of Piezoelectric Actuatorsand Sensors for Vibration Control of Plates[J]. Smart Materials&Structures,2007,16(6):2680-2691.
    [218] Kumar K.R, Narayanan S. Active Vibration Control of Beams with OptimalPlacement of Piezoelectric Sensor/Actuator Pairs[J]. Smart Materials&Structures,2008,17(5):1726-1731.
    [219]潘继,蔡国平.桁架结构作动器优化配置的粒子群算法[J].工程力学,2009,26(12):35-39.
    [220]潘继,陈龙祥,蔡国平.柔性板压电作动器的优化位置与主动控制实验研究[J].振动与冲击,2010,29(2):117-120.
    [221] Bruant I, Gallimard L, Nikoukar S. Optimal Piezoelectric Actuator andSensor Location for Active Vibration Control, Using Genetic Algorithm[J].Journal of Sound and Vibration,329(10):1615-1635.
    [222]王军,杨亚东,张家应等.面向结构振动控制的压电作动器优化配置研究[J].航空学报,2011,32:1-6.
    [223] Al Athel K.S, Effect of Piezoelectric Actuator Placement on Controlling theModes of Vibration for Flexible Structures[D], Dissertation for MasterDegree, King Fahd University of Petroleum and Minerals,2005.
    [224] Ahari M, Design Optimization of an Adaptive Laminated Composite Beamwith Piezoelectric Actuators[D], Dissertation for Master Degree, ConcordiaUniversity,2005.
    [225] Kennedy J, Eberhart R. Particle Swarm Optimization[C]. In Proceedings ofICNN'95-International Conference on Neural Networks, Perth, WA,Australia,1995,1942-1948.
    [226]王永,董卓敏,李红征等.柔性结构振动主动控制中传感器/执行器位置优化研究[J].南京理工大学学报(自然科学版),2002,26(S1):29-35.
    [227]吴印泽.挠性体振动控制中传感器/致动器位置的优化配置[D].硕士学位毕业论文,南京理工大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700