用户名: 密码: 验证码:
状态实时监控与损伤快速修复的光纤智能结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能结构是将传感、控制及驱动元件等紧密融合在材料或结构中,通过机械、热、光、化学、电、磁等激励和控制,使结构除具有承受载荷的能力外,还具有识别、分析、处理及控制等多种功能,能够进行自诊断、自适应、自学习和自修复。将光纤作为传感元件用于材料或结构中,便形成了目前智能结构领域的热点研究分支——光纤智能结构。本文结合光纤智能结构诊断和修复的基本功能和在实际工程中的应用要求,分析了结构中光纤传感理论和状态监控原理,设计了光纤智能结构的状态实时监控系统,同时,本文还研究和测试了用于光波修复的固化材料的性能,分析了光固化修复效果,为结构损伤出现后的快速光固化修复进行了实验验证。全文的主要工作和创新性成果如下:
     1)提出状态实时监控与损伤快速修复的光纤智能结构系统设计,实现了当光纤智能结构受损时,首先通过监控系统确定结构的损伤部位,然后利用修复系统在损伤部位进行快速损伤修复,使得受损的光纤智能结构能够基本修复,从而可以继续使用,具有终身状态实时监控功能,为光纤智能结构的监控与修复一体化系统设计提供了新思路。
     2)将人工神经网络建模融入光纤智能结构的损伤位置判断软件中,成功的将反向传播神经网络(BP网络)和自组织特征映射神经网络(SOM网络)分别用于了数据处理和分析应用实验,与通常的研究中使用BP网络来进行损伤判断方法相比,本文中通过SOM网络实验,得出SOM网络可很好地进行状态实时监控系统的数据处理与损伤位置的分析。
     3)首次提出一种用短波长的光波快速修复光纤智能结构损伤初期出现的微小裂缝等损伤的方法,利用快速光固化修复材料的光固化反应,通过光纤智能结构中的光纤传输修复光波和对损伤部位进行外部修复光波辐照这两种方式,实现了对修复材料的固化,达到了损伤修复的目的,为光纤智能结构的快速修复提供了新途径。
     4)采用近代光测的方法来检测光固化材料修复损伤的效果,通过制作实验试件,比较试件的原始状态、损伤状态、修复后状态的振动全息图,对比振型图条纹,分析了光固化材料的修复效果,验证了光固化材料用于光纤智能结构损伤修复的可行性。
     本文的研究成果为光纤智能结构的监控与修复系统的设计方法提供了新思路,为光纤智能结构修复技术的进一步深入研究提供了有价值的参考。
Intelligent structures are materials and structures with sensing, controlling and driving components embedded in. Through the stimulation and control from external factors such as machine, heat, light, chemistry, electricity, magnetism and so on, the intelligent structures possess the abilities of recognizing and analyzing status, processing datum, controling movement and etc, which enable the structures to fulfill self-diagnosing, self-adapting, self-studying and self-repairing. When optical fibers are used in materials or structures as sensors, optical fiber intelligent structures, a hot research branch of intelligent structures research fields at present, are formed. Based on the discussion of the basic functions of diagnosis and repair of the optical fiber intelligent structures and the requirements of its applications in engineering, the related optical fiber sensing and status monitoring theories are analyzed in this dissertation. Furthermore, the real-time status monitoring system for optical fiber intelligent structures is designed. Then performances of the light cured materials for damage repairing are discussed and tested, and the effects of the repairing of the light cured repairing materials are analyzed through the rapid light curing experiment of the damaged structure. The main achievements and innovative results are described as following:
     1) A novel design of the real-time status monitoring and rapid damage repairing system for optical fiber intelligent structures is presented. When the damage appears in the structure, the system would judge and confirm the damage area at first. Then the damage area would be rapidly repaired by the repair system, thus the optical fiber intelligent structure could be repaired partially and it can continue to work on with the real-time status monitoring all the time. This novel system provides a new way for the integrative monitoring and repairing design of the optical fiber intelligent structure.
     2) With artificial neural network model used in the damage location judging software, the BP neural network and SOM neural network are respectively used in the damaged data process and analysis experiments successfully. Comparing with the common research with the way of BP neural network damage judging, the SOM neural network experiments are conducted in this dissertation and the experimental results show that SOM neural network would successfully fulfill the data process and the damaged area analysis.
     3) In this research a new method of rapid crack damage repairing with shortwave light for the optical fiber intelligent structure is presented for the first time. A sort of rapid light cured repairing materials is invented and analyzed. The repairing materials could be solidified under the short wave light transmitted through the optical fibers in the intelligent structure or irradiated by the external repair light source to realize the damage repairing. This method develops a novel approach for the rapid damage repairing of the optical fiber intelligent structure.
     4) Through modern light testing and measurement technology the effect of the damage repairing is discussed and proved. The experimental test pieces are made and the vibrating holographic interferograms are photographed in original, damaged, and repaired samples. By analyzing these three interferograms and the fringes on them, the damage repairing effect and feasibility of the light cured materials could be analyzed and testified.
     The results of this dissertation would develop a new design method of monitoring and repairing system of the optical fiber intelligent structure and it also provides a valuable reference to the further research of repairing technology in optical fiber intelligent structures.
引文
[1]陶宝祺,熊克,袁慎芳,等,智能材料结构,北京,国防工业出版社,1997:3
    [2] Wade J C, Claus R O, Interferometric techniques using embedded optical fibers for the quantitative NDE of composites,Review of Progress in Quantitative Nondestructive Evaluation,1983,2B:1737~1738
    [3] Lockyer A J, Alt K H, Kinslow R W, et al. Development of a structurally integrated conformal load bearing multifunction antenna: Overview of the Air Force Smart Skin Structures Technology Demonstration program, Proc. SPIE, 1996, 2722: 55~64
    [4] Measures R M, Historical overview of the UTIAS fiber optic smart structures laboratory, Canadian Aeronautics and Space Journal, 1999, 45(2): 184~193
    [5] Johannessen K, Smart Structures for sea, land and space, Proc. SPIE, 1997, 3(9): 300~304
    [6] Habel W R, Embedded quasi-distributed fiber-optic sensors for the long-term monitoring of the grouting area of rock anchors in a large gravity dam, Journal of Intelligent Material Systems and Structures, 2000,10(4): 330~339
    [7] KSC Kuang, WJ Cantwell, Use of conventional optical fibers and fiber Bragg gratings for damage detection in advanced composite structures:A review, Applied Mechanics Reviews, 2003, 56(5): 493~513
    [8] George J Tsamasphyros, George N Kanderakis, et al. Selection of optical fibers paths and sensor locations for monitoring the integrity of composite patching, Applied Composite Materials, 2003, 10(6): 331~338
    [9] Anders Sjogren, Bengt Lindstrom, Connection of optical fibers embedded in aircraft composite components, Proceedings of SPIE, 2000, 3985: 533~542
    [10] Anna Stewart, Greg Carman, Lance Richards, Use of imbedded fiber optic thermal sensors to monitor the health of composite structures, Proceedings of SPIE, 2002, 4701: 70~77
    [11]杨春平,高梁,李振京,等,发展循环经济是落实科学发展观的重要途径,宏观经济研究,2005,(4):3~8
    [12]袁永康,“自我疗伤”的涂层,国外科技动态,2003,(3):28~29
    [13] NASA turns to universities for research in space-age materials, Princeton University Office of Communications, Sep.20, 2002
    [14] Next Generation Manufacturing (NGM) Project, Supported by National Science Foundation (NSF), 1997
    [15]李海川,邵适亮,机敏混凝土,建筑技术开发,2003,30(8):51~53
    [16]徐滨士,张伟,等,现代装备智能自修复技术,中国表面工程,2004,(1):1~4
    [17]杨红,空心光纤用于智能结构自诊断自修复的研究,[博士学位论文],南京,南京航空航天大学,2001
    [18]杨红,陶宝祺,梁大开,等,光纤应用于结构自修复的研究,2001,34(1):40~42
    [19]杨大智,智能材料与智能系统,天津,天津大学出版社,2000:4
    [20] Eric Udd, Fiber Optic Smart Structures, New York, John Wiley & Sons Inc., 1995
    [21] Fernando G F, Degamber B, Process monitoring of fibre reinforced composites using optical fibre sensors, International Materials Reviews, 2006, 51(2): 65~106
    [22] Kunzler M, Udd E, Kreger S, et al. Damage evaluation and analysis of composite pressure vessels using fiber Bragg gratings to determine structural health, Proc. SPIE, 2005, 5758(1): 168~176
    [23] Shenfang Yuan, Xiaosong Lai, Xia Zhao, et al. Distributed structural health monitoring system based on smart wireless sensor and multi-agent technology, Smart Materials and Structures, 2006, 15(1): 1~8
    [24] Takeda S, Aoki Y, Ishikawa T, et al. Structural health monitoring of composite wing structure during durability test, Composite Structures, 2007, 79(1): 133~139
    [25] Gyuhae Park, Farrar C R, Scalea F L, et al. Performance assessment and validation of piezoelectric active-sensors in structural health monitoring, Smart Materials and Structures, 2006, 15(6): 1673~1683
    [26] Glenne Bard, DeRocco Anthony, Foss Gary, Ski and snowboard vibration, S V Sound and Vibration, 1999, 33(1): 30~33
    [27] Bianchini E, Spangler R, Andrus C, The use of piezoelectric devices to control snowboard vibrations, Proc. SPIE, 1998, 3329: 106~114
    [28] Northrop Grumman awarded contract for work on F/A 18 Super Hornet, Advanced Materials and Processes, 2005, 163(7): 95
    [29] Dry C M, Smart materials which sense, activate and repair damage; hollow porous fibers in composites release chemicals from fibers for self-healing, damage prevention, and/or dynamic control, First European Conference on Smart Structures and Materials, 1992: 367~371
    [30] Dry C M,Current research in timed release of repair chemicals from fibres into matrices, Proc. SPIE, 1994, 2361: 324~326
    [31] Dry C M, Corsaw M, Time-release technique for corrosion prevention, Cement and Concrete Research, 1998, 28(8): 1133~1140
    [32] Dry C M, Factors affecting self-repairing of composites, Proc. SPIE, 2002, 4935: 15~25
    [33] Dry C M, Self-repairing, self-forming, and self-sensing systems for ceramic/polymer composites, Proc. SPIE, 2002, 4701: 55~69
    [34] Dry C M, Self-repairing of composites, Proc. SPIE, 2003, 5055: 376~379
    [35]李川,张以谟,光纤智能结构的传感研究,飞通光电子,2001,1(4):193~197
    [36] Dehart D W, Air force astronautics laboratory smart structures and skins program overview, Proc. SPIE, 1990, 1170: 11~18
    [37] Rogowski R S, Heyman J S, Holben M S, et al. Fiber optic strain measurements in filament-wound graphite-epoxy tubes containing embedded fibers, Proc. SPIE, 1989, 986: 194~199
    [38] Rogowski R S. Fiber optic sensors for health monitoring of aircraft and spacecraft, Proceedings of the Conference on Optical Fiber Sensor-Based Smart Materials and Structures, 1991: 149
    [39] Udd E, Fiber sensors for smart structures, Proceedings of the 6th International Conference: Optical Fiber Sensors, 1989, p 392-399
    [40] Udd E, Theriault J P, Markus A , et al. Microbending fiber optic sensors for smart structures,Proc. SPIE, 1990, 1170: 478~482
    [41] Udd E, Optical fibre sensors, Fiber and Integrated Optics, 1992, 11(4): 319~336
    [42] Udd E, Clark T, Joseph A, et al. Fiber optics development at McDonnell Douglas, Proc. SPIE, 1991, 1418: 134~152
    [43] Udd E, Overview of fiber optic smart structures for aerospace applications, Proc. SPIE, 1989, 986: 2~5
    [44] Udd E, Fiber optic smart structures for aerospace and natural applications, Proc. SPIE, 1995, 2574: 2~5
    [45] Udd E, Applications of fiber optic smart structures, IEEE Technical Applications Conference, Northcon Conference Record, 1996: 68~72
    [46] Udd E, Seim J, Schulz W, et al. Monitoring trucks, cars and joggers on the Horsetail Falls bridge using fiber optic grating strain sensors, 14th International Con on Optical FiberSensors. Proc. SPIE, 2000, 4185: 872~875
    [47] Claus R O, Lenahan K M, Optical fiber sensors and systems for the evaluation of smart materials and structures, Ninth International Conference on Adaptive Structures and Technologies, 1999: 38-43
    [48] Claus R O, Arregui F J, Davis B, et al. Improvements in self-assembled optical fiber-based biosensors, Proc. SPIE, 2005, 5691(1): 192~177
    [49] Measures R M, LeBlanc M, Liu K, et al. Fiber optic sensors for Smart Structures, Optics and Lasers in Engineering, 1992, 16(2): 127~152
    [50] Measures R M, Liu K, Melle S, Fiber optic sensing system critical issues and developments for smart structures, Active Materials and Adaptive Structures, Proceedings of the ADPA/AIAA/ASME/SPIE Conference, 1992: 301~307
    [51] Measures R M, Alavie T, Maaskant R, et al. Multiplexed Bragg grating laser sensors for civil engineering, Proc. SPIE, 1993, 2071: 21~29
    [52] Measures R M, Huang S, LeBlanc M, et al. Distributed fiber optic strain sensing based on spectral integration of Bragg grating reflection, Proc. SPIE, 1996, 2838: 31~39
    [53] Measures R M, Alavie T, Maaskant R, et al. Bragg grating structural sensing system...for bridge monitoring, Proc. SPIE, 1994, 2294: 53~59
    [54] Tim Dallas, Purnendu K Dasgupta, Light at the end of the tunnel: recent analytical applications of liquid-core waveguides, TRAC Trends in Analytical Chemistry, 2004, 23(5):385~392
    [55] Xu Juncheng, Pickrell Gary, Wang Anbo. Fiber optic pressure sensors for harsh environments, Proceedings of the 51st International Instrumentation Symposium, 2005, 457: 307~334
    [56] Hai Xiao, Jiangdong Deng, Zhiyong Wang, et al. Fiber optic pressure sensor with self-compensation capability for harsh environment application, Optical Engineering, 2005,44(5): 054403
    [57] Zhengyu Huang, Wei Peng, Juncheng Xu, et al. Fiber temperature sensor for high-pressure environment, Optical Engineering, 2005, 44(10): 104401
    [58]赵雪峰,田石柱,欧进萍,等,光纤Bragg光栅监测钢筋混凝土结构应变的实验研究,激光技术,2003,27(3):233~235
    [59]万里冰,武湛君,张博明,等,埋光纤光栅传感器智能土木结构应变监测,力学与实践,2003,25(4):35~38
    [60]李东升,邓年春,周智,等,拱桥吊杆的光纤光栅监测与健康诊断,光电子·激光,2007,18(1):81~84
    [61]李东升,周智,邓年春,等,纤维智能复合筋及其智能吊杆传感器特性研究,光电子·激光,2007,18(6):653~655
    [62]杨建春,陈伟民,桥梁结构状态参数监测技术研究现状,传感器技术,2004,23(3):1~5
    [63]梁大开,杨红,采用空心光纤自诊断、自修复智能结构的研究,压电与声光,2002,24(4):261~263
    [64]杨红,梁大开,空心光纤性能及在机敏结构中应用的研究,材料科学与工程,2000,18(3):27~30
    [65]刘沐宇,袁卫国,光纤传感在桥梁健康监测系统中的应用研究,中南公路工程,2004,29(1):108~111
    [66] White S R,Scottos N R,Guebelle P H,et a1,Autonomic healing of polymer composite, Nature,2001,409(2):794~797
    [67] Kessler M R, White S R, Self-activated healing of delamination damage in woven composites, Composites Part A: Applied Science and Manufacturing, 2001, 32(5): 683~699
    [68] Kessler M R, Scottos N R, White S R, Self-healing structural composite materials, Composites Part A: Applied Science and Manufacturing, 2003, 34(8): 743~753
    [69] Brown E N, White S R, Sottos N R, Microcapsule induced toughening in a self-healing polymer composite, Journal of Materials Science,2004,39:1703~1710
    [70] Brown E N, White S R and Sottos N R, Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite Part II: In situ self-healing, Composites Science and Technology, 2005, 65(15): 2474~2480
    [71]李海燕,王荣国,刘文博,等,微胶囊自修复复合材料的研究进展,玻璃钢/复合材料,2007,(4):48~52
    [72]谢建强,张岩,王毅飞,等,乳化剂对自修复微胶囊合成的影响,中国胶粘剂,2007,16(5):21~24
    [73]乔吉超,胡小玲,管萍,自修复聚合物材料用微胶囊的研究进展,化工进展,2006,25(12): 1405~1409
    [74]李岚,袁莉,微胶囊技术及其在复合材料中的应用,塑料工业,2006,34(B05):287~289
    [75]党旭丹,张恒,贺跃进,胶囊型自修复智能复合材料研究,材料导报,2005,19(1):30~32
    [76]贺跃进,张军,党旭丹,等,微胶囊自修复智能复合材料断裂特性的模拟实验研究,功能材料,2007,38(5):849~852
    [77]杨艳娟,张恒,张军,等,微胶囊自修复复合材料断裂力学实验研究,材料导报,2007,21(1):143~147
    [78]罗文琳,许陆文,徐鹿鳞,金属结构损伤复合材料微波修复的实验研究,南京航空航天大学学报,2005,37(6):736~740
    [79]许陆文,复合材料微波快速抢修技术在某重型战机抢修中的应用,中国表面工程. 2006,19(5):223~226
    [80]许陆文,代永朝,飞机结构战伤复合材料微波快速抢修技术,航空工程与维修,2002,(3):17~19
    [81] Zhao Zhimin, Chen Yuming, Yu Xiaolei, et al. The new technology of composite materials repairing by light wave, Journal of Wuhan University of technology-materials science, 2004, 19 (2): 41~43
    [82]王乐新,赵志敏,光修复对复合材料振动性能的影响,应用激光,2005,25(4):248~250
    [83] Guo Linfeng, Zhao Zhimin,Gao Mingjuan, et al. Study on influence of vibration behavior of composite material damage by holography. Proc. SPIE, 2006, 6027: 60272E
    [84]陈玉明,新型液芯光纤性能与实验研究,[硕士学位论文],南京,南京航空航天大学,2004
    [85]王乐新,赵志敏,复合材料损伤的光修复波长选择研究,理化检验-物理分册,2002,38(1):10~13
    [86] Zhao Zhimin, Chen Yuming, Yu Xiaolei, The Parameters selection of SMA optically activated and its application, Journal of Wuhan University of Technology-Materials Science, 2002, 17(4): 1~4
    [87]朱玉田,荻原一郎,毛利泰裕,形状记忆合金智能复合材料自修复中传感与控制方法研究,2005,41(3):221~225
    [88]俞晓磊,赵志敏,陈玉明,应用光激励SMA技术实现结构损伤控制,2003,20(2):234~236
    [89] QIU Zixue, YAO Xingtian, COSTAS Soutis, Structural health mornitoring in composite materials using embedded Shape Memory Alloy(SMA) wire sensors, Chinese Journal of Mechanical Engineering, 2006, 19(3): 446~450
    [90]王军,郦正能,王俊兵,含SMA和PZT二元驱动器的智能复合材料结构形状控制,复合材料学报,2004,21(2):142~146
    [91] Fouassier J P, Rabek J F, Radiation Curing in Polymer Science and Technology-Volume 1:Fundamentals and Methods, New York, Elservier Applied Science, 1993
    [92]宋心琦,光化学原理及应用,大学化学,1986,1(2):1~10
    [93]刘守新,刘鸿,光催化及光电催化基础与应用,北京,化学工业出版社,2006:6~17
    [94]魏杰,金养智,光固化涂料,北京,化学工业出版社,2005:13~16
    [95]曹怡,张建成,光化学技术,北京,化学工业出版社,2004:5~51
    [96]潘祖仁,高分子化学,北京,化学工业出版社,2000:32~34
    [97]涂亚庆,刘兴长,光纤智能结构,北京,高等教育出版社,2005:13
    [98]廖延彪,光纤光学,北京,清华大学出版社,2001:2~5
    [99]孙雨南,王茜蒨,伍剑,等,光纤技术-理论基础与应用,北京,北京理工大学出版社,2006:55~56
    [100]罗先和,张广军,骆飞,等,光电检测技术,北京,北京航空航天大学出版社,1995:46~50
    [101]郭林峰,赵志敏,高明娟,新型光纤智能监控系统设计,光电工程,2006,33(3):133~136
    [102]刘和平,王维俊,江渝,等,TMS320LF240x DSP C语言开发,北京,北京航空航天大学出版社,2003:1~4
    [103]余锡存,曹国华,单片机原理及接口技术,西安,西安电子科技大学出版社,2002:93~94
    [104]韩力群,人工神经网络理论、设计及应用,北京,化学工业出版社,1991:43~70
    [105]飞思科技,神经网络理论与MATLAB7实现,北京,电子工业出版社,2005,44~72
    [106]薛克兴,复合材料结构的损伤与修补,北京,航空工业出版社,1992:13~15
    [107]刘安华,涂料技术导论,北京,化学工业出版社,2005:159~160
    [108]姜英涛,涂料基础,北京,化学工业出版社,2004:217~228
    [109]洪啸吟,冯汉保,涂料化学,北京,科学出版社,2005:166~168
    [110]于美文,光全息学及其应用,北京,北京理工大学出版社,1996:380
    [111] C. M. Vest,全息干涉度量学(樊雄文,王玉洪译),北京,机械工业出版社,1984:198~203
    [112] Guo Lingfeng, Zhao Zhimin, Gao Mingjuan, Study of the compatibility between light-cured repair materials and composite materials by holographic interferometry, Optical Engineering, 2005, 44(10): 105602~1~3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700