用户名: 密码: 验证码:
长周期光纤光栅在智能结构中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长周期光纤光栅是一种周期在数百微米的光纤光栅,具有插入损耗低、无后向反射、制作简单以及成本低、许多方面灵敏度高于FBG等独特优点,在光纤传感和光纤通讯领域具有良好的应用前景,成为近年来的研究热点。但是,目前对长周期光纤光栅的研究主要还停留在理论与实验的探索阶段,实用化程度不高。本课题致力于将长周期光纤光栅应用到实际的工程结构当中,包括结构的振动监测以及民用的土木工程结构,实现结构的健康监测。
     全文研究工作内容包括如下几个方面:
     (1)对长周期光纤光栅进行理论分析,介绍了长周期光纤光栅的写入技术及形成机理。以耦合模理论为基础,基于三层光纤模型,对阶跃单模光纤中写入的非倾斜均匀长周期光纤光栅的传输特性进行了分析,给出了基于此理论的长周期光纤光栅的有效折射率、耦合系数、透射率以及谐振波长的表达式,为光栅的制作及其传感特性提供了理论基础;
     (2)长周期光纤光栅的基本传感特性是其进行实际工程应用的基础。从理论分析和实验研究的角度出发,讨论长周期光纤光栅的基本传感特性,包括温度、轴向应变、弯曲、折射率和横向负载特性,分别讨论了各个情况下长周期光纤光栅透射光谱的变化,并给出相应的特性曲线和灵敏度系数;
     (3)基于长周期光纤光栅的弯曲特性研究,发现其透射光中某固定波长处的光功率与LPFG的弯曲度近似成线性,提出利用这一特点,将长周期光纤光栅粘贴在待测板结构上,实现对板结构动态信号的监测;
     (4)利用布拉格光栅的窄带特性解调长周期光纤光栅,始终监测LPFG某固定波长处的光功率,建立了基于长周期光纤光栅微弯特性的动态信号监测系统,该系统用于对待测板结构振动信号的监测,初步实现了分布式振动信号的采集;
     (5)基于长周期光纤光栅动态信号监测系统,对待测结构各种损伤状况下采集到的动态信号进行分析,提取小波包能量谱变化率为结构的损伤指标,实现结构的损伤识别;
     (6)基于混凝土结构中钢筋的锈蚀机理,利用长周期光纤光栅对折射率的传感特性,设计了相关方案,在实验室环境下实现了对钢筋锈蚀的监测;
     (7)基于长周期光纤光栅对微弯的传感特性,设计了混凝土结构的钢筋锈蚀传感器,在实验室环境下可行的基础上,将其埋入钢筋混凝土结构,对结构内部的钢筋锈蚀情况进行了监测。
A long-period fiber grating(LPFG) is a periodic refractive index structure on the fiber core whose periodicity is in the range of several hundred micrometers. The transmission spectrum of a typical LPFG consists of a number of rejection bands that arise from light coupling from the fundamental mode to the cladding modes of the fiber. LPFG has many remarkable advantages, such as low insertion loss, low back reflection, easy to fabricate, polarization independence and etc., The LPFG also offers a series of interesting properties for sensing applications, compared with FBG, they are also sensitive to measurands such as strain, curvature, temperature or the external refractive index, so it becomes a most important part of fiber sensors. Meanwhile, most research on it are in the laboratory while a little in application. This dissertation aims to research on the application of LPFG in structural health monitoring, including the vibration monitoring and the civil engineering structure. All these work provide theoretical and practical preparation for promoting the availability of LPFG detection technology. The main achievements are described as follows:
     (1)The theory analyse of LPFG has been studied, the written technology and the formation mechanism were introduced. Based on the coupling theory and the three-layer fiber model, the transmission speciality of long period fiber grating is analyzed, and the transmission spectrum function, resonance wavelength, effective refractive index of LPFG were deduced, which offer the theoretical foundation of the manufacture and the sensor characteristic of LPFG.
     (2)The sensing characteristic of LPFG is the precondition to apply in practice. The basical characters of long-period fiber gratting are studied. It includes the temperature, axial strain, bending, refractive index and transverse-load characteristic. The simple theories and experiments related were concerned.
     (3)Based on the study of micro-bending characteristic of LPFG, it is found that the loss amplitude of one wavelength is linear to the curvature of LPFG. A new scheme to monitor the structure vibration by gluing the LPFG onto the experimental laminate is proposed and realized.
     (4)The narrow band reflection light characteristic of Bragg grating was used to demodulate LPFG, by detecting the power of certain fixed wavelength transmission light of LPFG, the dynamic signal monoring system is realized based on the micro-bending characteristic of LPFG, and the acquisition of distributed vibration signal was realized preliminary.
     (5)Based on the vibration monitor of optical fiber grating smart structure, different damage situation are studied through an analysis of an experimental laminate, the variation of wavelet packet energy spectrum used as the damage character is picked up to identify the structual damage status. And the damage diagnosis of the optical fiber grating smart structure were realized.
     (6)Base on the mechanism of steel corrosion in reinforced concrete, a scheme was proposed to measure the steel corrosion using the refractive index characteristic, and the experimental results was effective.
     (7)A new technique to measure the corrosion of steel in concrete structures was proposed, it is based on the microbending characteristic of LPFG, and the corrosion sensor designed was produced to monitor the corrosion of steel in concrete.
引文
[1]杨大智,智能材料与智能系统,天津:天津大学出版社,2000:15~40
    [2]缪钱江,方征平,蔡国平,自修复复合材料研究进展,材料科学与工程学报,2004,22(2):301~ 303
    [3] H.S.Tzou, H.J.Lee, S.M.Arnold. Smart materials, precision sensors/actuators, smart structures, and structronic systems. Mechanics of Advanced Materials and Structures, 2004,11(4):367~393
    [4] N.Tajima, TSakurai, M.Sasajima et al. Overview of the Japanese smart materials demonstrator program and structures system project. Advanced Composite materials, 2004,13(1):3~15
    [5] Measures R.M.Fiber optics in composite materials-materials with nerves of glass, Ralf T. Kersten, Fiber Optic Sensors IV Proceedings, Proc. SPIE 1267,1990:241~256.
    [6]涂亚庆,刘兴长,光纤智能结构,重庆:重庆出版社,2000:1~67
    [7]张令弥,智能结构研究的进展与应用,振动、测试与诊断,1998,18(2):79~84
    [8] N.Tajima, T.Sakurai,M.Sasajima et al. Overview of the Japanese smart materials demonstrator program and structures system project. Advanced Composite Materials,2004,13(1):3~15
    [9] T.Takagi. Present state and future of the intelligent materials and systems in Japan. Journal of Intelligent Material Systems and Structures,1999, 10(7):575~581
    [10] T.L.Vigo. Intelligent fibrous materials. Journal of the Textile Institute,1999, 90(3):1~13
    [11]梁大开,邱浩,碳敷层光纤在碳纤维复合材料智能结构中的应用,南京航空航天大学学报,2000, 32(6):723~726
    [12]杨明,梁大开,万鹏飞,多重分形的智能材料损伤诊断应用,兵器材料科学与工程,2004,27(2):19~22
    [13] S.Wojciechowski,A.Boczkowska. Intelligent materials 2004, Archives of Metallurgy and Materials, 2004, 49(4):723~734
    [14]杨红,梁大开,陶宝祺,光纤智能结构自诊断、自修复的研究,功能材料,2001,32(4):419~421
    [15] Y.Adachi, S.Unjoh, M.Kondoh. Development of a shape memory alloy damper for intelligent bridge systems, Shape Memory Materials, 2000, 15(4):327~331
    [16]姜德生,梁磊,周雪芳等,光纤光栅机敏混凝土的研究,硅酸盐通报,2003,22(3):78~81
    [17] LChopra. Status of application of smart structures technology to rotorcraft systems.Journal of the American Helicopter Society, 2000,45(4):228~252
    [18] S.Kalaycioglu,D.Silva. Minimization of vibration of spacecraft appendages during shape controlusing smart structures. Journal of Guidance Control and Dynamics, 2000,23(3):558~561
    [19]袁慎芳,方明,紧密结合智能材料结构新学科的发展培养创新性人才,南京航空航天大学学报:社会科学版.,2000,2(B12):105~107
    [20]姜德生,智能材料器件结构,武汉:武汉工业大学,2001:13~33
    [21] I. Bennion, J. A. R. Williams, L. Zhang, et al.. UV-written in-fiber Bragg gratings,Opt.Quantum Electron, 1994, 28:93~109
    [22] K. O. Hill, Y. Fujii, D. C. Johnson, et al., Photosensitivity in optical fiber waveguide: application to reflection filter fabrication, Appl. Phys. Lett., 1978, 32(10):647~649
    [23] G. Meltz, M. M. Morey, and W. H. Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett., 1989, 14(5):823~825
    [24] K. O. Hill. Bragg gratins fabricated in monomode photosensitive optical fiber by UV expose through a phase mask. Appl. Phys. Lett., 1993, 62(10):1035~1037
    [25] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Spie. Long-Period fiber gratings as band-rejection filters. J. Lightware Technol. , 1996, 14(1):58~65 [ 26 ] V. Bhatia, A.M. Vengsarkkar,Optical fiber long-period grating sensors,Opt.Lett.,1996, 21:692~694
    [27] T. Erdogan, Fiber grating spectra, J. of Lightwave Technol., 1997, 15(8):1277~1294
    [28] T. Erdogan,Cladding-mode resonances in short and long period fiber grating filters, J. Opt. Soc.Am. A, 1997, 14(8):1760~1773
    [29] D. D. Davis, T. K. Gaylord, E. N. Glytsis, et al., Long-period fibre grating fabrication with focused CO2 laser pulses, Electronics Lett., 1998,34(3):302~303
    [30] D.D. Davis, T.K. Gaylord, E.N. Glytsis, et al., CO2 laser-induced long-period fibre gratings: spectral characteristics cladding modes and polarization independence, Elextron. Lett., 1998, 34(14):1416~1417
    [31] F. Ouellette, Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides, Opt. Lett., 1987, 12(10): 847~849
    [32] V. Mizrahi, J. E. Sipe, Optical properties of photosensitive fiber phase gratins, J. of Lightwave Technol., 1993, 11(10):1513~1517
    [33] C. R. Giles, Lightwave application of fiber Bragg gratings, J. of Lightwave Technol., 1997, 15(8):1391~1404
    [34] G. Agrawal, S. Radic. Phase-shifted fiber Bragg gratings and their applications for wavelengthdemultiplexing, IEEE Photon. Technol. Lett., 1994, 6(8):995~997
    [35] T. Erdogan, J. E. Sipe, Tilted fiber phase gratings, J. Opt. Soc. Am. A, 1996, 13(2):296~313
    [36]姜德生,方炜炜,Bragg光纤光栅及其在传感中的应用,传感器世界,2007,3:22~26
    [37]舒睿俊,光纤Bragg光栅动态应变传感技术的研究,[硕士学位论文],杭州,浙江大学,2006 [ 38 ] V. Bhatia, A. M. Vengsarkar, Optical fiber long-period grating sensors,Opt. Lett 1996(21):692~694.
    [39] V. Bhatia, D. Camphbell, R. O. Claus , et al., simultaneous strain and temperature measurement with long-period gratings, Opt. Lett., 1997,22:648~650.
    [40] H. J. Patrick, A. D. Kersey, F. Bucholtz, et al., Chemical sensor based on long-period fiber grating response to index of refraction,Lasers and Electro-Optics, 1997,(11):420~421.
    [41]王义平,饶云江,冉曾令,一种新颖的长周期光纤光栅可调增益均衡器,光学学报,2003,23(8):970~973
    [42] K. A. Ahmed, Simultaneous mode selection and pulse compression of gain-switched pulses from a F-P laser using a 40-mm chirped optical fiber grating, IEEE Photonics Technology Letters,1995,(7):158~160.
    [43] J. A. R. Williams, Fiber dispersion compensation using a chirped infiber Bragg grating, Lett, 1994,(30):985~987.
    [44] J. A. R. Williams et al.,The compression of optical pulse using Self-Phase-Modulation and linearly chirped Bragg-gratings in fibers, IEEE Phofonics Technology Letters, 1995,(7):491~493.
    [45] H. Ke, K. S. Chiang, J. H.Peng, Analysis of phase-shift long-period fiber,IEEE Photonics Technology Letters, 1998,(10):1596~1598.
    [46] Y. Liu, J. A. R. Williams, L. Zhang, I. Bennion, Phase shifted and cascadcd long-period fiber gratings, Optics Communications, 1999,(164):27~31.
    [47] R. Kashyap, R.Wyatt, R.J.Campbell, Wideband gain flattend erbium fiber amplifier using a photosensitive fiber blazed grating, Electron. Lett, 1993, (29):154~156.
    [48] K.O.Hill et al., Efficient mode conversion in telecommunication using externally written gratings, Electron.Lett, 1990,(26):1270~1272
    [49] I.Bennion, J. A. R. Williams, L. Zhang, et al., UV written in-fiber Bragg gratings, Optical and Quantum Electronics, 1996, (28):93~135
    [50]李智红,董孝义等,正旋锥光纤光栅的数值计算分析,光子学报,1998(27):239~242.
    [51] F. Ouellette, P. A. Krug, T. Stephens et al., Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings, Electronics Lett, 1995,(31):899~900
    [52]姜德生,何伟,光纤光栅传感器的应用概况,光电子·激光,2002,13 (4 ):420~430
    [53] Foote P. D, Fiber Bragg grating strain sensors for aerospace smart structure, Alaster McDonach et al.Second European Conference on Smart Structures and Materials , Proc. SPIE 2361, 1994:290 ~293.
    [54] Michael N. Trutzel, Karsten Wauer, Daniel Betz, et al. Smart sensing of aviation structures with fiber-optic Bragg grating sensors, Richard O. Claus, Smart Structures and Materials 2000: Sensory phenomena and measurement instrument for smart structures and materials, Newport Beach, Proc. SPIE 3986, 2000:134~143
    [55] Catherine A Black, Eric Udd, Whitten Schulz, Steve Kregar, et al. Using multi-axis fiber grating strain sensors to measure transverse strain and transverse strain gradients in composite materials with complex weave structures. Daniele Inaudi, Smart Structures and Materials 2002: Smart structures and materials: smart sensor technology and measurement systems. San Diego, Proc. SPIE 4694,2002:162~167.
    [56] D. R.Hjelme,et al. Application of Bragg grating sensors in the characterization of scaled marine vehicle models,Applied optics, 1997,36:328~336.
    [57] Chris Baldwin, Peter Chen, Jason Kiddy, et al. Structural testing of a Navy LPD-17 propulsion propeller using Bragg grating sensors and digital spatial wavelength domain multiplexing (DSWDM). Anna-Maria R. McGowan, Smart structures and materials 2001: Industrial and commercial applications of smart structures technologies, Newport Beach, Proc. SPIE 4332, 2001:124~132.
    [58] Jason S. Kiddy, Chris S. Balawin, Toni Salter. Certification of a submarine design using fiber Bragg grating sensors. Eric H. Anderson,Smart structures and materials 2004: Industrial and commercial applications of smart structures technologies, San Diego, Proc. SPIE 5388, 2004: 387~398.
    [59] Fribele P., et al. Optics Fibre Bragg grating strain sensors: present and future applications in smart and photonics news, Structures,1998,9:33~37.
    [60] Slowik V., et al. Fibre Bragg grating sensors in concrete technology, Laser, 1999,3:109~119.
    [61]欧进萍,周智,光纤光栅传感器及其在大型结构工程健康监测领域的应用,光纤传感器的发展与产业化国际论坛,平湖,2005
    [62] Sylvain Magne, Jonathan Boussoir, Stephane Rougeault, et al. Health monitoring of the Saint-Jean bridge of Bordeaux, France using fiber Bragg grating extensometers. Daniele Inaudi, Smart structures and materials 2003: smart sensor technology and measurement systems, San Diego,Proc. SPIE 5050, 2003:305~316.
    [63]孙丽,光纤光栅传感技术与工程应用研究,[博士学位论文],大连,大连理工大学,2006
    [64] Philipp M. Nellen, Andreas Frank, Rolf Bronnimann, Urs Sennhauser. Optical fiber Bragg gratings for tunnel surveillance. Richard O. Claus,Smart Structures and Materials 2000: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, Newport Beach,Proc. SPIE 3986, 2000:263~270.
    [65] Chia-Chen Chang, Gregg Johnson, Sandeep Vohra, Beyan Althouse. Development of fiber Bragg grating based soil pressure transducer for measuring pavement response. Richard O. Claus,Smart Structures and Materials 2000: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, Newport Beach,Proc.SPIE 3986, 2000:480~488.
    [66] P. J. Henderson, Current metering using fibre grating based interrogation of a conventional current, Traps-former, Proc. of the optical fiber sensors Conf. Williamsburg, VA, USA, 1997:186~189.
    [67] T. E. Hammon, et al. Optical fibre Bragg grating temperature sensor measurements in an electrical power transformer using a temperature compensated fibre Bragg grating as a reference. Proc. of the 11th International Conf. On optical fibre sensors, Sapporo, Japan, 1996:566~569.
    [68] N. M. Theune, M. Kaufmann, P. Krammer, et al. Applications of fiber optical sensors in power generators: current and temperatures sensors. Proc. of Opto2000 Conf., 2000:22~25.
    [69] W. Weis,et al. MWD Telemetry system for coil-tubing drilling using optical fiber grating modulators dowm-hole. Proc. of the optical fiber sensors Conf. Williamsbury, VA, USA,1997:416~419.
    [70] Ph. M. Nellen, P. Mauron, A. Frank, et al. Reliability of fiber Bragg grating based sensors for downhole applications. Sensors and actuators: A, 2003, 103: 364~376.
    [71] V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, E. Mitrani, J. Mendiela, A. Marquez Lucero. Fiber optic Bragg grating-based sensor for liquid hydrocarbon leak detection and localization. Richard O. Claus,Smart Structures and Materials 2000: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, Newport Beach, Proc. SPIE 3986, 2000:292~299.
    [72]何万迅,施文康,叶爱伦,长周期光纤光栅及其在通信传感领域的新应用,光学精密工程,2001,9(2):104~108
    [73]廖延彪,黎敏,田芊,长周期光栅――新兴的光纤光栅传感器,激光与红外,1997,27(6): 371~374
    [74]秦莉,韦欣,王庆亚,长周期光纤光栅的发展概况,吉林大学自然科学学报,1997,4:45~48
    [75]乔学光,贾振安,傅海威等,一种新颖的光纤光栅应变与温度双参量传感器,光电子·激光,2003,14(8):787~790
    [76]Jennifer Elster, Dr. Angela Trego, Charles Catterall,et al. Flight Demonstration of Fiber Optic Sensors, Daniele Inaudi, Smart Structures and Materials 2003: Smart Sensor Technology and Measurement Systems, Proc.SPIE 5050,2003:34~42
    [77] H.j.Patrick, A.D.Kersey, F.Bucholtz, Analysis of Response of Long-Period Fiber Grating to External Index of Refraction, J.Lightwave Technol.1998,16(9):1606~1609
    [78]孔梅,石邦任,长周期光纤光栅对外界折射率的敏感性,半导体光电,2003,24(6):386~388
    [79] V.Bhatia, A.M. Vengsarkar, Optical Fiber Long-period Grating Sensor.Opt Lett,1991, 27: 682~ 684
    [80]高侃,周赢武,林峰,基于长周期光纤光栅的压力传感器,中国激光,2004,31(8):997~1000
    [81] Chan, CC, Tan, KM, Tay, CM, et al. Simultaneous measurement of curvature and temperature for LPG bending sensor, Anbo Wang, Sensors for Harsh Environments, Proc.SPIE 5590,2004:105~ 110 [ 82 ] Gwandu, BAL, Zhang, W, Ghafouri-Shiraz, H, The co-measurement of curvature and temperature using a single LPG in a standard single mode fibre, Proceedings of the IEEE sensors 2004, 13:1349~1352
    [83]郭玉静,基于长周期光纤光栅的溶液浓度传感技术的研究,[硕士学位论文],秦皇岛,燕山大学,2006
    [84] G. W. Chern, L. A. Wang, Transfer-matrix method based on perturbation expansion for periodic and quasi-periodic binary long-period gratings. J. Opt. Soc. Am. A., 1999,11(16): 2675~2689
    [85] M. Yamada, K. Sakuda, Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrtic approach, Appl. Opt., 1987, 26(16):3474~3478
    [86] E. Peral, J. Capmany, Generalized bloch wave analysis for fiber and waveguide gratings. J. Lightwave Technol., 1997, 15(8):1295~1302
    [87] A. Bouzid, M. A. G. Abushagur, Scattering analysis of slanted fiber gratings. Appl. Opt., 1997,36(3):558~562
    [88]孔梅,长周期光纤光栅的理论和应用研究.[博士学位论文],杭州,浙江大学,1999
    [89]舒学文,光纤光栅及其在光电子信息技术中的应用,[博士学位论文],武汉,华中理土大学,2000
    [90]何万迅,长周期光纤光栅的模式耦合及应用性研究,[博士学位论文],上海,上海交通大学,2002
    [91]饶云江,王义平,朱涛,光纤光栅原理及应用,科学出版社,2006:
    [92]王义平,新型长周期光纤光栅特性研究,[博士学位论文],重庆,重庆大学,2003.
    [93]张自嘉,施文康,高侃等,长周期光纤光栅的谱结构研究,光子学报,2004,33(11):1308-1311
    [94]何万迅等,长周期光纤光栅模式与耦合的研究,光学学报,2003,23(3):303-306
    [95]欧启标,长周期光纤光栅的理论及其传感应用研究,[硕士学位论文],桂林,广西师范大学,2005
    [96] S W.James, S Khaliq, R P.Tatam, A long period grating liquid level sensor, OFS 2002: 15th Optical Fiber Sensors Conference technical digest,2002: 127~130
    [97]何万迅,施文康,叶爱伦,基于长周期光纤光栅的高灵敏度温度传感方案,传感技术学报,2002,(1):60~63
    [98] Y. Liu, L. Zhang, I. Bennion, Bending curvature sensing based on measurement of resonance mode splitting of long-period fibre grating. The 14th OFS, 2000: 560~563
    [99] Wagreich R B,Atia W A,Singh H et al, Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre. Electronics Lett.,1996,32(13):1223~1224
    [100]梁磊,周雪芳,新型光纤Bragg光栅振动传感技术,武汉理工大学学报,2003,25(5):7~9
    [101]沈竹,新型光纤光栅振动传感器解调技术研究,[硕士学位论文],武汉,武汉理工大学,2004
    [102]付宝连,弯曲矩形板的广义位移理论,北京,科学出版社,2006:12~22
    [103]朱涛,饶云江,莫秋菊等,温度/应变/扭曲三参量同时测量低成本传感系统,光子学报,2006,35(5):655~658
    [104] T. Allsop, T. Earthrowl, R. Revees et al. Application of long-period grating sensors to respiratory function monitoring, Brian M.Cullum, Smart Medical and Biomedical Sensor Technology II, Proc SPIE 5588, 2004: 148~156
    [105]胡爱姿、饶云江、王义平等,基于新型长周期光纤光栅的动态横向负荷传感器,光子学报,2003,32(11):1359~1362
    [106]徐长发,李国宽编,实用小波方法(第二版),武汉,华中科技大学出版社,2003:15~39
    [107]陈换过,小波变换和神经网络方法在复合材料结构损伤振动检测中的应用,[博士学位论文],陕西,西北工业大学,2003
    [108]信思金,基于光纤光栅和小波包分析的智能材料与结构损伤识别研究,[博士学位论文],武汉,武汉理工大学,2004
    [109]董长虹,高志,余啸海等,Matlab小波分析工具箱原理与应用,北京:国防工业出版社,2004:17~34.
    [110]王跃科,叶湘滨,黄芝平等,现代动态测试技术,北京:国防工业出版社,2003:1~16.
    [111]张家坤,弓俊青,岳清瑞等,光纤光栅传感技术在土木工程结构监测中的应用,北方交通大学学报,2003,27(5):94~97
    [112]王丹生,朱宏平,光纤光栅传感技术在桥梁结构健康监测中的应用,中外公路,2002,22(6): 31~33
    [113]王书斌,分布式光纤传感器用于连续配筋混凝土路面健康监测的试验研究,公路,2005,12:146~148
    [114]李宏男,李东升,赵柏东,光纤健康监测方法在土木工程中的研究与应用进展,地震工程与工程振动,2002,22(6):76~83
    [115]吴瑾,程吉昕,海洋环境下钢筋混凝土结构耐久性评估,水利发电学报,2005,24(1):69~73
    [116]吴瑾,吴胜兴,用人工神经网络方法评估混凝土中钢筋锈蚀,连云港职业技术学院学报,2001,14(1):1~4
    [117]佘建初,李卓球,宋显辉,钢筋锈蚀导致混凝土结构失效的机理与检测技术,武汉理工大学学报(信息与管理工程版),2004,26(3):41~44
    [118]刘晓敏,史志明,钢筋在混凝土模拟孔隙液中腐蚀电化学行为,腐蚀科学与防护技术,1997,9 (2):140~143
    [119]侯宝隆,蒋之峰编译,混凝土的非破损检测,北京:中国建筑土业出版社,1990:1~20
    [120]张伟平,混凝土结构钢筋锈蚀损伤识别及其耐久性,[博士学位论文],上海,同济大学, 1999
    [121]刘晓敏,史志明,许刚等,钢筋在混凝土中腐蚀行为的电化学阻抗特征,腐蚀科学与防护技术,1999,11(3):161~164
    [122]陈月顺,钢筋混凝土锈胀裂缝的演化过程研究,[博士学位论文],武汉,华中科技大学,2006
    [123]周智,土木工程结构光纤光栅智能传感元件及其监测系统,[博士学位论文],哈尔滨,哈尔滨工业大学,2003
    [124]李学金,林文山,范平等,钢筋腐蚀光纤传感器的研究.测控技术,2001, 21(8):10~13
    [125]张明辉,耿欧,混凝土中钢筋腐蚀监测技术研究现状及发展趋势,混凝土,2007,2:26~28
    [126]吴瑾,吴胜兴,锈蚀钢筋混凝土结构损伤评估研究现状与展望,混凝土,2001,8:22~25
    [127]吴瑾,吴胜兴,锈蚀钢筋混凝土结构可靠度评估,工程力学,2005,22(1):118~122
    [128]莫淑华,王殿富,钢筋混凝土桥梁结构健康监测新技术研究,桥梁建设,2003,2:73~77
    [129] Zhu, YD, Wang, C, Wang, JH, et al.Long-period gratings in-situ sensing for flow monitoring in liquid composite molding J.mater sci technol 2005,21 (2): 234-238
    [130]黎学明,陈伟民,黄宗卿,混凝土结构中钢筋腐蚀监测的光纤传感技术,压电与声光,1999,21(1):12~16
    [131]董飒英,廖延彪,田芊,光纤传感技术在腐蚀监测中的应用,分析科学学报,2004,20(5): 546~550
    [132]严云,江毅,Christopher K. Y. Leung,用光纤光栅测量混凝土中钢筋的腐蚀,四川建筑科学研究,2005,31(6):148~151
    [133]黎学明,陈伟民,黄宗卿,光纤传感器对混凝土结构钢筋腐蚀监测的研究,光电子激光,2001,12(10):1037~1040
    [134]李川,张以谟,赵永贵等,光纤光栅:原理、技术与传感应用,北京:科学出版社,2005:1~47
    [135]丁勇,施斌,隋海波,隧道结构健康监测系统与光纤传感技术,防灾减灾工程学报,2005,25 (4):375~380
    [136] Ghoribanpoor, Assessment of corrosion of steel in concrete structure by magnetic based on technique, Techniques to Assess the Corrision A ctivity of Steel reinforced concrete structrues, ASTM STP 1276, American Sociaty for testing and material, 1996:119~131.
    [137] W. Yeih, R. Huand, Detection of the corrosion damage in reiforced concrete members by ultrasonic testing, Cement and Concrete Research , 1998, 28 (7):1071~1083
    [138] Ming Te Liang, Po Jen Su, Detection of the corrosion damage of rebar in concrete using impact- echo method, Cement and Concrete Research,2001,13:1427~1436

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700