用户名: 密码: 验证码:
永磁交流伺服精密驱动系统机电耦合动力学分析与实验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁交流伺服精密驱动系统中各子系统之间存在着多物理过程、多参量复杂耦合关系,因此整个系统的动态性能需由子系统之间的耦合关系和系统的输入等确定,而子系统的动态过程也不能仅由单个子系统的结构参数完全确定,也要受到与之有耦合关系的其他子系统的影响。故永磁交流伺服精密驱动系统在完成特定功能的同时,往往潜藏着或表露出种种不良工况,以致难以生产出高质量的产品,甚至出现重大故障,尤其在生产过程中,该系统在非平稳过程中所表现出来的机电耦合现象对系统的安全运行具有极大的危害性,这是由于该系统的电气参数与力学参数相互耦合,共同影响了整个系统的动力学性能。而造成这些设备产生不良状态的原因是对系统中这种多物理过程、多参数间多元多维耦合关系缺乏深层次的机理研究。本文在重庆市重大科技攻关项目《装备制造业典型基础部件关键技术研究及产业化》(项目编号CSTC,2006AA3010)的资助下,对永磁交流伺服精密驱动系统进行了机电耦合动力学分析和实验研究,主要做了以下几个方面的工作:
     针对伺服系统具有同时包含多种物理过程,通过多元多维运动来实现多种形式的能量传递与转换,所有动态过程通过不同的耦合形式相互作用的特点,详细分析了伺服系统的精度指标和影响伺服系统的因素;指出精密传动装置影响伺服系统性能的机械结构因素与伺服系统的控制参量有着密切的联系,它们相互影响,形成了很强的耦合关系,这种耦合关系为永磁交流伺服精密驱动系统机电耦合分析提供了理论依据。
     从机电耦合的角度出发,对永磁交流伺服精密驱动系统进行了全局机电耦合分析和局部机电耦合分析,建立了该系统的全局机电耦合关系图和永磁同步电动机-精密传动装置子系统机电耦合关系图;采用机电系统分析动力学方法获得了永磁同步电动机-精密传动装置子系统的物理模型和数学模型,推导了该子系统的机电耦合动力学方程;应用数值计算方法对耦合的数学模型进行了算例分析。
     基于机电系统全局耦合分析的观点,根据机械系统的力学原理,将永磁交流伺服精密驱动系统归纳为三质量两轴系统,从而建立了该系统的机电耦合振动数学模型;由于该模型的机械力学参数和电气参数之间存在着复杂的非线性耦合关系,用解析方法不易求解,因此建立了该系统的机电耦合振动仿真模型;仿真分析了由于电流调节器参数、阻尼、谐波扰动、间隙以及负载扰动等因素引起的机电耦合振动动态过程。
     分析了实验系统的基本组成和原理,完成了实验系统的控制系统设计、硬件部分设计、电气连接部分设计以及软件部分设计,最终构建了以PMAC多轴运动控制卡为核心、以IPC为支撑平台的永磁交流伺服精密驱动系统的实验体系结构;针对本实验系统的实际情况进行了抗干扰分析,从硬件方面进行抗干扰设计,提高系统的可靠性。
     以实验系统为基础,完成了实验系统的过渡过程测试、效率测试、系统误差测试(转角偏差测试、重复定位精度测试以及传动误差测试)、空回测试、机电耦合实验以及振动加速度测试实验等实验研究,探索永磁交流伺服精密驱动系统的机电耦合影响,并将物理实验研究与理论分析结果进行对比和验证。
There are many physical processes and complex coupling relationships of many parameters existing between the subsystems of permanent magnet AC servo precision drive system, so the dynamic performance of the whole system is determined by the coupling relationship of the subsystems and the input of the system. However, dynamic process of the subsystem is not only determined by structure parameters of the single subsystem, but also influenced by other subsystems with coupling relationships. Therefore, when specific functions are fulfilled in the permanent magnet AC servo precision drive system, many adverse working conditions are hidden or revealed which lead to difficultly in producing high quality products, and even the major faults. Especially in the production process, because the mutual coupling relationships of electrical parameters and mechanical parameters have an effect on the dynamic performances of the whole system, the electromechanical coupling phenomenon has a great harm to safe operation of this system, which manifests in the non-stationary process. The bad states of these devices are caused by the mechanism which is lack of deep-seated study on multivariate and multidimensional coupling relationships between many physical processes and many parameters. This thesis is funded by Chongqing Municipal Important Science and Technology Key Project, China (CSTC, No. 2006AA3010). The electromechanical coupling dynamic analysis and experiment on the permanent magnet AC servo precision drive system are researched. The major contribution of the work is summarized as followings.
     The servo system has the characteristics which include many physical processes, achieve various forms of energy transfer and conversion through multivariate and multidimensional motions, and has the interaction on all dynamic processes through different coupling forms. Then, there is a detailed analysis on the accuracy indexes of servo system and the factors influencing on the servo system, and a close relationship between mechanical structure factors of precision transmission and control parameters of servo system is pointed out. Because the mechanical structure factors and the control parameters interact to each other and form a strong coupling relationship, this relationship provides a theoretical basis for electromechanical coupling analysis of the permanent magnet AC servo precision drive system.
     From the electromechanical coupling point of view, when the global and local electromechanical coupling analysises are carried out on the permanent magnet AC servo precision drive system, the global electromechanical coupling relationship of the system is built up, and the electromechanical coupling diagram of PMSM-precision transmission subsystem is also established. Furthermore, the physical and mathematical models of this subsystem are obtained by analytical dynamics method of electromechanical system, and the electromechanical dynamic equations of this subsystem are deduced. Finally, the mathematical model is analyzed by examples through the numerical method.
     Based on global coupling view of the electromechanical system, and according to mechanics principle of the mechanical system, the permanent magnet AC servo precision drive system is concluded to the three qualities-two shafts system. Then the electromechanical coupling vibration mathematical model of this system is set up. Owing to the complex nonlinear coupling relationship between mechanical parameters and electrical parameters of this model, it is difficult to solve this model by analytical method. Therefore the simulation model is built up. What’s more, the dynamic processes of electromechanical coupling vibration are simulated which are caused by current regulator parameters, damping, harmonic disturbance, gap, load disturbance, and so on.
     The basic composition and principle of the experiment system are analyzed, and then the control system design, the hardware design, the electrical connection design, and the software design are accomplished. Finally, the experiment system structure of the permanent magnet AC servo precision drive system is constructed which are PMAC as the core and IPC as the support platform. According to the actual situation of this experiment system, the anti-interference analysis is performed, and the anti-interference design is carried out from hardware aspects, which improves the reliability of the system.
     On the basis of the experiment system, experimental studies are achieved, such as transient test, efficiency test, system error test(angle deviation test, repetitive positioning accuracy test, transmission error test), backlash test, electromechanical coupling test, vibration acceleration test, and so on. Electromechanical coupling influence is explored in the permanent magnet AC servo precision drive system, and the theoretical analysis results are compared and validated by the experimental studies.
引文
[1]李朝阳.新型空间凸轮活齿精密传动特性研究[D].重庆:重庆大学, 2004.
    [2]牟萑.新型空间凸轮活齿精密传动计算机辅助设计[D].重庆:重庆大学, 2004.
    [3]华光.大行程超精密驱动系统及其关键技术[J].机电产品市场, 1999, (11): 44.
    [4]敖荣庆,袁坤.伺服系统[M].北京:航空工业出版社, 2005.
    [5]肖英奎,尚涛,陈殿生.伺服系统实用技术[M].北京:化学工业出版社, 2004.
    [6]陈晓青.高性能交流伺服系统的研究与开发[D].浙江:浙江大学, 1996.
    [7]曹鑫铭.液压伺服系统[M].北京:冶金工业出版社, 1991.
    [8]见城尚志,赤木泰文,川村昭,等.交流伺服电动机及其微机控制[M].北京:中国矿业大学出版社, 1994.
    [9]安群涛.永磁交流伺服系统的位置控制及相关技术的研究[D].黑龙江:哈尔滨工业大学, 2006.
    [10]郭宏,郭庆吉.永磁同步电机伺服系统[J].哈尔滨工业大学学报, 1996, 28(3): 82-89.
    [11]陈先锋. PMSM位置伺服系统的分析设计及其应用研究[D].江苏:南京工业大学, 2005.
    [12] Terada Hidetsugu. Fundamental analysis of cycloid ball reducer(1st report)[J]. Journal of the Japan Society for Precision Engineering, 1988, 54(1):69-74.
    [13] Glad G.M.L. Forces characters research of double Spatial-Cycloid-Ball precise gearing[J], Journal of Mechanical Design, 1991, 2-5.
    [14] W.Kewis. A method of selecting grid size to account for hertz deformation finite element analysis in the spatial cam sliding tooth transmission[J]. Journal of Mechanical Design, 1993, 2-7.
    [15]刘继岩. RV减速器传动精度的综合研究[J].天津职业技术师范学院学报, 1998, (2), 25-28.
    [16] Takeshi Ishida. Tooth load of thin rim cycloidal gear[J]. American Society of Mechanical Engineers, Design Engineering Division, 1996, 88: 565-571.
    [17] F.L.Litvin. Computerized design and generation of cycloidal gearing[J]. American Society of Mechanical Engineers, Design Engineering Division, 1992, 82(1): 537-541.
    [18] F.L.Litvin. Computerized design and generation of cycloidal gearing[J]. Mechanical Machine Theory, 1996, 31(7): 891-910.
    [19] Ishikawa S, Kiyosawa Y. Study of three-dimensional tooth engagement on the cup-shaped strain wave gearing[J]. American Society of Mechanical Engineers, Design EngineeringDivision (Publication)DE, 1996, 88(2):589-595.
    [20] Maiti Rathindranath. A novel harmonic drive with pure involute tooth gear pair[J]. Journal of Mechanical Design, Transactions of the ASME, 2004, 126(1): 178-182.
    [21] Jeon Han Su, Oh Se Hoon. Study on stress and vibration analysis of a steel and hybrid flexspline for harmonic drive[J]. Composite Structures, 1999, 47(1):827-833.
    [22] Dhaouadi Rached, Ghorbel Fathi H, Gandhi Prasanna S. A new dynamic model of hysteresis in harmonic drives[J]. IEEE Transactions on Industrial Electronics, 2003, 50(6): 1165-1171.
    [23] Kiyosawa Y, Sasahara M. Development of a new thin harmonic drive[J]. JSME, Robotics and Mechatronics Lecture Meeting Paper(A), 1992: 943-948.
    [24]石田武,王宏酞,日高照晃,等.采用摆线齿轮的K-H-V行星齿轮装置回转传动误差的研究[C].日本机械学会论文集, 1994: 278-285.
    [25] CYCLOID FA & 1FA Series.产品样本[M].日本:住友重机械工业会社, 1996.
    [26]魏延刚.新结构高轮齿接触率RV传动装置的理论研究[J].大连交通大学学报, 2007, 28(1): 22-27.
    [27]房婷婷.摆线包络行星传动啮合理论研究[D].重庆:重庆大学, 2007.
    [28]曲继方.活齿传动理论[M].北京:机械工业出版社, 1993.
    [29]吕方.长幅外摆线针轮行星传动减速机的研究开发[D].浙江:浙江大学, 2004.
    [30]李力行,何卫东,王秀琦.机器人用高精度RV传动的研究[J]. 1999, 20(2): 1-11.
    [31]关天民.摆线针轮行星传动销孔式输出机构受力的准确计算方法[J].机械传动, 2000, 24(3): 4-5.
    [32]于影,于波,陈建新,等.摆线针轮行星减速器的优化设计[J].哈尔滨工业大学学报, 2002, 34(4): 493-496.
    [33]张流俊.摆线针轮传动装置的有限元应用[D].四川:四川大学, 2004.
    [34]何卫东,李欣,李力行.高承载能力高传动效率高可靠性新型针摆行星传动的研究[J].大连交通大学学报, 2005, 16(7): 565-569.
    [35]何胜勇.行星摆线针轮减速机虚拟样机的建造与有限元分析[D].北京:中国农业大学, 2002.
    [36]戚厚军,孙涛,刘继岩,等. 2K-V型摆线针轮减速器传动系统的动态特性分析[J].机械传动, 2004, 28(2): 13-15.
    [37]陈小安,王家序,梁锡昌.轴装式串联少齿差行星传动装置[P].中国, 200510057425.7, 2005.12.09.
    [38]陈小安,王家序,梁锡昌.独立可调侧隙变厚摆线齿轮传动装置[P].中国, 200510057445.4, 2005.12.16.
    [39] Yoji Takeda, Takao Hirasa. Current phase control methods for permanent magnet Synchronous motors condidering saliency[C]. PESC' 88, 1988: 409-414.
    [40] Roy S.Colby, Donald W.Novoty. An efficiency-optimizing permanent-magnet synchronous motor drive[J]. IEEE Trans. on Industry Applications, 1988, 24(3): 462-469.
    [41] Shigeo Morimoto, Masayudi Sanada, Yoji Takeda. Effects and compensation of magnetic saturation in flux-weakening controlled permanent magnet synchronous motor drives[J]. IEEE Trans.on IA, 1994, 30(4):1632-1637.
    [42] G.Tadmor. Control of a combined GTO/IGBT drive system for low torque ripple in a large permanent magnet synchronous motor[J]. IEEE Transactions on Control Systems Technology, 2004, 12(1): 21-35.
    [43] Yong Li, Ji Bin Zou, Yong Ping Lu. Optimum Design of Magnet Shape in Permanent-magnet synchronous motors[J]. IEEE Transactions on Magnetics, 2003, 39(6): 3523-3526.
    [44] J.R.Brauer, I.D.Mayergoyz. Finite-element computation of nonlinear magnetic diffusion and its effects when coupled to electrical, mechanical, and hydraulic systems[J]. IEEE Transactions on Magnetics, 2004, 40(2): 537-540.
    [45] Chris French, Paul Acrnley. Directly torque control of permanent magnet drives[J]. IEEE Trans. on IA, 1996, 32(5):1080-1088.
    [46] Zhong L, Rahman M.F, Hu W.Y, Lira K.W. Analysis of direct torque control in permanent magnet synchronous motor drives[J]. IEEE Trans. On P. E., 1997, 12(3): 528-536.
    [47] Muhammed Fazlur Rahman. A direct torque-controlled interior permanent magnet synchronous motor drive incorporating field weakening[J]. IEEE Transactions on industry Applications. 1998, 34(6): 1246-1253.
    [48] Muhammed Fazlur Rahman. A direct torque-controlled interior permanent-magnet synchronous motor drive without a speed sensor[J]. IEEE Transactions on Energy Conversion, 2003, 18(1): 17-22.
    [49] Julius Luukko. Direct torque control of permanent magnet synchronous machines-analysis and implementation[C]. PESC'99, 1999: 632-641.
    [50] Lixin Tang, Rahman M.F. A novel proportional-integral stator resistance estimator for a direct torque controlled interior permanent magnet synchronous machine drive[J]. IEMDC, 2003, (1):382-388.
    [51] Eksn I, Guzelkaya M, TOKAT S. Self-tuning mechanism for sliding surface slope adjustment in fuzzy sliding mode controllers[J]. Proc Instn Mech Engrs, Part I: J System and Control Engineering, 2002, 216: 393-406.
    [52] Liang C.Y, Su J.P. A new approach to the design of a fuzzy sliding mode controller[J]. Fuzzy Sets and Systems, 2003, 139: 111-124.
    [53]李璇.永磁交流伺服的智能PID控制[D].湖北:武汉理工大学, 2006.
    [54]张剑.无位置传感器永磁交流伺服系统控制策略的研究和实现[D].天津:天津大学, 2005.
    [55]彭瑞.永磁同步电机交流伺服系统的研究[D].江苏:南京航空航天大学, 2007.
    [56]王中.基于DSP和FPGA的高精度交流伺服系统研究[D].湖北:华中科技大学, 2006.
    [57]窦汝振,许镇琳.高性能全数字永磁交流伺服系统的研究[J].组合机床与自动化加工技术, 2003, (9): 67-68.
    [58]徐艳平,刘永飘,钟彦儒.基于DSP的永磁交流伺服控制系统研究[J].电力电子技术, 2007, 41(1): 42-44.
    [59]严帅,杨明,贵献国,等.基于DSP和FPGA的永磁交流伺服系统研究[J].微电机, 2007, 40(4): 28-31.
    [60]李叶松,宋宝,秦忆.全数字交流永磁同步电机伺服系统设计[J].电力电子技术, 2002, 36(3): 26-28.
    [61]张广明,张琦.永磁交流伺服系统神经网络模型参考自适应控制[J].解放军理工大学学报, 2000, 1(6): 66-69.
    [62]逄海萍,刘成菊,江姝妍.永磁同步电机交流伺服系统的滑模模糊控制[J].电机与控制学报, 2006, 10(6): 576-579.
    [63] G.F.Franklin, J.D.Powell, A. Emami-Naeini. Feedback control of dynamic systems[M]. UK: Massachusetts, 1991.
    [64] Oliver Barth. Harmonic Piezodrive-Miniaturized Servo motor[J]. Mechatronics, 2000, 10: 545-554.
    [65] Atsumi T, Arisaka T, Shimizu T, et al. Head-positioning control using resonant modes in hard disk drives[J]. IEEE /ASME Transactions on Mechatronics, 2005, 10(4): 378– 384.
    [66]胡清,童怀.伺服系统机械谐振问题的研究[J].电气传动. 2000, (3): 7-11.
    [67]张建伟,张莉军.机械传动部件影响伺服机构性能的因素[J].机械设计与制造, 2001, 1: 76.
    [68]李丹.传动装置齿隙位置对伺服系统的影响[J].重型机械科技, 2004, 2: 26-31.
    [69]林先浩.内啮合行星齿轮结构的传动装置[P].中国, ZL01800872.0, 2005.5.18.
    [70]郭庆鼎,孙宜标,王丽梅.现代永磁电动机交流伺服系统[M].北京:国电力出版社, 2006.
    [71]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社, 2006.
    [72]李军.伺服系统中精密齿轮传动设计分析研究[D].重庆:重庆大学, 2003.
    [73]周超群.伺服系统中精密传动系统机电耦合分析[D].重庆:重庆大学, 2007.
    [74]林利红,陈小安,周超群,等.精密传动系统的机电耦合建模及仿真分析[J].重庆大学学报(自然科学版), 2007, 30(11): 14-18.
    [75]钟掘.复杂机电系统耦合设计理论与方法[M].北京:机械工业出版社, 2007.
    [76]贺建军.复杂机电系统机电耦合分析与解耦控制技术[D].湖南:中南大学, 2004.
    [77]李旭宇.复杂机电耦合系统的并行设计方法研究[D].湖南:中南大学, 2004.
    [78]钟掘,杨勇学,古可,等. 1600高速铝带轧机扭振研究[J].冶金设备, 1986, 4: 16-19.
    [79]吕浪.超高速磨削电主轴系统机电耦合参数优化及动态特性研究[D].湖南:湖南大学, 2006.
    [80]鞠立华.飞轮储能系统耦合非线性动力学研究[D].江苏:东南大学, 2005.
    [81]孟杰,陈小安,合烨.高速电主轴电动机—主轴系统的机电耦合动力学建模[J].机械工程学报, 2007, 43(12): 160-165.
    [82]熊万里.机电耦合传动系统的非平稳过渡过程与系统广义同步特性研究[D].沈阳:东北大学, 2000.
    [83]温熙森,邱静,陶俊勇.机电系统分析动力学及其应用[M].北京:科学出版社, 2003.
    [84]孟传富,钱庆镳.机电能量转换[M].北京:机械工业出版社, 1993.
    [85]张立勋,董玉红.机电系统仿真与设计[M].黑龙江:哈尔滨工程大学出版社, 2006.
    [86]吴敬爱,朱东起,姜新建.集中绕组永磁无刷电机的转矩研究[J].电工电能新技术, 2003, 22(3): 59-62.
    [87] Robert L.H, Thomas R.B. Starting characteristics of electric submergible oil well pumps[J]. IEEE Transaction On Industrial Applications, 1986, 22(4): 133-144.
    [88] Shadley J.R, Wilson B.L, Domey M.S. Unstable self-excitation of torsional vibration in AC induction motor drivers rotational systems[J]. ASME Journal of Vibration and Acoustics, 1992, 114(4): 226-231.
    [89] Shadley J.R, Sorem J.R. Damped absorber optimization and stability for semi-definite systems exhibiting unstable self-excitation during start-up[J]. ASME Journal of Vibration and Acoustics, 1992, 114(4): 47-53.
    [90] Shaltout A.A. Analysis of torsional vibration in starting of large squirrel cage induction motors[J]. IEEE Transaction On Energy and Conversion, 1994.9(1): 135-145.
    [91] L.Ran. Torsional vibration in electrical induction motor drivers during start-up[J]. ASME, Journal of Vibration and Acoustics, 1996, 118(1): 242-251.
    [92] Yacamini R, Smith K.S, L.Ran. Monitoring torsional vibrations of electromechanical systems using stator currents[J]. ASME, Journal of Vibration and Acoustics, 1998, 120(1): 72-79.
    [93]邱家俊.机电分析动力学[M].北京:科学出版社, 1992.
    [94]蔡海翔,熊万里,吕浪. SPWM变频调速与机械转子系统起动非平稳过程建模[J].机械电子, 2006, (5): 54-56.
    [95]熊万里,段志善,闻邦椿.用机电耦合模型研究转子系统的非平稳过程[J].应用力学学报, 2000, 17(4): 7-12.
    [96]王雪雁,黄小龙,滕启,等.机械传动试验台的研制与应用[J].实验技术与管理, 2006, 21(6): 101-105.
    [97]梅洪,单家元. PMAC控制板在转台控制系统中的应用[J].微计算机信息, 2003, 19(6): 8-10.
    [98]彭玉海.基于PMAC的数控系统研究与开发[D].西安:西安理工大学, 2007.
    [99]才家刚.图解交流异步电动机试验技术与质量分析[M].北京:中国电力出版社, 2007.
    [100]宋晓宇,王永会. Visual C++高级编程技术与实例[M].北京:中国水利水电出版社, 2006.
    [101]白耀玲.基于卡尔曼滤波的水动力学模型的实时校正方法研究[D].南京:河海大学, 2006.
    [102]马增琦.卡尔曼滤波法在大跨度预应力混凝土连续刚构桥施工监控中的应用[D].四川:西南交通大学, 2005.
    [103]宋文尧,张牙.卡尔曼滤波[M].北京:科学出版社, 1991.
    [104]刘莹,邵天敏.机械基础实验技术[M].北京:清华大学出版社, 2006.
    [105]李瑰贤,吴俊飞. RV30_AII型变齿厚齿轮减速器试验研究[J].机械传动, 2005, 29(4): 4-5.
    [106]叶期传,徐辅仁,王新华.用概率统计法计算齿轮机构的回差[J].机电设备, 2003, (1): 16-19.
    [107]王国华,陈明,胡建国.行星齿轮减速器基于回差分析的优化设计[J].机械设计与研究, 2005, 21(3): 56-58.
    [108]曹树谦,张文德,萧龙翔.振动结构模态分析[M].天津:天津大学出版社, 2002.
    [109]朱国良,王开和,卢学军,等.工作模态分析方法的应用研究[J].天津科技大学学报, 2007, 22(1): 75-78.
    [110]范文冲.加工中心主轴系统工作模态识别[D].云南:昆明理工大学, 2005.
    [111]梁君,赵登峰.工作模态分析理论研究现状与发展[J].电子机械工程, 2006, 22(6): 7-8.
    [112]金新灿,孙守光,邢鸿麟.环境随机激励下高速客车的工作模态分析[J].铁道学报, 2003, 25(5): 24-28.
    [113] James G.H, Carne T.G, Laufer J.P. The Natural Excitation Technique(NEXT) for Modal Parameter Extraction from Operating Structures[J]. The international Journal of Analyticaland Experimental Modal Analysis, 1995, 10(4): 260-277.
    [114] Ewins D.J. Modal Testing: Theory and Practice[M]. New York: John wiley, 1985.
    [115] Ibrahim S.R. Computation of normal modes from identified complex modes[J]. AIAA, 1992, 21(3): 44-47.
    [116] Lew J.S, Juang J.N, Longman R.W. Comparision of severl System Identification Methods for Flexible Structure[J]. Journal of socend and vibration, 1993, 167: 46-480.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700