用户名: 密码: 验证码:
基于活性粉末增强的混凝土再生利用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土的再生利用是21世纪水泥混凝土领域可持续发展的热点问题之一。再生混凝土技术因具有出色的环境效益、经济效益和社会效益而受到广泛关注。但是,再生混凝土强度较低,干缩变形较大,常常成为制约其应用于结构混凝土的瓶颈。目前的生产工艺难以制备出经济性好而且品质优良的再生骨料,因此在今后较长一段时期内,如何利用压碎值和吸水率较高的再生骨料来制备可以作为结构混凝土使用的较高强度并具有较低干缩变形的再生混凝土,是混凝土再生利用亟需解决的问题。此外,再生骨料虽然强度不高,但与水泥浆体基质界面结合较好,用于开发具有某些特定功能的再生混凝土,如透水性再生混凝土,也成为当前再生混凝土技术新的研究方向。
     本文在对再生骨料和再生混凝土基本性质进行深入分析的基础上,提出了再生骨料的分级方法和适用范围。根据Andersen方程,对二元、三元、四元水泥-活性粉末体系进行级配优化,确定了活性粉末的最佳掺量,并用可压缩堆积理论计算了体系的实际堆积密实度,对优化的级配进行了验证。用原生混凝土强度等级为C40的Ⅱ级再生骨料,通过再生骨料预处理、采用活性粉末裹石工艺等技术措施,成功制备出干缩性小的活性粉末高强再生混凝土。根据体积指标确定透水性再生混凝土配合比设计的主要参数,提出了一种新的透水性再生混凝土的配合比设计方法,并利用硅灰对透水性再生混凝土的增强作用,研制出强度较高、透水性能优良的再生混凝土。本文的主要研究工作和结果如下:
     1.建立了掺或不掺活性粉末的再生混凝土抗压强度数据库,对影响普通再生混凝土、高强再生混凝土、活性粉末高强再生混凝土抗压强度的诸因素进行了系统深入的分析,提出了再生骨料的分级指标体系。结合文献和试验数据,建立了以表观密度、表观密度变异系数、吸水率、砂浆含量(或洛杉矶磨耗损失)和压碎值为指标的再生骨料的质量评价方法和分级体系,确定了不同品质再生骨料的适用范围:Ⅰ级再生骨料可直接应用于制备各强度等级的再生混凝土(RC15~RC60);Ⅱ级再生骨料能直接应用于生产中等强度的再生混凝土(RC40以下);Ⅲ级再生骨料只宜应用于生产等级较低的再生混凝土(RC30以下)。
     2.提出了制备活性粉末再生混凝土时水泥及活性粉末的选择原则和技术要求。通过优化再生骨料级配、活性粉末体系级配、采用粉末裹石工艺,可以改善再生混凝土过渡区结构,从而提高其强度。综合运用再生骨料预处理技术和活性粉末裹石工艺,并采用高强度水泥来进一步提高基体强度,成功制备出28d抗压强度达71.21MPa,抗折强度达7.98MPa的高强再生混凝土。其干缩性能也得到大幅改善,90d干缩率降低至29%。活性粉末高强再生混凝土的XRD、IR和SEM分析结果表明,水化产物中的Ca(OH)2数量减少、水化产物更为均匀密实、过渡区结构更为致密。
     3.借鉴沥青路面中沥青碎石玛蹄脂(Stone matrix asphalt,SMA)和开级配磨耗层(Open Graded Asphalt Friction Course ,OGFC)的配合比设计方法,提出了基于体积参数指标的透水性混凝土(或透水性再生混凝土)配合比设计方法。用这种设计方法研制得到了空隙率达19.29%、透水系数为8.3mm/s、28d抗压强度达19.03MPa的透水性再生混凝土。
     4.指出活性粉末材料与再生骨料粘结点的数量对透水性再生混凝土的强度起关键作用。在粉煤灰、硅灰和矿渣中,硅灰是最佳的增强活性粉末。比较了硅灰单掺、有机聚合物增粘剂(HEMC)单掺、硅灰和增粘剂(HEMC)双掺以及高强度水泥对再生混凝土的增强效果。结果表明,单掺硅灰的效果最好:掺入4%的硅灰,获得了28d抗压强度达26.37MPa,抗折强度为3.37MPa,透水系数为7.8mm/s的透水性再生混凝土。界面显微结构和红外光谱分析结果表明,硅灰的掺入能促进Ca(OH)_2继续水化,生成大量的水化硅酸钙(C-S-H)凝胶,提高了浆体的密实程度,从而提高了透水性再生混凝土的强度。
     5.将新老混凝土界面结构由渗透层、反应层和渐变层所构成的假设引入到透水性再生混凝土界面结构的研究中,并通过试验结果验证了反应层的存在。新的水泥浆体和再生骨料上粘附的旧砂浆通过反应层进行复杂的离子交换,活性粉末掺入使新浆体水化产物的尺寸变小,增强了离子的穿透能力,使反应层的离子交换活动增多,从而有利于提高界面的粘结强度。
     6.建立了二维平面的圆形颗粒和多边形颗粒有限元模型,用ANSYS软件对透水性再生混凝土的受压和受弯拉破坏进行了数值分析,模拟了受压破坏和受弯拉破坏的起始部位。结果表明,受压破坏主要发生在新的水泥浆体中,而受弯拉破坏既可发生在新浆体中,也可发生在旧砂浆中(当旧砂浆抗拉强度较小时)。分析了影响透水性再生混凝土抗压、抗折强度的因素,计算了活性粉末透水性再生混凝土的理论强度。理论计算和试验结果表明,用原生混凝土强度等级为C40的再生骨料制备的活性粉末透水性再生混凝土的抗压强度和抗折强度分别达到理论强度的90.3%和94.9%。
Recycling of concrete is one of the hot spot issues for sustainable development of concrete in 21st century. Technology of recycled aggregate concrete (RAC) has attracted widely attention due to its distinguished environmental benefits, economic advantage and social returns. Relatively low strength and high dry shrinkage of RAC, however, often limit the extensive application to structural occasions. It is difficult to produce both cheap and quality-satisfying recycled aggregate (RA) by current crushing technology. As such, utilization of inferior or moderate RA (characterized by high crushing value and high water absorptive behavior) for structural concrete, where relatively high strength and low dry shrinkage are commonly required has become a pressing issue. In addition, character of low strength but good bonding between RA and the cement paste matrix makes it possible to develop functional recycled concrete, e.g., pervious recycled aggregate concrete, has become a new research orientation related to concrete recycling.
     Based on a deep investigation on basic properties of RA and RAC was completed. Grading method of RA and its recommended applications were then proposed. Gradation of binary, ternary and quaternary system of reactive powder (RP) and ordinary Portland cement (PO) was optimized according to Andersen formula. The proportion of RP was determined and verified by actual packing density calculated by compressible packing model (CPM). By pretreatment of ordinary RA (gradeⅡ,manufactured from C40 cement concrete),adoption of stone-enveloped with RP , etc., high strength and low dry shrinkage of RP reinforced high strength RAC(RP-HSRAC) was achieved. A novel proportioning design method mainly governed by volumetric parameters for pervious concrete was established. By utilization of silica fume, both high strength and excellent permeability of pervious concrete were achieved.
     The main research components and conclusions of this dissertation are summarized as follows.
     1. Database of RAC mainly related to compressive strength with or without active powder was established. Factors influencing compressive strength of RAC, high strength RAC(HSRAC) and reactive powder reinforced HSRAC(RP-HSRAC) were analyzed and summarized. Combining the experimental data and references, grading indexes of RA including apparent density, variation coefficient of apparent density, water absorption ratio, old mortar content (or Los Angeles loss) and crushing value were then put forward. Applicable scope of RA was determined: gradeⅠcan be used for RC15~RC60;gradeⅡis capable of production of RAC with a moderate strength (lower than 40MPa);gradeⅢis limited to lower strength concrete(lower than RC30).
     2. Principles and requirements for selection of RP and cement were determined. By optimizing gradation of RA and RP and adoption of stone-enveloped with reactive powder (SERP) results in modification of interfacial transition zone (ITZ) that leads to the improvement of the strength. By pretreatment of RA, SERP technology and utilization of high strength cement to strengthen the cement mortar matrix of RAC, high strength of RAC with 28d compressive strength of 71.2MPa, flexural strength of 7.9MPa was successfully manufactured in laboratory. Besides, 29% reduction of the dry shrinkage at 90 days’age was observed. XRD, IR and SEM analysis results reveals that less Ca(OH)2 in hydrates were produced in RP-HSRAC. Uniform and dense structure of both hydrates and ITZ can be observed.
     3. Enlightened by proportioning mix method for stone matrix asphalt (SMA) and open graded friction course (OGFC), a novel proportioning design method mainly governed by volumetric parameters for both no-fines pervious concrete and no-fines pervious recycled concrete(NPRC) was established. NPRC with 28d compressive strength of 19.03MPa, void volume of 19.29% and 8.3mm/s permeability coefficient was produced by the new method.
     4. It is pointed out that bonding points between RP and RA vital for the strength NPRC, and hence, silica fume is a type of ideal powder for improving strength when compared with fly ash(FA),blast slag(BS). Compared with polymer, addition of polymer and SF, use of high strength cement, SF proved effective for improvement of strength: recycled pervious concrete with 28d compressive strength of 26.37MPa , flexural strength of 3.37MPa and permeability coefficient of 7.8mm/s was manufactured when an optimum dosage of 4% silica fume was added into the mixture. SEM and IR analysis results indicate that addition of SF benefits to further hydration, which results in much more C-S-H and improves the density. Thus improves the strength of NPRC.
     5. The interfacial structure of new and old concrete was assumed consisting of permeable layer, reactive layer and transitional layer, which was introduced to investigate the interfacial structure of NPRC. The experimental results verified the existence of reactive layer. New paste exchanges icons through the reactive layer with the attached old mortar. Reactive powder contributes to uniform and small hydrates that help to enhance the permeability of icons. Thus, increases the exchange of icons and results in better bonding in the interfacial zone.
     6. Finite element model of plane circular particle and polygon particle was established, respectively. Analysis and simulation was conducted on compression and flexion state of pervious concrete. Original failure position was simulated for both compression and flexion test. The result shows that new mortar tends to fail first in compression. However, the new mortar or the old mortar can fail when the specimen is bending. Factors influencing compressive and flexural strength of NPRC were simulated and the theoretical strength of NPRC was calculated. The experimental and calculating results indicate that 90.3% and 94.9% of maximum theoretical compressive strength and flexural strength can be achieved, respectively.
引文
[1]邓寿昌,张学兵,罗迎社.废弃混凝土再生利用的现状分析与研究展望.混凝土,2006,(11):20-24
    [2]肖建庄.再生混凝土.北京:中国建筑工业出版社,2008
    [3]许岳周.再生骨料混凝土级配对强度的影响研究与数值模拟:[厦门大学硕士学位论文].厦门:厦门大学,2007
    [4] Barritt J.Recycling and aggregates:the evolution of recycled aggregates for concrete.Concrete Engineering International,2006,10(3):58-60
    [5] Rao A,Jha K N,Misra S.Use of aggregates from recycled construction and demolition waste in concrete.Resources,Conservation and Recycling,2007,50(1):71-81
    [6] Tam V W Y,Tam C M.A review on the viable technology for construction waste recycling.Resources,Conservation and Recycling,2006,47(3):209-221
    [7]笠井芳夫.日本的再生骨料混凝土发展趋势与有待解决的问题.见:生态环境与混凝土技术国际学术研讨会论文集.乌鲁木齐,2005
    [8] Tomosawa F . New technology for the recycling of concrete-Japanese experience . In : Proceedings of the 4th Canmet/ACI/JCI International Conference on Recent Advances in Concrete Technology.Tokushima,1998,221-237
    [9]张昌波.美国再生混凝土骨料的应用.建筑机械,2008,(8):52-53
    [10] Weber S,Pommerenke S,Schwambera C.Green concrete or the alternative use of wastes.In:International Conference on Sustainable Waste Management and Recycling.London,2004,317-324
    [11]张传增,肖建庄,雷斌.德国再生混凝土应用概述.见:首届全国再生混凝土研究与应用研究学术交流会论文集.上海,2008:44-50
    [12]芶在坪.国外建材产业发展循环经济简况.再生资源与循环经济,2008, (10):41-44
    [13]施韬,叶青.活性粉末混凝土的研究和应用中存在的问题.新型建筑材料, 2003,(5):23-25
    [14] GB/T1596-2005.用于水泥和混凝土中的粉煤灰.中国标准出版社,2005
    [15]赵铁军.混凝土渗透性.北京:科学出版社,2005
    [16]徐亦冬,姜珂,周士琼.再生骨料与再生混凝土技术新动向与评述.新型建筑材料,2005,(09):17-20
    [17] Abou-Zeid M N,Mccabe S L.Feasibility of waste concrete as recycled aggregates in construction.Waste Management and the Environment,2002,537-546
    [18] Eguchi K, Teranishi K, Nakagome A, et al. Application of recycled coarse aggregate by mixture to concrete construction.Construction and Building Materials,2007,21(7):1542-1551
    [19]李九苏,肖汉宁,龚建清.再生骨料水泥混凝土的级配优化试验研究.建筑材料学报,2008,11(01):105-110
    [20]王思源,朱平华,王欣,等.再生混凝土应用的若干关键问题.混凝土,2008, (04):39-40
    [21]陈莹,严捍东,林建华,等.再生骨料基本性质及对混凝土性能影响的研究.再生资源研究,2003,(6):34-37
    [22] Mulheron M , O'Mahony M M . Properties and performance of recycled aggregates.Highways and Transportation,1990,37(2):35-37
    [23]高桥泰一,阿部道彦.废混凝土骨料的适应现状与未来.混凝土工程(日), 1995,33(2):41-44
    [24]张学兵.再生混凝土配合比及拉压强度的实验研究:[湘潭大学硕士学位论文].湘潭:湘潭大学,2005
    [25]沈大钦.再生骨料混凝土性能的研究:[北京交通大学硕士学位论文].北京:北京交通大学,2006
    [26]李佳彬,肖建庄,孙振平.再生粗骨料特性及其对再生混凝土性能的影响.建筑材料学报,2004,7(4):390-395
    [27]李云霞,李秋义,赵铁军.再生骨料与再生混凝土的研究进展.青岛理工大学学报,2005,(05):16-19
    [28]宋瑞旭,万朝均,王冲,等.高强度再生骨料和再生高性能混凝土试验研究.混凝土,2003,(2):29-31
    [29]肖建庄,孙振平,李佳彬,等.废弃混凝土破碎及再生工艺研究.建筑技术, 2005,36(2):141-144
    [30] Shigeyo S,Nagata K,Kazuhi K.A critical review on the use of recycled aggregate for concrete.见:第五届水泥与混凝土国际会议论文集.上海,同济大学出版社,2002
    [31] Shima H, Matsuhashi R,Yoshida Y, et al. Life cycle analysis of high quality recycled aggregate produced by heating and rubbing method . In : IEEJ Transactions on Electronics Information and Systems.Japan,2003,1680-1687
    [32]水中和,玄东兴,曹蓓蓓.热-机械力分离制备高品质再生骨料的研究.混凝土,2006,(12):60-62
    [33]王智威.高品质再生骨料的生产工艺.混凝土,2006,(9):48-50
    [34]肖建庄,李佳彬,兰阳.再生混凝土技术研究最新进展与评述.混凝土, 2003, (10):17-20
    [35]吴贤国,郭劲松,李惠强,等.建筑废料的再生利用研究.建材技术与应用, 2004,(1):21-23
    [36]李惠强,杜婷,吴贤国.建筑垃圾资源化循环再生骨料混凝土研究.华中科技大学学报,2001,(06)
    [37]邢振贤,周曰农.再生混凝土的基本性能研究.华北水利水电学院学报, 1998,19(2):30-32
    [38]肖建庄,李佳彬.再生混凝土强度指标之间换算关系的研究.建筑材料学报, 2005,8(2):197-201
    [39] Tabsh S W,Abdelfatah A S.Influence of recycled concrete aggregates on strength properties of concrete.Construction and Building Materials,2009, 23(2):1163-1167
    [40] Casuccio M,Torrijos M C,Giaccio G,et al. Failure mechanism of recycled aggregate concrete. Construction and Building Materials, 2008, 22(7):1500-1506
    [41] Ramamurthy K,Gumaste K S.Properties of recycled aggregate concrete.Indian Concrete Journal,1998,72(1):49-53
    [42] Sagoe-Crentsil K K,Brown T,Taylor A H.Performance of concrete made with commercially produced coarse recycled concrete aggregate . Cement and Concrete Research,2001,31(5):707-712
    [43] Hansen T C.Recycled aggregates and recycled aggregate concrete second state-of-the-art report developments 1945-1985.Materials and Structures, 1986,(111):201-246
    [44]彭献生,陈豪吉,颜聪.再生混凝土强度性质之探讨.见:新世纪海峡两岸高性能混凝土研究与应用学术会议论文集论文集.同济大学出版社, 2002,115-120
    [45] Ridzuan A R M,Diah A B M,Hamir R,et al. The influence of recycled aggregate on the early compressive strength and drying shrinkage of concrete.In:Proceedings of International Conference on Structural Engineering, Mechanics and Computation.South Africa,2001,1415-1422
    [46]肖建庄,李佳彬,孙振平,等.再生混凝土的抗压强度研究.同济大学学报:自然科学版,2004,32(12):1558-1561
    [47]蒋希,李杰,艾长发,等.再生粗集料的基本特征及其性能研究.铁道建筑,2006,(05):90-92
    [48] Tavakoli M,Soroushian P.Strengths of recycled aggregate concrete made using field-demolished concrete as aggregate.ACI Materials Journal,1996,93(2):182-190
    [49] Soshiroda T.Recycled concrete.In:Proceedings of the 9th CIB Congress-To Build and Take Care of What We Have Built with Limited Resources. Swed,1983,251-262
    [50]郭昌生,徐亦冬,卢新帆.不同龄期再生骨料对再生混凝土性能的影响.新型建筑材料,2007,(3):78-80
    [51] Cross S A, Abou-Zeid M N, Wojakowski J B, et al. Long-term performance of recycled portland cement concrete pavement . Transportation Research Record,1996,(1525):115-123
    [52] Poon C S,Shui Z H,Lam L.Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Construction and Building Materials,2004,18(6):461-468
    [53] Nagataki S,Gokce A,Saeki T,et al. Assessment of recycling process induced damage sensitivity of recycled concrete aggregates.Cement and Concrete Research,2004,34(6):965-971
    [54]李秋义,李云霞,朱崇绩.颗粒整形对再生粗骨料性能的影响.材料科学与工艺,2005,13(6):579-581
    [55]李秋义,李云霞,朱崇绩,等.再生混凝土骨料强化技术研究.混凝土,2006, (1):74-77
    [56]屈志中.钢筋混凝土破坏及其利用技术的新动向.建筑技术,2001,32(02): 102-104
    [57] Tam V W,Tam C M,Le K N.Removal of cement mortar remains from recycled aggregate using pre-soaking approaches . Resources , Conservation and Recycling,2007,50(1):82-101
    [58]范小平,徐银芳.再生骨料的强化试验.上海建材,2005,(4) :22-23
    [59]邱怀中,何雄伟,万惠文,等.改善再生混凝土工作性能的研究.武汉理工大学学报,2003,25(12):34-37
    [60] Sawamoto T, Tsuji M. Technique to produce recycled aggregate concrete with crushed concrete waste.Journal of the Society of Materials Science,2000,49(10):1079-1084
    [61] Katz A.Treatments for the improvement of recycled aggregate.Journal of Materials in Civil Engineering,2004,16(6):597-603
    [62]杜婷,李惠强,吴贤国.混凝土再生骨料强化试验研究.新型建筑材料,2002, (03):6-8
    [63]杜婷,李惠强.强化再生骨料混凝土的力学性能研究.混凝土与水泥制品, 2003,(2):19-20
    [64]程海丽,王彩彦.水玻璃对混凝土再生骨料的强化试验研究.新型建筑材料, 2004,(12):12-14
    [65] Ann K Y, Moon H Y,Kim Y B,et al.Durability of recycled aggregate concrete using pozzolanic materials.Waste Management,2008,28(6):993-999
    [66]李俊,尹健,周士琼,等.再生骨料混凝土配合比设计及改性研究.铁道科学与工程学报,2005,2(6):66-71
    [67]李俊,尹健,周士琼,等.粉煤灰与矿渣对再生骨料混凝土力学性能影响的研究.混凝土,2005,(6):80-83
    [68] Tam V W,Gao X F,Tam C M.Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach.Cement and Concrete Research,2005,35(6):1195-1203
    [69]沈建生,徐亦冬,周士琼,等.再生混凝土配合比试验研究.新型建筑材料, 2007,34(8):18-20
    [70] Hans T C,许贤敏.再生骨料砼的弹性模量与干缩率.机场工程,1995,(2): 48-52
    [71] Katz A.Properties of concrete made with recycled aggregate from partially hydrated old concrete. Cement and Concrete Research, 2003, 33(5):703-711
    [72] Anon . Transverse cracking in recycled concrete aggregate pavements.Aberdeen's Concrete Construction,1996,41(7):5
    [73]许贤敏.再生骨料砼的干缩性能.国外建筑科学,1998,(4):29-35
    [74] Eguchi K,Teranishi K,M N.Study on mechanism of drying shrinkage and water loss of recycled aggregate concrete.Journal of Structureal and Construction Engineering,2003,(573):1-7
    [75] Sobhan K , Ahmad T , Mashnad M . Use of discrete fibers for tensile reinforcement of an alternative pavement foundation with recycled aggregate.Cement,Concrete and Aggregates,2003,25(1):7-15
    [76]孙清如,尹健.复合超细粉煤灰对再生混凝土性能影响的研究.中南公路工程,2006,31(2):150-153
    [77]鲁雪冬.再生粗骨料高强混凝土力学性能研究:[西南交通大学硕士学位论文],成都:西南交通大学,2006
    [78]杜宗岳,湛渊源,黄兆龙,等.高性能再生骨料混凝土性质之探讨.建筑材料学报,2006,(2):159-165
    [79] HSCC-99,高强混凝土结构设计与施工指南(第二版).中国建筑工业出版社.2001
    [80]张大利,唐明.石灰石作混凝土可循环集料的特征性能及其特征参数.建筑技术开发,2004,31(4):34-36
    [81] Etxeberria M,MaríA,Vázquez E.Recycled aggregate concrete as structural material.Materials and Structures/Materiaux et Constructions,2007,40(5):529-541
    [82]周静海,杨永生,焦霞.再生混凝土柱轴心受压承载力研究.沈阳建筑大学学报(自然科学版),2008,24(04):572-576
    [83] Limbachiya M C,Leelawat T,Dhir R K.Use of recycled concrete aggregate in high-strength concrete.Materials and Structures/Materiaux et Constructions, 2000,33(233):574-580
    [84] Ajdukiewicz A , Kliszczewicz A . Influence of recycled aggregates on mechanical properties of hs/hpc.Cement and Concrete Composites,2002, 24(2):269-279
    [85] Shayan A,Xu A.Performance and properties of structural concrete made with recycled concrete aggregate.ACI Materials Journal,2003,100(5):371-380
    [86]姜丽伟,杨晓轮.高强度再生骨料和再生高性能混凝土试验研究.森林工程, 2005,21(3):55-57
    [87]杨静.建筑材料与人居环境.北京:清华大学出版社,2001
    [88] Jr Palmer W.Focus on pervious concrete.Concrete Construction- World of Concrete,2006,51(8):47-49
    [89] Yang J,Jiang G.Experimental study on properties of pervious concrete pavement materials.Cement and Concrete Research,2003,33(3):381-386
    [90]刘叶锋,朋改非,易全新,等.高强透水性混凝土材料试验研究.混凝土, 2005,(3):56-58
    [91]孟宏睿,徐建国,陈丽红,等.无砂透水混凝土的试验研究.混凝土与水泥制品,2004,(2):43-44
    [92]蒋正武,孙振平,王培铭.若干因素对多孔透水混凝土性能的影响.建筑材料学报,2005,8(5):513-519
    [93] Park S B,Seo D S, Lee J.Studies on the sound absorption characteristics of porous concrete based on the content of recycled aggregate and target voidratio.Cement and Concrete Research,2005,35(9):1846-1854
    [94] Shimizu G . Recycling of crushed bricks from demolished buildings as cement-based porous materials.Key Engineering Materials,2006, 302-303:301-307
    [95]王琼,严捍东.再生骨料透水性混凝土初步研究.安徽理工大学学报:自然科学版,2004,24(1):32-38
    [96]雷丽恒.透水性道路用生态混凝土性能的试验研究:[江苏大学硕士学位论文].江苏大学,2007
    [97]李九苏,刘朝晖.粉煤灰、膨胀剂双掺技术对CRCP路面裂缝间距和宽度的影响.现代交通技术,2006,(02):4-5
    [98]叶孝恒.再生混凝土的基本力学性能.西部探矿工程,2006,(1) :223-225
    [99] Mukherjee D, Chakraborty S, Bhattacharya P G. A statistical study on compressive strength of recycled concrete . Journal of the Institution of Engineers (India):Civil Engineering Division,2003,83(2):219-220
    [100]水中和,邱晨,赵正齐,等.再生混凝土骨料含水状态与新拌混凝土的性能.国外建材科技,2003,24(5):1-2
    [101]孔德玉,吴先君,等.再生骨料混凝土研究.浙江工业大学学报,2003,31(1): 28-32
    [102]王武祥.粉煤灰再生集料混凝土的研究.新型建筑材料,2005,(05):24-26
    [103]肖建庄,王军龙,孙振平,等.再生粗集料在水泥混凝土路面中的应用研究.公路交通科技,2005,(09):52-55
    [104] Zaharieva R, Buyle-Bodin F, Skoczylas F, et al. Assessment of the surface permeation properties of recycled aggregate concrete.Cement and Concrete Composites,2003,25(2):223-232
    [105] Poon C S,Shui Z H,Lam L,et al. Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete.Cement and Concrete Research,2004,34(1):31-36
    [106] Rahal K . Mechanical properties of concrete with recycled coarse aggregate.Building and Environment,2007,42(1):407-415
    [107]袁飚.再生混凝土抗压抗拉强度取值研究:[同济大学硕士学位论文].上海:同济大学,2007
    [108]姚武.绿色混凝土.北京:化学工业出版社,2006
    [109] De Juan M S,Gutierrez P A.Study on the influence of attached mortar content on the properties of recycled concrete aggregate.Construction and Building Materials,2009,23(2):872-877
    [110]许岳周,石建光.再生骨料及再生骨料混凝土的性能分析与评价.混凝土, 2006,(07):41-45
    [111]朋改非,沈大钦,朱海英,等.同配合比条件下再生骨料混凝土与基准混凝土的力学性能比较研究.混凝土,2006,(2):34-38
    [112] Topcu I B,Sengel S.Properties of concretes produced with waste concrete aggregate.Cement and Concrete Research,2004,34(8):1307-1312
    [113] Kou S C,Poon C S.Mechanical properties of 5-year-old concrete prepared with recycled aggregates obtained from three different sources . Magazine of Concrete Research,2008,60(1):57-64
    [114]孙跃东,肖建庄.再生混凝土骨料.混凝土,2004,(6):33-36
    [115]戈雪良,曾力.再生骨料对再生混凝土强度的影响研究.陕西建筑与建材, 2004,(12):36-38
    [116]孔德玉.天然与再生骨料混凝土水灰比统一定则(Ⅰ)——粗骨料强度的影响.建筑材料学报,2003,6(2):129-134
    [117]赵伟.绿色高强高性能再生混凝土试验研究:[武汉大学硕士学位论文].武汉:武汉大学,2004
    [118]公路工程集料试验规程(JTG E42-2005).北京:人民交通出版社,2005
    [119]李坤.再生骨料及再生混凝土基本性能研究:[大连理工大学硕士学位论文].大连:大连理工大学,2006
    [120]张允宝.莲易公路再生骨料混凝土应用技术试验研究:[长沙理工大学硕士学位论文].长沙:长沙理工大学,2006
    [121] Barra M. Estudio de la durabilidad del hormigón deárido reciclado en suaplicación como hormigón estructural:[加泰罗尼亚理工大学博士学位论文].巴塞罗那:加泰罗尼亚理工大学,1996
    [122]冯奇,王培铭.煤矸石热活化及水泥水化的红外分析.建筑材料学报, 2005, 8(3):215-221
    [123] Sakurai T, Sato T, Yoshinage A.The effect of minor components on the early hydraulic activity of the major phases of portland cement clinker. In:Proceedings of the 5th International Symposium on the Chemistry of Cement.Tokyo,1968
    [124] GB 175-2007,通用硅酸盐水泥.中国标准出版社.2007
    [125]蒲心诚.高强与高性能混凝土火山灰效应的数值分析.混凝土,1998,(6): 13-23
    [126] GB/T 18046-2008.用于水泥和混凝土中的粒化高炉矿渣粉.中国标准出版社,2008
    [127] GB/T 18736-2002.高强高性能混凝土用矿物外加剂.中国标准出版社,2002
    [128] De Larrard F,Sedran T.Optimization of ultra-high-performance concrete by the use of a packing model.Cement and Concrete Research,1994,24(6):997-1009
    [129]陆厚根.粉体工程导论.上海:同济大学出版社,1993,58-59
    [130] Kohlhass B.Cement engineers’handbook Bauverlag Gmbh.Wiesbaden and Berlin,1983
    [131]卢迪芬,陈森凤,吴建其,等.矿渣微粉颗粒分布对胶凝材料性能影响的灰色系统.华南理工大学学报(自然科学版),2003,31(01):30-32
    [132]郝文霞,张雄.粉煤灰颗粒群特征及其与水泥胶砂性能的关系.建筑材料学报,2005,8(3):244-249
    [133]蒋永惠,阎春霞.粉煤灰颗粒分布对水泥强度影响的灰色系统研究.硅酸盐学报,1998,26(04):424-429
    [134] Goltermann P,Johansen V,Palbol L.Packing of aggregates:an alternative tool to determine the optimal aggregate mix.ACI Materials Journal.1997,94(5):435-443
    [135] Jones M R,Zheng L,Newlands M D.Comparison of particle packing models for proportioning concrete constituents for minimum voids ratio.Materials and Structures/Materiaux et Constructions,2002,34(249):301-309
    [136] Ramachandran V S,Beaudoin J J.Handbook of analytical techniques in concrete science and technology:principles,techniques and applications, Elsevier Science & Technology Books,2000
    [137]张亚梅,秦鸿根,孙伟,等.再生混凝土配合比设计初探.混凝土与水泥制品, 2002, (01):7-9
    [138] Etxeberria M,Vázquez E,MaríA.Microstructure analysis of hardened recycled aggregate concrete.Magazine of Concrete Research,2006, 58(10) :683-690
    [139] Bentz D P . Influence of silica fume on diffusivity in cement-based materials.Ⅱ. Multi-scale modeling of concrete diffusivity. Cement and Concrete Research,2000,30(7):1121-1129
    [140] Kobayashi K,Hattori A,Miyagawa T,et al.Characters of interfacial zone of cement paste with additives around aggregate. Journal of the Society of Materials Science,1996,45(9):1001-1007
    [141] Paulon V A,Dal M D,Monteiro P J. Statistical analysis of the effect of mineral admixtures on the strength of the interfacial transition zone. Interface Science, 2004,12(4):399-410
    [142] Zheng J J,Li C Q,Zhou X Z.Thickness of interfacial transition zone and cement content profiles around aggregates.Magazine of Concrete Research,2005,57(7):397-406
    [143] Li J S,Xiao H N,Zhou Y. Influence of coating recycled aggregate surface with pozzolanic powder on properties of recycled aggregate concrete.Construction and Building Materials,2009,23(3):1287-1291
    [144] Kawamura M,Torii K,Takemoto K,et al.Properties of recycling concrete made with aggregates obtained from demolished concrete pavement.Journal of the Society of Materials Science,1983,32(353):208-214
    [145] Mo L T,Huurman M,Wu S P,et al.2d and 3d meso-scale finite element models for ravelling analysis of porous asphalt concrete.Finite Elements in Analysis and Design,2008,44(4):186-196
    [146] Crouch L K, Pitt J, Hewitt R. Aggregate effects on pervious portland cement concrete static modulus of elasticity.Journal of Materials in Civil Engineering, 2007,19(7):561-568
    [147] Chindaprasirt P, Hatanaka S, Chareerat T,et al.Cement paste characteristics and porous concrete properties.Construction and Building Materials,2008,22(5):894-901
    [148]程娟.透水混凝土配合比设计及其性能的实验研究:[浙江工业大学硕士学位论文].浙江工业大学,2007
    [149]方坤河.碾压混凝土材料、结构与性能.武汉:武汉大学出版社,2004,96-98
    [150]谢慧才,李庚英,等.新老混凝土粘结界面的微结构及与集料—水泥界面的差异.工业建筑,2003,33(1):43-45
    [151]马怀发,陈厚群,黎保琨.混凝土试件细观结构的数值模拟.水利学报,2004, (10): 27-35
    [152]孙超,邬翔,周勇,等.混凝土随机损伤本构关系的数值模拟研究.华中科技大学学报:城市科学版,2008,(4):276-279
    [153]李运成,马怀发,陈潇.混凝土三维细观力学模型分析.水科学与工程技术,2007,(4):22-25
    [154] Bentz D R. Virtual pervious concrete: microstructure, percolation, and permeability.ACI Materials Journal,2008,105(3):297-301
    [155]刘小康,高建明,吉伯海.粗集料级配对多孔混凝土性能的影响研究.混凝土与水泥制品,2005,(5):11-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700