用户名: 密码: 验证码:
硝胺炸药的表面包覆及其对推进剂性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型高能固体推进剂中含有大量的硝胺炸药,使得推进剂的机械感度升高、力学和工艺性能变差,这严重制约了这些新型高能推进剂的应用。国内外一些研究表明,采用合适的包覆材料对硝胺炸药进行表面包覆可以改善推进剂安全和力学性能,然而,推进剂的能量性能却会由于这些惰性包覆材料的加入而降低。此外,包覆材料的加入也改变了推进剂的配方组成,对推进剂的相容性、贮运性能和使用性能都产生了不良影响。为消除这种由包覆材料带来的负面影响,本论文以推进剂中组分为包覆材料对硝胺炸药进行了表面包覆,制备了硝胺炸药包覆颗粒,并将其应用到推进剂中。重点考察了表面包覆对硝胺炸药及其推进剂机械感度和热安定性的影响。另外,对采用包覆炸药制成的推进剂的抗拉强度、延伸率和工艺性能也进行了相应地研究。本研究对钝感推进剂的研制及防止硝胺炸药在推进剂中的“脱湿”都具有十分积极的意义。本论文的主要内容如下:
     首先,以硝化棉(NC)和中定剂(C-1)为复合包覆剂,采用相分离法和水悬浮—乳液—蒸馏法两种方法对硝胺炸药进行了表面包覆,得出了最佳包覆工艺条件。研究发现两种包覆方法均能使黑索金(RDX)和奥克托金(HMX)的机械感度降低,但水悬浮—乳液—蒸馏法由于具有更加致密的包覆效果,其包覆样品感度降低幅度更大,且该工艺简便、安全。将水悬浮—乳液—蒸馏法制备的RDX包覆颗粒应用到硝胺改性双基推进剂(CMDB)中后,推进剂的安全、力学及工艺等性能较用原料RDX制成的推进剂都得到了一定程度的改善。
     其次,以三硝基甲苯(TNT)和一种含能聚合物(HP-1)为复合包覆剂,采用溶剂—非溶剂与水悬浮—熔融相结合的方法对RDX和HMX进行了表面包覆。研究发现,若无HP-1的加入,TNT在硝胺炸药表面的包覆模式为“岛状包覆”,而用TNT/HP-1复合包覆样品的包覆模式转变为“膜状包覆”。这是因为HP-1的加入降低了包覆材料的表面张力,提高了液态包覆材料对炸药颗粒的润湿能力。经表面包覆后,硝胺炸药的撞击和摩擦感度都得到显著降低,热安定性和爆热都没有明显变化。将包覆前后的RDX样品应用到推进剂中后发现,对于表面包覆有2.5%TNT和0.5%HP-1的RDX所制成的推进剂,其撞击和摩擦感度较由原料RDX制成的推进剂有一定程度的降低,且推进剂的延伸率大幅升高、制备时的压延次数明显减少。
     第三,以燃烧催化剂(硬脂酸铅和邻苯二甲酸铅)为包覆剂,采用化学沉淀法对硝胺炸药进行了表面包覆。研究发现,硬脂酸铅对硝胺炸药有明显的钝感作用,包覆处理后RDX和HMX的机械感度都大幅度降低。而邻苯二甲酸铅对硝胺炸药没有起到钝感作用,其包覆样品的机械感度不降反升。但如果在邻苯二甲酸铅/硝胺炸药复合粒子表面继续包覆一层聚合物后,其机械感度将得到一定程度的降低。燃烧催化剂的加入方式对推进剂的热分解性能有一定的影响,将硬脂酸铅或邻苯二甲酸铅包覆在硝胺炸药表面可提高其对推进剂组分的催化活性,表现为硝化棉/硝化甘油的热分解峰提前,样品总放热量增加。与直接加入硬脂酸铅的推进剂相比,由硬脂酸铅/RDX包覆粒子制成的推进剂的机械感度、力学性能和能量性能都没有明显变化。
     最后,以端羟基聚丁二烯(HTPB)及其助剂为包覆剂,分别采用一步相分离法、两步相分离法和双层包覆技术对硝胺炸药进行了表面包覆。一步相分离法制得样品的性能测试结果表明,尽管包覆后硝胺炸药的机械感度得到明显降低,但样品在进行HTPB的固化工序时极易发生粘连,导致包覆样品流散性差,严重影响了样品的使用性能。为解决该问题,试用两步相分离法对硝胺炸药进行包覆,这种包覆方法能够较有效地防止由HTPB固化产生的粘连,但其缺点为溶剂用量过大、包覆制备效率低。最终,采用双层包覆技术,先后以HTPB/IPDI(异佛尔酮二异氰酸酯)和TNT为包覆剂对RDX进行了表面包覆,成功的制备了外包覆层为TNT,内包覆层为HTPB/IPDI的双层包覆颗粒。外层的TNT有效地阻止了HTPB/IPDI层在固化过程中的相互粘接。当除去TNT后,即得到了分散性良好的固化HTPB包覆RDX复合粉末。这种包覆样品的机械感度较原料RDX有显著降低,特性落高(H_(50))升高了约79%,摩擦爆炸概率(P)降低了约76%。由该包覆颗粒制成的HTPB推进剂浆料和成品的机械感度都比由原料RDX制成的推进剂有明显降低,且推进剂的抗拉强度也得到了显著改善。此外,由于两个推进剂的组份含量完全相同,由包覆RDX制成推进剂的能量性能也没有降低。
Although adding nitroamine explosives can increase the energy of solid propellants, but they also can worsen the safety, the mechanical performances and the processing properties of the propellants, which greatly restricts the application of high energy (HE) propellants. Some researches show that the safety and mechanical performances of propellants can be improved by surface-coating on the nitroamine explosives fillers. However, the energy properties of propellant decrease due to the addition of inert coating materials. Moreover, the formulation composition of propellants can be changed, thus the compatibility, storage transportation properties and service performances of propellants can also be affected by the addition of such coating materials. In order to eliminate the negative effects mentioned above, the ingredients of propellants are selected to coat the nitroamine explosives and the coated explosives are applied into propellants in this paper. The influence of surface coating on mechanical sensitivity and thermal stability of nitroamine explosive are studied. Moreover, the influence of coating of nitroamine explosives on mechanical sensitivity, thermal stability, tensile strength, percentage elongation and processing properties of propellants are also investigated. The research is of great and positive significance to exploit insensitive propellants and prevention of "dewetting" of nitroamine explosives. The details are described as follows:
     Firstly, NC (nitrocellulose) and centralite-1 (C-1) are selected to coat niroamine explosives together by phase separation and slurry-emulsion-distillation methods respectively, and the optimum technology conditions are obtained. The mechanical sensitivity of the coated samples prepared by the two methods both decreased. However, the insensitive effect of the sample prepared by slurry-emulsion-distillation is more evident than that prepared by phase separation, due to the denser coating layer. In addition, such coating method has the advantages of facility and safety. Concretely, when [NC+C-1]/RDX composite prepared by slurry-emulsion-distillation is filled in the CMDB propellant as the solid fillers, the safety, mechanical performances and processing technology of propellant are all improved.
     Secondly, TNT (2,4,6-trinitrotoluene) and an energetic material (HP-1) are used to coat RDX and HMX (octogen) by means of combining solvent-nonsolvent and aqueous suspension-melting. The research shows that unlike the coating mode of the sample coated with only TNT which belongs to "island coating", the mode of the sample coated with TNT/HP-1 changes to "film coating", in which the TNT/HP-1 capped the surface of RDX tightly. It is attributed to the decrease of surface tension of melted TNT owing to the introducing of HP-1. After coating, the impact and friction sensitivities of RDX decrease obviously, and the thermal stability and of the explosion heat do not vary obviously. In terms of the propellant made with RDX samples coated with 2.5% TNT and 0.5% HP-1, both impact and friction sensitivities are lower than that made with raw RDX. Moreover, the percentage elongation increases and the calendering times decrease distinctly.
     Thirdly, the burning catalysts (lead stearate and lead phthalate) of CMDB propellant are used to coat RDX and HMX by chemical precipitation. The insensitive effect of lead stearate on nitroamine explosive is in evidence. By surface coating with lead stearate, the mechanical sensitivity of RDX and HMX both decrease significantly. However, lead phthalate is no insensitive action on nitroamine explosives. The mechanical sensitivity of HMX coated with lead phthalate does not decrease but increase. The thermal decomposition properties of propellants are affected by methods of which way the burning catalysts added into. If the lead stearate and lead phthalate loaded upon the surface of explosive particles are filled into propellants, their catalytic activity are superior beyond the active of catalysts simple mixed in propellants, such as the decreasing of thermal decomposition peak temperatures of NC/NG and the increasing of the thermal decomposition heat. The mechanical sensitivity, mechanical performances and energy properties of propellants do not vary obviously, in despite of which way to add the catalysts into the propellant.
     Finally, HTPB (hydroxyl terminated polybutadiene) and its corresponding additives are used to coat nitroamine explosives by one-step phase separation (OSPS), two-step phase separation (TSPS) or double layer coating technology (DLCT), respectively. The performance testing results of samples prepared by OSPS show that the mechanical sensitivity of coated samples reduces greatly. However, lots of severe agglomerations formed during the curing process of HTPB, and the negative result limits its application. To improve the dispersibility of coated samples, TSPS is employed to coat the nitroamine explosive. Such method can effectively prevent the conglutination among the HTPB that attached on the surface of explosive particles. However, there are still some disadvantages in the process, such as high solvent dissipation, low preparation efficiency. As a result, HTPB/IPDI (Isophorone diisocyanate) and TNT are successively coated on RDX (hexogen) particles by DLCT. While HTPB coated on RDX particles cured completely and TNT is removed by solvent dissolution, the well-dispersed RDX particles coated with cured HTPB are obtained successfully. As the outer layer, TNT effectively hinders the adhesion among the inner layer of HTPB. The mechanical sensitivities of RDX decreased significantly by such surface coating. When the covering amount of HTPB is 2wt.%, drop height (H_(50)) of RDX increases by 79% and explosion probability (P) decreases by 76%. Compared with that containing uncoated RDX, the mechanical sensitivities of propellant slurry and products containing coated RDX samples decrease obviously, and the tensile strength also improves obviously. In addition, the energy properties of propellants do not decrease because the propellants filled with HTPB/RDX has the same formulation with the propellant filled with raw RDX.
引文
[1]李葆萱.固体推进剂性能[M].西安:西北工业大学出版社,1990,12:1-2.
    [2]李上文,赵凤起,袁潮,等.国外固体推进剂研究与开发趋势[J].固体火箭技术,2002,25(2):36-42.
    [3]张晓宏,赵凤起,谭惠民,等.用键合剂改善硝胺CMDB推进剂的力学性能[J].火炸药学报,2005,28(2):1-5.
    [4]任务正,王泽山.火炸药理论与实践[G].北京:中国北方化学工业总公司,2001,P:185-208.
    [5]刘学.低危险性固体推进剂概念及研究进展[J].固体火箭技术,2002,25(1):33-37.
    [6]张续柱.双基火药[M].北京:北京理工大学出版社,1997,7:80-81.
    [7]T.K.Liu.Effect of boron particle coating on combustion of solid propellants for ducted rockets[J].Propellants,Explosives,Pyrotechnics,1991,16:156-166.
    [8]Strauss.Method of making high energy explosives and propellants[P].USP 5716557,1998.
    [9]张琼方,张教强.钝感推进剂的研制与进展[J].含能材料,2004,12(6):371-375.
    [10]黄明,李洪珍,徐容,等.降感黑索今研究[J].含能材料,2006,14(6):0492.
    [11]孟祥荣.国外低特征信号推进剂应用研究及发展趋势[J].飞航导弹,1999,(8):41-43.
    [12]K.J.Kim.Sphemlitic crystallization of 3-nitro-1,2,4-triazol-5-one in water +N-methyl-2-pyrrolidone[J].Journal of Crystal Growth,2000,208(1):569-578.
    [13]L.Svension,J.O.Nyqvist,L.Westlin.Crystallization of HMX from γ-butyrolactone[J].Journal of Hazardous.Materials,1986,13:103-105.
    [14]L.N.Erofeev,Y.B.Kalmykov,Y.Shu,et al.Crystal defects and stability of RDX[J].Russian Chemical Bulletin,International Edition,2001,50(6):1000-1002.
    [15]J.G.Bennett,K.S.Haberman,J.N.Johnson.A constitutive model for the non-shock ignition and mechanical response of high explosives[J].J.Mech.Phys.Solids,1998,46(12):2303-2322.
    [16]J.K.Dienes,Q.H.Zuo,J.D.Kershner.Impact initiation of explosives and propellants via statistical crack mechanics[J].Journal of the Mechanics and Physics of Solids,2006,54:1237-1275.
    [17]H.Kr(o|¨)er,U.Teipel.Crystallization of Insensitive HMX[J].Propellants,Explosives,Pyrotechnics,2008,33:44-47.
    [18]R.M.Doherty,D.S.Watt.Relationship between RDX Properties and Sensitivity[J].Propellants,Explosives,Pyrotechnics,2008,33:4-7.
    [19]O.H.Johansen,J.D.Kristiansen,R.Giersoe,et al.RDX and HMX with Reduced Sensitivity Towards Shock Initiation-RS-RDX and RS-HMX[J].Propellants,Explosives,Pyrotechnics,2008,33:20-23.
    [20]T.Heintz,U.Teipel.Coating of particulate energetic materials[C].31~(st) international Annual Conference of ICI,27-30 June 2000,Karlsruhe,Germany,120/1-120/12.
    [21]F.Baillou,J.M.Dartyge,M.Spyckerejle,et al.Influence of crystal defects on sensitivity of explosives[C].Proceedings of the tenth international detonation symposium,1993.
    [22]刘玉存,王建华,安崇伟,等.RDX粒度对机械感度的影响[J].火炸药学报,2004,27(2):7-9.
    [23]汪波,刘玉存,李敏.HMX粒度对其撞击感度的影响研究[J].华北工学院学报,2005,26(1):35-37.
    [24]王彩玲,赵省向.不同粒度AP的机械感度[J].火炸药学报,2006,12:27-29.
    [25]X.L.Song,Y.Wang,C.W.An,et al.Dependence of particle morphology and size on the mechanical sensitivity and thermal stability of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine[J].Journal of Hazardous Materials,in pressed.
    [26]宋小兰,李凤生,张景林,等.粒度和形貌及粒度分布对RDX安全和热分解性能的影响[J].固体火箭技术,2008,2:168-172.
    [27]李凤生,丁中建,刘宏英,等.纳米/微米粉体填料对推进剂浆料特性的影响[J].推进技术,2003,24(4):376-379.
    [28]冯增国,候竹林,王恩普,等.氧化剂粒度和含量变化对NEPE推进剂燃烧和压力指数的影响[J].兵工学报(火化工分册),1995,(1):7-9.
    [29]焦清介,李江存,任慧,等.RDX粒度对改性双基推进剂性能影响[J].含能材料,2007,15(3):220-223.
    [30]曾贵玉,郁卫飞,聂福德,等.超细炸药粉体性能及其应用研究进展[J].含能材料,2005,13(5):349-353.
    [31]张小宁,徐更光,王廷增.高速撞击流粉碎制备超细HMX和RDX的研究[J].北京理工大学学报,1999,19(5):646-650.
    [32]王晶禹,张景林,徐文峥.微团化动态结晶法制备超细HMX炸药[J].爆炸与冲击,2003,23(3):262-266.
    [33]V.Stepanov,L.N.Krasnoperov,I.B.Elkina,et al.Production of Nanocrystalline RDX by Rapid Expansion of Supercritical Solutions[J].Propellants,Explosives,Pyrotechnics,2005,30(3):178-183.
    [34]Y.X.Zhang,D.B.Liu,C.X.Lv.Preparation and Characterization of Reticular Nano-HMX[J].Propellants,Explosives,Pyrotechnics,2005,30(6),438-441.
    [35]Y.Frolov,A.Pikvnia,P.Ulyanova,et al.Nanomaterials and Nanostructure as Components for High-energy Condensed System[C].28~(th) Int.Pyrotechnics Seminar,4-9 November 2001,Adelaide,Australia,P:305-307.
    [36]张小宁,徐更光,何得昌,等.纳米级奥克托今超微颗粒制备技术研究[J].兵工学报,2002,23(4):472-475.
    [37]B.C.Tappan,T.B.Brill.Thermal Decomposition of energetic materials 86:cryogel synthesis of nanocrystalline CL-20 coated with cured nitrocellulose[J].Propellants,Explosives,Pyrotechnics,2003,28:223-225.
    [38]陈厚和,孟庆刚,曹虎,等.纳米RDX粉体的制备与撞击感度[J].爆炸与冲击,2004,24(4):382-384.
    [39]孙亚斌,周集义.含能增塑剂研究进展[J].化学推进剂与高分子材料,2003,1(5):20-25.
    [40]孙亚斌,周集义.含能增塑剂研究进展续[J].化学推进剂与高分子材料,2003,1(6):5-8.
    [41]李凤生,郭效德,刘冠鹏,等.新型火药设计与制造[M].北京:国防工业出版社,2008.
    [42]寇丽平.TATB对HMX的钝感作用研究[J].火炸药学报,1999,3:25-28.
    [43]徐容,田野,刘春.TATB对CL-20降感研究[J].含能材料,2003,11(4):219-221.
    [44]何耀东.低易损性固体推进剂::未来的重要发展方向[C].航天工业总公司四院固体专业组会议论文集,湖北襄樊,1998.
    [45]J.K.Pemela,F.A.George,C.Gerald,et al.Molecular modeling of low vulnerability ammunition(LOVA) propellant binders[J].American Defense preparedness Association,1994:470-477.
    [46]张杰,贺俊,邹彦文.固体颗粒表面改性及其在推进剂领域中的应用研究[J].哈尔滨工业大学学报,2004,36(9):1147-1152.
    [47]孙国祥.高分子混合炸药[M].北京:国防工业出版社,1984,3.
    [48]李凤生,杨毅.纳米/微米复合技术及应用[M].北京:国防工业出版社,2002.
    [49]王晓丽,焦清介,李国新,等.钝化黑索今薄膜及其感度的研究[J].火工品,2003,3:23-26.
    [50]王晓丽,焦清介.微/纳米含能薄膜材料的制备与应用研究[J].含能材料,2006, 14(2):139-141.
    [51]张树海,苟瑞君,张景林,等.硝胺炸药的超临界溶液快速膨胀包覆技术研究[J].火工品,2004,2:20-26.
    [52]K.Nakajima.Thickness-composition diagrams of stranski-krastanov mode in the GaPSb/GaP and InGaAs/GaAs systems[J].Journal of Crystal Growth,1999,203:376-386.
    [53]Manning.Reduction of energetic filler sensitivity in propellants through coating [P].USP 6524706,2003.
    [54]K.Cowey,S.Day,R.Fryer.Examination of wax-coated RDX by scanning electron microscopy and X-Ray photoelectron spectroscopy[J].Propellants,Explosives,Pyrotechnics,1985,10:61-65.
    [55]W.T.Jones,Desensitizing explosives[P].USP 4425170,1980.
    [56]单文刚,孙铁刚,张国东,等.硝化棉包覆催化剂球形药的制备工艺研究[J].含能材料,1996,4(2):75-78.
    [57]刘小刚,王克强,邵重斌,等.硝化棉包覆黑索今的新方法[J].含能材料,2003,11(3):153-154.
    [58]李江存,焦青介,任慧,等.层层组装法制备NC-BA-RDX包覆球[J].固体火箭技术,2008,3 1(3):247-250.
    [59]Smith,Kjell-Tore.Pressable plastic-bound explosive composition[P].USP 20050072503,2005.
    [60]刘云飞,杨荣杰,谭惠民,等.聚丙烯酸乙酯包覆奥克托金(HMX)的研究[J].北京理工大学学报,1998,18(3):370-374.
    [61]陆铭,陈煜,孙杰,等.水性聚氨酯乳液的制备及其在含硝胺推进剂中的应用[J].精细化工,2004,21(11):876-880.
    [62]陆铭,孙杰,陈煜,等.聚氨酯-丙烯酸酯核-壳乳液的制备及其包覆的RDX[J].火炸药学报,2004,27(3):17-20.
    [63]陆铭,陈煜,罗运军,等.水性聚氨酯乳液的制备及其包覆RDX的研究[J].推进技术,2005,26(1):89-92.
    [64]陆铭,孙杰,陈煜,等.包覆方法对PBX-RDX撞击感度的影响[J].含能材料,2004,12(6):333-337.
    [65]吴文辉,马凤国.在硝胺填料HMX表面的乳液聚合.包覆[J].北京理工大学学报,2000,1:122-125.
    [66]马凤国,吴文辉,谭惠民.硝胺填料HMX的聚合-包覆改性及其应用[J].北京理工大学学报,2000,3:129-133.
    [67]U.Teipel.Energetic Materials:Particle Processing and Characterization[M].Wiley-VCH verlag,Weinheim,Germany,2006.
    [68]J.S.Murray,P.Politzer.Structure-sensitivity relationship in energetic compounds[A].The 21~(st) ICT international Annual Conference,1990.
    [69]Chan.Energetic binder explosive[P].USP 5316600,1994.
    [70]R.L.Simpson,P.A.Urtiew,D.L.Ornellas,et al.CL-20 performance exceeds that of HMX and its sensitivity is moderate[J].Propellants,Explosives,Pyrotechnics,1997,22:249-251.
    [71]黄亨建,杨攀,黄辉,等.原位聚合包覆HMX的研究[J].火炸药学报,2007,1:40-43.
    [72]A.E.Oberth,R.S.Bruenner.Binder filler interaction and propellant mechanical properties[J].Transaction of Society of Theology,1965,9:165-167.
    [73]C.S.Kim.Filler reinforcement of polyurethane binder using a neutral polymeric bonding agent[P].USP4915755,1999.
    [74]王北海.NEPE推进剂用中性聚合物键合剂的分子设计[J].推进技术,1994,3:47-53.
    [75]吴文辉,黎玉钦,罗明树,等.中性聚合物键合剂对硝胺推进剂相界面的作用[J].推进技术,2001,22(4):337-340.
    [76]潘碧峰,张磊,罗运军,等.树形键合剂包覆RDX及其相互作用研究[J].推进技术,2003,24(5):470-473.
    [77]姚维尚,吴文辉,戴键吾,等.硝胺推进剂界面键合的表征研究[J].推进技术,1995,16(3):57-62.
    [78]雷英杰,杨文宝,胡荣祖.新型键合剂在硝胺发射药中的应用[J].火炸药学报,2002.2:59-60.
    [79]张娟,焦清介,李江存,等.不同包覆材料对RDX表面改性的对比研究[J].火工品,2006,3:23-26.
    [80]李江存,焦清介,任慧,等.海因/三嗪类复合键合剂包覆黑索今的研究[J].含能材料,2008,16(1):56-59.
    [81]Oberth.Coatings for solid propellants[P].USP 5600088,1997.
    [82]金韶华,于昭兴,欧育湘,等.六硝基六氮杂异伍兹烷包覆钝感的探索[J].含能材料,2004,12(3):147-150.
    [83]金韶华,吴秀梅,王伟,等.高分子包覆ε-HNIW方法对样品机械撞击感度的影响[J].安全与环境学报,2005,5(5):6-8.
    [84]封雪松,符全军,黄凤臣,等.用聚四氟乙烯包覆六硝基芪的研究[J].火炸药学报, 2001,24(1):55-56.
    [85]H.Singh,H.Shekhar.Science and technology of solid rocket propellants[M].Bihar:Printwell Towe Chowk,Darbhanga,2005.
    [86]J.E.Balzer,W.G.Proud,S.M.Walley,et al.High-speed photographic study of the drop-weight impact response of RDX/DOS mixtures[J].Combustion and Flame,2003,135:547-555.
    [87]J.S.Lee,C.K.Hsu.The thermal behaviors and safety characteristics of composition B explosive[J].Thermochimica Acta,2001,368:371-375.
    [88]孙业斌,惠君明,曹欣茂.军用混合炸药[M].北京:兵器工业出版社,1995.
    [89]陆明,周新利.RDX的TNT包覆钝感研究[J].火炸药学报,2006,29(6):16.18.
    [90]张树海,张景林.含NTO的钝感炸药及其危险性评估[J].中国安全科学学报,2001,11(B12):84-88.
    [91]K.J.Kim,H.S.Kim.Coating of energetic materials using crystallization[J].Chem.Eng.Technol.,2005,28:946-949.
    [92]K.J.Kim,H.S.Kim.Agglomeration of NTO on the surface of HMX particles in water-NMP solvent[J].Cryst.Res.Technol.,2008,43:87-90.
    [93]H.Hofmann,K.Rudolf.Process for the production of a pressed insensitive explosive mixture[P].USP0216822A1,2004.
    [94]孙杰,黄辉,张勇,等.TATB原位包覆HMX的研究[J].含能材料,2006,14(5):330-332.
    [95]蔚红建,张丽涵,刘小刚,等.RDX包覆与某种键合剂的匹配性研究[J].火炸药学报,2002,4:49-50.
    [96]黄亨建,董海山,张明,等.高聚物改性B炸药研究(Ⅱ)[J].含能材料,2005,13(1):7-9.
    [97]陈鲁英,赵省向,杨培进,等.CL-20炸药的包覆钝感研究[J].含能材料,2006,14(3):171-173.
    [98]聂福德,杨雪梅.HMX/TATB基PBX的感度与表面形态的关系探索[J].火炸药学报,2001,24(3):19-21.
    [99]D.Bonn.Wetting transitions[J].Current Opinion in Colloid & Interface Science,2001.6:22-27.
    [100]J.W.Cahn.Critical point wetting[J].The Journal of Chemical Physics,1977,66(8):3667-3672.
    [101]B.M.Law.Wetting,adsorption and surface critical phenomena[J].Progress in surface science,2001,66:159-216.
    [102]顾惕人,朱涉瑶,等.表面化学[M].北京:科学出版社,1994.
    [103]张树海,张景林.PBX传爆药中的界面化学问题[J].火工品,2001,2:21-23.
    [104]A.W.Adamson.Physical Chemistry of surface,4~(th) ed.[M],Wiley-Interscience,New York 1984
    [105]J.A.Manson,J.T.Williams.Acid-base interactions between siliceous fillers and polymeric matrixes[J].Org.coat.Plast.Chem.,1980,42:175-180.
    [106]F.M.Fowkes,M.A.Mostafa.Acid-base interactions in polymer adsorption[J].Ind.Eng.Chem.Prod.Res.Dev.,1978,17:3-7.
    [107]J.M.Bellerby,C.Kiriratnikon.Explosive-binder adhesion and dewetting in nitramine-filled energetic materials[J].Propellants,Explosives,Pyrotechnics,1989,14:82-84.
    [108]姚连增.晶体生长基础[M].合肥:中国科学技术大学出版社,1995.
    [109]李凤生.特种超细粉体制备技术及应用[M].北京:国防工业出版社,2002.
    [110]F.P.Bowden,Y.D.Yoffe.Initiation and growth of explosion in liquids and solids[M].Cambridge University Press,UK.1952.
    [111]J.E Field,N.K.Bourne,S.J.P.Palmer,et al.Hot-spot ignition mechanisms for explosives and propellants[J].Philos.Trans.R.Soc.,1992,339:269-283.
    [112]N.K.Bourne,J.E.Field.Explosive ignition by the collapse of cavities[J].Proceedings:Mathematical,Physical and Engineering sciences,1987,455:2411-2426.
    [113]吕春玲,狄建华,刘玉存.冲击波起爆热点点火阶段的影响因素[J].火工品,2000,4:10-15.
    [114]R.E.Winter,J.E.Field.The role of localized plastic flow in the impact initiation of explosives[J].Proceedings of the Royal Society of London.Series A,Mathematical and Physical Sciences,1975,343:399-413.
    [115]韩小平,张元冲,沈亚鹏,等.B炸药中绝热剪切带形成机理的细观研究[J].火炸药学报,1997,2:4-10.
    [116]J.E.Field,G.M.Swallow,S.N.Heavens.Ignition mechanisms of explosives during mechanical deformation[J],Proc.R.Soc.,London A,1982,382:231-244.
    [117]J.K.Dienes,Q.H.Zuo,J.D.Kershner.Impact initiation of explosives and propellants via statistical crack mechanics[J].Journal of the Mechanics and Physics of Solids,2006,54:1237-1275.
    [118]D.J.Peng,C.M.Chang,M.Chiu.Thermal analysis of RDX with contaminants[J].Journal of Thermal Analysis and Calorimetry,2006,83(3):657-668.
    [119]炸药理论编写组.炸药理论[M].北京:国防工业出版社,1982.
    [120]W.H.Andersen.Role of the friction coefficient in the friction heating ignition of explosives[J].Propellants,Explosives,Pyrotechnics,1981,6:17-23.
    [121]A.M.Mellor,D.A.Wiegand,K.B.Isom.Hot spot histories in energetic materials[J].Combustion and Flame,1995,101:26-35.
    [122]张续柱.双基火药[M].北京:北京理工大学出版社,1997.
    [123]中华人民共和国国家军用标准.感度和安全性试验方法[S].GJB/772A-97.
    [124]陆安舫,云小侃,陈兴泉.球形药的新进展[J].火炸药学报;1998,2:39-42.
    [125]中华人民共和国国家军用标准.火药试验方法[S].GJB/770-97.
    [126]傅献彩,沈文霞,姚天扬.物理化学[M].北京:高等教育出版社,1990.
    [127]D.J.Kasprzyk,D.A.Bell.Characterization of a slurry process used to make a plastic-bonded explosive[J].Propellants,Explosives,Pyrotechnics,1999,24:333.
    [128]张开.高分子界面科学[M].北京:中国石化出版社,1997.
    [129]W.T.Jones.Desensitizing explosives[P].USP 4425170,1980.
    [130]U.Teipel,T.Heintz,Surface energy and crystallization phenomena of ammonium dinitramide[J].Propellants,Explosives,Pyrotechnics,2005,30:404-406.
    [131]M.S.Kirshenbaum.Reactivity of explosives/sediment mixtures[M].ADA118012,1982.
    [132]J.E.Field.Hot spot ignition mechanisms for explosives[J].Acc.Chem.Res,1992,25:489-491.
    [133]R.Z.Hu,Z.Q.Yang,Y.J.Liang,A study of reaction between RDX and urea by a single non-isothermal DSC curve[J].Thermochimica.Acta,1988,134:429-432.
    [134]R.Z.Hu,L.X.Sun,X.Y.Fu,et al,Thermal stability of some furazano-fused cyclic compounds[J].Thermochimica.Acta,1990,171:31-35.
    [135]王克秀.固体火箭推进剂及燃烧.北京:国防工业出版社,1983.
    [136]K.V.Raman,H.Singh.Ballistic modification of RDX-based CMDB propellant[J].Propellant,Explosive,Pyrotechnics,1988,13:149-151.
    [137]A.D.Joshi,H.Singh.Effect of certain lead and copper compounds as ballistic modifier for double base rocket propellant[J].Journal of Energetic Materials,1992,10:299-309.
    [138]马凤国,季树田,吴文辉,等.HMX与燃烧催化剂共包覆降低NEPE推进剂的压力指数[J].含能材料,1999,7(4):166-168.
    [139]洪伟良,李琳琳,赵凤起,等.纳米鞣酸Pb(Ⅱ)配合物的合成及其燃烧催化性能研究[J].固体火箭技术,2007,30(2):135-137.
    [140]洪伟良,刘剑洪,赵凤起,等.纳米Pb(Ⅱ)-没食子酸配合物的合成及其燃烧催化性能[J].化学学报,2005,63(3):249-253.
    [141]马振叶,李凤生,崔平,等.纳米Fe_2O_3/高氯酸铵复合粒子的制备及热分解的催化性能[J].催化学报,2003,24(10):795-798.
    [142]武汉大学分析化学教研室.分析化学(第四版)[M].北京:高等教育出版社,1999.
    [143]王令今,王桂花.分析化学计算基础[M].北京:化学工业出版社,2002.
    [144]赵凤起,李丽,李上文,等.含催化剂RDX-CMDB推进剂燃烧机理研究[J].固体火箭技术,1999,22(1):50-53.
    [145]阴翠梅,刘子如,刘所恩,等.Al-RDX-CMDB推进剂的高压热分解与燃烧性能的相关性[J].固体火箭技术,1998,21(3):35-39.
    [146]洪伟良,赵凤起,刘剑洪,等.邻苯二甲酸Pb(Ⅱ)配合物纳米颗粒的合成及其燃烧催化性能研究[J].无机化学学报,2004,20(8):996-1000.
    [147]王伯羲,冯增国,杨荣杰.火药燃烧理论[J].北京:北京理工大学出版社,1997,12:371-374.
    [148]刘继华.火药物理化学性能[M].北京:北京理工大学出版社,1997.
    [149]张端庆.火药用原材料性能与制备[M].北京:北京理工大学出版社,1995.
    [150]刘德辉,吴文清,吕振忠,等.含铝硝胺推进剂配方优化设计[J].兵工学报(火化工分册),1997,1:22-23.
    [151]G.B.Joel,S.H.Keith,N.J.James,et al.A constitutive model for the non-shock ignition and mechanical response of high explosive[J].J.Mech.Phys.Solids,1998,146,12:2303-2322.
    [152]D.A.Wiegand,J.Pinto,and S.J.Nicolaides.Mechanical response of TNT and a composite(Composition B) of TNT and RDX to compressive stress.I.Uniaxial stress and fracture[J].Journal of Energetic Materials,1991,9:19-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700