用户名: 密码: 验证码:
原位Mg_2Si/Al复合材料强韧化及其机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属间化合物Mg2Si具有高熔点,低密度,高硬度,低热膨胀系数和较高的弹性模量,可广泛应用于航空航天工业、军事工业和交通运输工业等领域。但Mg2Si有非常严重的晶间脆裂倾向,在低于450℃时具有本征脆性,使其室温延展率几乎为零,此缺点限制了其广泛的应用。因此Mg2Si的韧化成为近年来的研究热点。由于Mg2Si相为热力学稳定相,与基体相容性好、界面干净、结合牢固,热稳定性好,分布均匀,并且制造工艺简单、成本低廉,故将Mg2Si与延性基体(Mg和Al等)复合成为Mg2Si韧化的有效手段。因此本文采用熔体原位合成方法制备了Mg2Si/Al复合材料,系统研究复合材料的组织性能,探讨其强韧性机制,这对于发展轻质高强度Mg2Si/Al复合材料具有重要的理论意义及实际价值。
     本文通过研究初生Mg2Si相的组织形貌及分布,探讨了其对Mg2Si/Al (Al-30%Mg2Si和Al-40%Mg2Si)复合材料的微观组织的影响。通过添加合金元素,稀土元素、A1Ti系晶粒细化剂及热处理等方法有效地控制了Mg2Si/Al复合材料显微组织,并探讨了其作用机理。同时还研究了Mg2Si/Al复合材料力学性能,通过断口扫描分析了其断裂机理。具体研究结果如下:
     适当的合金元素能够改善Mg2Si/Al复合材料显微组织及其性能。实验选用Ca、P-Cu和Bi对Mg2Si/Al复合材料进行变质,均可细化初生Mg2Si(?)目,改善其形状和分布,在很大程度上能使Mg2Si相圆整,同时抑制共晶相的异性生长。其中Ca、P-Cu的最佳加入量在0.4%~0.8%之间,Bi的最佳加入量为3.0%,此时材料的抗拉强度可提高20-35%,延伸率提高14-39%。
     稀土元素能改善Mg2Si/Al复合材料显微组织及其性能。实验选取了代表性的几种稀土元素——Sc、Y、La及混合稀土(La&Y)和(Sc&La)。当稀土元素加入量为0.2%时就能够在一定程度上抑制初晶Mg2Si树枝晶生长,提高初晶Mg2Si分布均匀性。当稀土元素加入0.6%~0.8%时,初晶Mg2Si呈规则多面体均匀分布,组织最为细小,对应的材料抗拉强度可提高17-30%,延伸率提高27-38%。
     AlTi系细化剂可明显细化Mg2Si/Al复合材料组织,改善其力学性能。选取的AlTiC、AlTiP和AlTiZr三种晶粒细化剂均可使得Mg2Si相尺寸减小,形貌相对圆滑,其中AlTiZr对组织的改善效果更为明显,特别是对高Mg2Si含量的材料。通过添加0.6-0.8%的细化剂,Mg2Si/Al复合材料的拉伸强度和延伸率可分别提高11-20%和10-24%。
     固溶加时效热处理能消除复合材料偏析等铸造缺陷及内应力,可充分提高材料的硬度与抗拉强度,并确保一定的塑形和韧性,从而改善其力学性能。其中最佳的热处理工艺为545℃,5h固溶+175℃,3h时效,此时所获得的复合材料组织最佳,层片状Mg2Si相几乎全部消失,基体上只有细小的初生Mg2Si颗粒和大量弥散分布的共晶Mg2Si相存在,且圆润,分布均匀。硬度和抗拉强度达到了最佳值,抗拉强度提高了11.9%,硬度提高了13.7%,延伸率略有下降。
The Mg2Si intermetallic compound, which exhibits high melting point, low density, high hardness, low thermal expansion coefficient and reasonably high elastic modulus, can be widely used in the aerospace industry, military industry and transportation industry. But Mg2Si has very serious intergranular embrittlement tendency, moreover it has intrinsic brittleness below450℃, so that the elongation at room temperature is almost zero. This weakness restricts its wide application. Therefore, toughening of Mg2Si has become a hot research issue in recent years. As the Mg2Si phase is thermodynamically stable, and has good compatibility with matrixes, as well as advantages including simple process and low cost, composites combined with Mg2Si phase and ductile matrixes such as Mg and Al can be a potential way to improve the toughness of Mg2Si. So, in this paper, the Mg2Si/Al composite materials were prepared by in situ melt reaction method, and the microstructure and mechanical properties were systemically studied to discuss the mechanisms for strengthening and toughening. The work has both important theoretical meaning and practical value for developing Mg2Si phase based materials with high strength and low density which will have great application potential.
     The effect of the morphology and distribution of primary Mg2Si phase on the microstructure of Mg2Si/Al(Al-30%Mg2Si和Al-40%Mg2Si) composite materials was systemically studied. By adding proper amount of alloy elements, rare-earth elements, AlTi-X grain refiners and heat treatments, the microstructure of Mg2Si/Al composites is controlled effectively, and the mechanisms are then discussed. Meanwhile, the mechanical properties of Mg2Si/Al composites are also studied, and the fracture mechanism is analyzed by fractography. The Detailed results are as follows:
     The proper alloying elements can improve the microstructure and mechanical properties of Mg2Si/Al composites. The Ca, P-Cu and Bi which are selected as modifications of Mg2Si/Al composite materials in the experiments are found to refine the primary Mg2Si, improve its morphology and distribution, and also inhibit anisotropic growth of the eutectic phase. The tensile strength can be enhanced by20-35%and elongation by14-39%with optimum addition of0.4%-0.8%Ca, P-Cu and about3.0%Bi.
     The addition of rare-earth elements improves the microstructure and mechanical properties of Mg2Si/Al composites. Several representative rare earth elements are selected for experiments including Sc, Y, La and mixed rare earth (La&Y) and (Sc&La). The addition of0.2%rare earth elements could inhibit growth of Mg2Si dendrites to a certain extent and improve the distribution uniformity of primary Mg2Si phases. When the addition of rare earth elements reaches0.6%-0.8%, the most uniformity distribution of primary Mg2Si phases and finest microstructure could be achieved. And the corresponding tensile strength and elongation could be increased by17-30%and27-38%respectively.
     Adding different AlTi-X refiners could obviously refine the microstructure and improve the mechanical properties of Mg2Si/Al composites. The selected three kinds of grain refiners including AlTiC, AlTiP and AlTiZr all could reduce the size and wedges of Mg2Si phase. In addition, the AlTiZr can get the most effective results, especially for Mg2Si/Al composite with higher Mg2Si content. By adding0.6-0.8%refiners, the tensile strength and elongation of Mg2Si/Al composites could be increased by11-20%and10-24%respectively.
     Solid solution plus aging heat treatment can reduce cast defects such as segregation and internal stress of Mg2Si/Al composites, and improve the hardness and tensile strength of the composites by ensuring certain ductility. The optimized heat treatment process is found to be545℃,5h solid solution plus175℃,3h aging. Under this process, the optimum microstructure could be achieved with fine primary Mg2Si phase and uniform, dispersed round-like eutectic Mg2Si without lamellar Mg2Si phase. The corresponding hardness and tensile strength increased by13.7%and11.9%respectively, with slight decrease of elongation.
引文
[1]罗守靖.复合材料液态挤压.北京:冶金工艺出版社,2002.
    [2]黄佩武.Ti含量对一种新型Al-Cu合金组织与力学性能的影响:(硕士学位论文).长沙:中南大学,2006.
    [3]刘静安,谢水生.铝合金材料的应用与技术开发.北京:冶金工业出版社,2003.
    [4]崔忠圻,刘北兴.金属学与热处理原理.哈尔滨:哈尔滨工业大学出版社,2004.
    [5]陈茜,谢泉,闫万珺等.Mg2Si电子结构及光学性质的第一性原理计算.中国科学,2008,38(7):825-833.
    [6]Frommeyer G, Beer S, Oldenburg K. Microstructure and mechanical properties of mechanically alloyed intermetallic Mg2Si-Al alloys. Zeitschrift Metallkund,1994,85(5):372-377.
    [7]高英俊,李云雯.Al-Mg-Si合金的价电子结构分析.湖南文理学院学报(自然科学版),2003,15(4):9-11.
    [8]Zhang J, Fan Z, Wang Y Q, et al. Microstructural development of Al-15wtl% Mg2Si in situ composite with mischmetal addition. Materials Science and Engineeing,2000, A9(281):104-112.
    [9]Mabuchi M, Higashj K.. Strengthening mechanisms of Mg.Si alloys. Acta Materialia,1996,44(11): 4611-4618.
    [10]屠风华,潘晶,刘新才.金属材料的高应变率塑性变形及纳米化.宁波大学学报(理工版),2009,9(22):414-417.
    [11]高丽丽,刘力.机械合金化的发展.化工科技,2007,15(1):68-70.
    [12]《材料科学技术百科全书》编辑委员会编.材料科学技术百科全书(上).北京:中国大百科全书出版社,1995.
    [13]Li G H and Kong Q P. Processing and thermal stability of nano-Mg2Si intermetallic compound. Scripta Metallurgica et Mater.1995,32(9):1435-1440.
    [14]Riffel M, Schilz J. Mechanical alloying of Mg2Si. Scripta Metall. Mater.1995,32 (12):1951-1956.
    [15]魏力民.机械合金化和粉末冶金方法制备铜基复合摩擦材料:(硕士学位论文).吉林:吉林大学,2010.
    [16]言小雄.机械合金化—一种崛起的粉末冶金法.自然杂志,1989(11):853-857.
    [17]姜洪义,龙海山,张联眼.用低温固相反应制备P型Mg2Si基热电材.硅酸盐学报,2004,32(9):1094-1097.
    [18]Wang L, Qin X Y. The effect of mechanical milling on the formation of nanocrystalline Mg2Si through soli-state reaction. Scripta Materialia,2003,3(49):243-248.
    [19]Horvitz D, Klinger L, Cotrnan Ⅰ. New approach to measuring the activation energy of thermal explosion and its application to Mg-Si system. Scripta Materialia,2004, (50):631-634.
    [20]藏树俊Al/Mg2Si复合材料的制备与表征:(硕十学位论文).兰州:兰州理工大学,2006.
    [21]Schmid E E, Oldenburg K V and Frommeyer G. Microstructure and properties of as-cast intermetallic Mg2Si-Al alloys. Z. Metallkunde,1990,81(11):809-815.
    [22]Li G H, Gill H S, Varin R A. Magnesium silicon intermetallic alloys. Metall.Trans. A.1993, 24A(11):2383-2391.
    [23]Kim J W and Kim D H. Refinement of the Mg2Si phase by addition of Ca in Mg-Si alloy. Journal of Korean Inst. of Metals and Mater.1998,36(7):991-997.
    [24]Zhang J. Al-Mg2Si in situ composite:(Ph.D Thesis). Shenyang:Institute of Metal Research, Chinese Academy of Sciences.1999,6.
    [25]张健,王玉庆,吴欣强等.离心铸造原位Al/Mg2Si复合材料组织与性能的研究.铸造,1998,(9):1-3.
    [26]Zhang J, Wang Y Q, Zhou B L, et al. Functionally graded Al/Mg2Si in-situ composites prepared by centrifugal casting. J.Mater.Sci.Lett..1998,17(19):1677-1679.
    [27]张健,王玉庆,杨滨等.原位内生Al/Mg2Si/Si复合材料铸态组织的研究.复合材料学报,1999,16(4):30-33.
    [28]Zhang J, Fan Z, Wang Y Q, etal. Microstructure and mechanical properties of in situ Al-Mg2Si composites. Mater.Sci. Technol.2000,16(8):913-918.
    [29]Zhang J, Fan Z, Wang Y Q, etal. Microstructural evolution of the in situ Al-15wt.%Mg2Si composite with extra Si contents. Scripta Mater.2000,42(11):1101-1106.
    [30]张健Al-Mg2Si原位内生复合材料组织,性能及功能梯度材料的制备:(博士学位论文).沈阳,中国科学院金属研究所,1999.
    [31]Zhang J, Wang Y, Yang B, etal. Effects of Si content on the microstructure and tensile strength of an in situ Al/Mg2Si composite. J.Mater.Res.1999,14(1):68-74.
    [32]Zhao S X, Li S P, Zhao D Q. Effect of Li and Ti additions on La (Al)+Mg2Si pseudobinary eutectic reaction. J.Mater. Sci. Technol.1997,13(6):487-490.
    [33]Zhao S X, Li S P, Zhao D Q. The effect of Li and Ti on the phase constitution of (Al)-Si pseudobinary eutectic composite. Int.J.Cast.Met.Res.1997,10(1):45-48.
    [34]Mabuchi M and Higashi K. Strengthening mechanisms of Mg-Si alloys. Acta. Mater.1996,44(11): 4611-4618.
    [35]Mabuchi M and Higashi K. High-strain-rate syperpasticity in magnetisium matrix composites containing Mg2Si. Philo, Mag..1996,74A(4):887-905.
    [36]Mabuchi M, Kubota K and Higashi K. Effect of hot extrusion on mechanical properties of a Mg-Si-Al alloy. Mate.Lett..1994,19(5):247-250.
    [37]Mabuchi M, Kubota K and Higashi K. High strength and high stain rate superplasticitiy in a Mg-Mg2Si composite. Scripta Metall.Mater.1995,33(2):331-335.
    [38]张大童,李元元,罗宗强等.快速凝固高硅铝合金粉末的热挤压过程.中国有色金属学报,2001,1(11):6-9.
    [39]Song S W, Striehel K A, Song X Y, etal. Amorphous and nanocrytalline Mg2Si thin-film electrodes. Journal of Power Sources.2003:110-112.
    [40]TaLsuokaa H, Takagia N, Okavaa S, et al. Microstructures of semiconducting silicide layers grown by novel growth techniques.Thin Solid Films.2004, (461):57-62.
    [41]江明瑞Mg2Si的连续合成.稀有金属,1989,13(1):88-91.
    [42]姜洪义,冷永刚,张联盟Mg2Si(?)固相反应的热力学评估及工艺方法.武汉理工大学学报,2001,23(8):7-10.
    [43]姜洪义,张联盟.原位复合技术在新材料制备中应用评述.国外建材科技,2002,23:1-4.
    [44]姜洪义,张联盟.用固相反应合成Mg2Si(1-x)Gex热电固溶体.硅酸盐通报,2002,30(2):12-15.
    [45]姜洪义,张联盟.Te对Mg2Si基化合物结构和热电传输性能的影响.硅酸盐学报,2002,30(5): 550-558.
    [46]冯海波,周玉,贾德昌等.放电等离子烧结技术的原理及应用.材料科学与工艺,2003,9(3):13-16.
    [47]张久兴,刘科高,周美玲.放电等离子烧结技术的发展与应用.粉末冶金技术,2002,3(20):129-134.
    [48]卞之.电磁铸造及其材料宏观组织的形成机制.铸造技术.2004,25(7):496-497.
    [49]焦众生,邢书明,刘金香.电磁搅拌法制备钢铁材料半固态浆料的问题与对策.铸造,2004,53(8):579-582.
    [50]谢水生,黄声宏.半固态金属加工技术及其应用.北京:冶金工业出版社,1999.
    [51]周尧和,胡壮麒,介万奇.凝固技术,北京:机械工业出版社,1998.
    [52]Griffiths W D, McMartney D G. The effect of electromagnetic stirring during solidification on the structure of Al-Si alloys. Materials Science and Engineering,1996,216:47-60.
    [53]Jung B I, Jung C H, Han TKet al. Electromagnetic stirring and Sr modification in A356 Alloy. Journal of Materials Processing Technology,2001,111:69-73.
    [54]Kang C G, Bae J W, Kim B M, et al. The grain size control of A356 aluminum alloy by horizontal electromagnetic stirring for rheology forging. Journal of Materials Processing Technology,2007, (187-188):344-348.
    [55]Lim S C, Lee H B. The effect of electromagnetic stirring on the semi-solid tnicrostructure of high-melting alloys. Semi-solid Processing of Alloys and Composites,2006,116-117:542-545.
    [56]杨必成,杜东朝,朱学新等.电磁搅拌对Mg-Al-Si合金组织的影响.特种铸造及有色合金,2004,(3):26-28.
    [57]Kim J J, Kim D H. Modification of Mg2Si morphology in squeeze cast Mg-Al-Zn-Si alloys by Ca or P addition. Scripta.Materialia,1999,41(3):333-340.
    [58]陈晓,傅高升,钱匡武.Ca对原位自生Mg2Si/ZM5复合材料组织与性能的影响.中国有色金属学报,2005,15(3):410-414.
    [59]张春香,关绍康,石广新等Mg-8Zn-4Al-1Si-0.3Mn-xAlP合金的显微组织及性能.中国有色金属学报,2004,14(8):1353-1359.
    [60]金曼,邵光杰.添加元素Cu对Al-Mg-Si合金析出相行为的影响.材料热处理学报,2009,30(3):67-70.
    [61]刘扭参,刘栓江,刘忠侠.变质和热处理对Al-20%si合金组织和力学性能的影响.铸造技术,2009,30(8):22-25.
    [62]Qin Q D, Zhao Y G, Zhou W, et al. Effect of phosphorus on microstructure and growth manner of primary Mg2Si crystal in Mg2Si/Al composite, Materials Science and Engineering,2007, A(447):186-191.
    [63]李贞宽,边秀房,韩娜等.Bi对亚共晶Al-Si合金组织和性能的影响.铸造技术,2007,28(11):1486-1488.
    [64]夏兰廷,蔺虹宾,李桂玲.铋对含硅ZA40合金组织及性能的影响.铸造,2009,58(11):1158-1161.
    [65]马燕合.我国稀士应用开发现状及其展望.材料导报,2000,14(1):3、5.
    [66]雷广孝.稀土在铝及铝合金中的作用和应用概况.轻合金加工术,1990(2):5-10.
    [67]《稀土》编写组.稀土(下),北京:冶金工业出版社,1978.
    [68]Yuan G Y, Liu M P, Ding W J,et al. Microstructure and mechanical properties of Mg-Zn-Si-based alloys. Materials Science and Engineering,2003, (357):314-320.
    [69]Yuan G Y, Liu Z Y, Wang Q D. Microstructure refinement of Mg-Al-Zn-Si alloys. Materials Letters 2002, (56):53-58.
    [70]廖恒成,丁毅,孙国雄.Sr对Al-Si-Mg铸造合金中Mg2Si相结晶行为影响的研究.铸造,2002,51(2):80-84.
    [71]秦庆东Mg2Si/Al复合材料组织与性能的研究:(博士学位论文).吉林,吉林大学,2008.
    [72]李赤枫,王俊.自生Mg2Si颗粒增强Al基复合材料的组织细化,中国有色金属学报,2004,14(2):233-237.
    [73]任波,张天清,刘忠伙等.Sb对原位Mg2Si/Al-5Si复合材料显微组织的影响.特种铸造及有色合金,2006,26(12):819-821.
    [74]任波.原位合成Mg2Si/Al复合材料微观组织及力学性能研究:(硕十学位论文).郑州,郑州大学,2007.
    [75]刘书珍,王冰.稀土对Al-Mg-Si系合金结构和性能的影响.稀土,1998,19(3):26-30.
    [76]蒋显全,卢长康Al-Ti-C晶粒细化剂的现状及发展趋势.四川有色金属,2002(3):7-11.
    [77]谭敦强,黎文献,余琨.新一代铝合金晶粒细化剂Al-Ti-C铸造,2000,49(7):388-392.
    [78]张胜华,张明祥Al-Ti-B合金线杆生产工艺及细化效果.中南矿冶学院学报,1994,25(5):612-617.
    [79]张建新,钟建华.用于铝合金晶粒细化的中间合金研究现状与分析.铝加工,2002,25(1):22-23.
    [80]Banerji A, Reif W. Development of Al-Ti-C grain refiners containing TiC. Metal. Trans.,1986, 17A(12):2127-2137.
    [81]姜文辉,韩行霖Al-Ti-C中间合金晶粒细化剂的合成及其细化晶粒作用.中国有色金属学报,1998,8(2):268-271.
    [82]姜文辉,韩行霖Al-Ti-C-B中间合金细化剂的研究.特种铸造及有色合金,1997,(1):9-11.
    [83]Youdelis W V, Fang W. Calculated Al-Ti-Be phase diagram and interpretation of grain refinement results. Materials Science and Technology,1991,7 (3):202-204.
    [84]方旭升.铝钛硼稀士中间合金的研制与生产.特种铸造及有色合金,1996,(2):18-20.
    [85]谭敦强.Al-Ti-C晶粒细化剂的制备及细化机理研究:(硕士学位论文).长沙,中南大学,2001.
    [86]Wang L, Qin X Y, Xiong W,et al. Thermal stability and grain growth behavior of nanoerystalline Mg2Si. Materials Science and Engineering,2006,A 434:166-170.
    [87]Hu X S, Wu K, Zheng M Y, et al. Low frequeney damping capacities and mechanical properties of Mg-Si alloys, Materials Science and Engineering,2007, A(452-453):374-379.
    [88]Lu L, Thong K K, Pta M G. Mg-based composite reinforced by Mg2Si, Composites Science and Technology,2003, (63):627-632.
    [89]熊伟,秦晓英,王莉.金属间化合物Mg2Si的研究进展.材料导报,2005,19(6):4-7.
    [90]虞觉奇.二元合金状态图集.上海:上海科学技术出版社,1987.
    [91]长崎诚三,平林真著,刘安生译,二元合金状态图集(日).北京:冶金工业出版社,2004.
    [92]侯增寿,陶岚琴.实用三元合金相图.上海:上海科学技术出版社,1983.
    [93]张伟,刘伟东,王彦春等Mg-Al-Ca合金中第二相价电子结构计算与强化机制分析.稀有金属材料与工程,2009,38(1):120-125.
    [94]孙瑜,刘永刚,柳秉毅等.锆盐对锶变质Al-10%Si合金组织的影响.铸造,2003,52(10):753-757.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700