用户名: 密码: 验证码:
过渡族金属元素和内生陶瓷颗粒对TiAl压缩性能的影响规律及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiAl合金由于具有低密度、高熔点、高的比强度和比模量、低的蠕变速率和出众的抗高温氧化能力,其比强度、抗蠕变性和抗氧化性优于Ti_合金和Ni_基高温合金,使TiAl合金具有替代镍基高温合金成为高温轻质合金的潜力。然而,TiAl合金较差的室温塑性和高温强度限制了其广泛应用。因此,关于提高TiAl合金强度和塑性的研究对其取代镍基高温合金成为重要的航空、航天材料具有重要的理论和应用价值。当前,关于改善TiAl合金强度和塑性的研究仍是当前国际上急需解决的世界难题,关于金属元素种类、含量及内生陶瓷颗粒种类、尺寸、形状、数量、分布对TiAl合金强度和塑性的影响机制尚不明确,限制了TiAl材料在实际中的广泛应用,因此不同金属元素及内生陶瓷颗粒对TiAl合金强度和塑性的影响机制需要进一步的探索与揭示。
     因此,本论文以采用燃烧合成后施加压力的方法制备出的合金化TiAl合金和内生陶瓷颗粒增强TiAl基复合材料作为研究对象,将第一原理计算与实验相结合,探索不同种类、含量的过渡族金属元素(Zr/Hf/V/Nb/Ta/Cr/Mo/W/Mn/Fe/Co/Ni_/Cu/Zn)及不同种类、尺寸、形状、数量、分布的原位内生陶瓷颗粒(Ti_2AlC/TiB_2/Ti_5Si_3/TiB_2–Ti_2AlC)对TiAl合金压缩性能的影响规律,建立组织和性能之间的关系,提出改善TiAl合金强度和塑性的机制。
     本文主要研究结果如下:
     1)首次采用燃烧合成后施加压力的方法成功地制备出原位内生陶瓷颗粒(Ti_2AlC、TiB_2、Ti_5Si_3、TiB_2–Ti_2AlC)增强TiAl基复合材料。发现原位内生陶瓷颗粒的尺寸达到亚微米和纳米级尺寸,Ti_2AlC、Ti_5Si_3和TiB_2的尺寸分别为:~700nm、60–80nm和30–50nm。
     2)发现金属元素(Fe、Co)、内生陶瓷颗粒(Ti_2AlC、TiB_2、Ti_5Si_3、TiB_2–Ti_2AlC)及金属元素+内生陶瓷颗粒(Mn+Ti_2AlC、Mn/Fe/Co+TiB_2)都可以细化TiAl合金的晶粒尺寸。ⅰ)添加3at.%的金属元素Fe和Co使TiAl合金的晶粒尺寸从~66μm分别细化到~15μm和25μm。ⅱ)6vol.%的内生陶瓷颗粒Ti_2AlC、TiB_2、Ti_5Si_3和TiB_2–Ti_2AlC使TiAl合金的晶粒尺寸分别细化到~30μm、~15μm、~22μm和~10μm。ⅲ)2at.%Mn+4vol.%Ti_2AlC和2at.%Mn/Fe/Co+4vol.%TiB_2使TiAl合金的晶粒尺寸分别细化到~26μm和~10μm。
     3)揭示出4vol.%Ti_2AlC/TiAl–2Mn复合材料具有最好的压缩性能,其屈服强度(637MPa)、最大压缩强度(1694MPa)和断裂应变(22.2%)分别比TiAl合金的屈服强度、最大压缩强度和断裂应变提高了172MPa、279MPa和4.9%;4vol.%TiB_2/TiAl–2Co复合材料具有最高的压缩强度,其屈服强度(820MPa)和最大压缩强度(1906MPa)分别比TiAl合金的屈服强度和最大压缩强度提高了355MPa和491MPa,断裂应变与TiAl合金相当。
     4)提出了金属元素(Mn、Fe、Co)、内生陶瓷颗粒(Ti_2AlC、TiB_2、Ti_5Si_3、TiB_2–Ti_2AlC)和金属元素+内生陶瓷颗粒(Mn+Ti_2AlC、Mn/Fe/Co+TiB_2)分别对TiAl合金强塑性的影响机制。
     ⅰ)提高强度机制:a)金属元素:固溶强化和细晶强化。b)内生陶瓷颗粒:第二相强化和细晶强化。c)金属元素+内生陶瓷颗粒:固溶强化、第二相强化和细晶强化。
     ⅱ)改善塑性的机制:a)金属元素:晶体结构、电子结构和弹性性质的改善及晶粒细化。b)内生陶瓷颗粒:晶粒细化和细小内生陶瓷颗粒的均匀分布。c)金属元素+内生陶瓷颗粒:晶体结构、电子结构和弹性性质的改善、晶粒细化和纳米内生陶瓷颗粒的均匀分布。
     总之,本文将第一原理计算与实验相结合,探索了不同种类、含量的过渡族金属元素及不同种类、尺寸、形状、数量、分布的原位内生陶瓷颗粒对TiAl合金压缩性能的影响规律,提出了过渡族金属元素和原位内生陶瓷颗粒改善TiAl合金强度和塑性的机制。为发展高强度和高塑性的原位内生陶瓷颗粒增强TiAl基复合材料及其制备新技术奠定必需的理论基础。
The TiAl alloy possesses the potentiality for substituting Ni–base superalloy to becomehigh temperature light weight alloy, due to its low density, high melting point, high specificstrength and specific modulus, low creep rate and excellent high temperature oxidationresistance. Moreover, the specific strength, creep resistance and oxidation resistance of TiAlalloy are better than those of the Ti alloys and the Ni–base superalloy. However, the lowroom temperature ductility and high temperature strength limit its extensive application.Thus, the investigation for improving the strength and ductility of TiAl alloy has importanttheory and application value for TiAl to substitute Ni–base superalloy and become importantaerospace material. At present, the investigation about improving the strength and ductilityof TiAl alloy is still a problem to be solved quickly in the world. The influence mechanismsof the kind and content of metal elements and the kind, size, shape, quantity and distributionof in situ ceramic particles on the strength and ductility of the TiAl alloy are still unclear,which limits the extensive application of TiAl in practice. Thus, the influence mechanisms ofdifferent metal elements and in situ ceramic particles on the strength and ductility of TiAlalloy need to be further explored and revealed.
     Therefore, in this thesis, the alloying TiAl alloys and the in situ ceramic particlesreinforced TiAl matrix composites fabricated by the method of combustion synthesis and hotpress consolidation were studied. The influence law of different kinds and contents oftransition metal elements (Zr/Hf/V/Nb/Ta/Cr/Mo/W/Mn/Fe/Co/Ni/Cu/Zn) and differentkinds, sizes, shapes, quantities and distribution of in situ ceramic particles(Ti_2AlC/TiB_2/Ti_5Si_3/TiB_2–Ti_2AlC) on the compression properties of TiAl alloy wereexplored by the combination methods of first principle calculation and experiments. Therelationship between microstructures and properties was built and the mechanisms forimproving the strength and ductility of the TiAl alloy were discussed.
     The main results are as follows:
     1) The in situ ceramic particles (Ti_2AlC/TiB_2/Ti_5Si_3/TiB_2–Ti_2AlC) reinforced TiAl matrix composites were successfully fabricated by the method of combustion synthesis and hotpress consolidation for the first time. It is found that the in situ ceramic particles are allin submicron–size and nano–size. The sizes of Ti_2AlC, Ti_5Si_3and TiB_2are~700nm,60–80nm and30–50nm, respectively.
     2) It is found that the metal elements (Fe, Co), in situ ceramic particles (Ti_2AlC, TiB_2,Ti_5Si_3, TiB_2–Ti_2AlC) and metal elements+in situ ceramic particles (Mn+Ti_2AlC,Mn/Fe/Co+TiB_2) all could refine the grain size of TiAl alloy.ⅰ) With the addition of3at.%Fe and Co, the grain size of TiAl alloy decreases from~66μm to~15μm and25μm, respectively.ⅱ) With the generation of6vol.%Ti_2AlC, TiB_2, Ti_5Si_3and TiB_2–Ti_2AlC, the grain sizeof TiAl alloy decreases to~30μm,~15μm,~22μm and~10μm, respectively.ⅲ) The2at.%Mn+4vol.%Ti_2AlC and the2at.%Mn/Fe/Co+4vol.%TiB_2decreasethe grain size of the TiAl alloy to~26μm and~10μm, respectively.
     3) It is revealed that the4vol.%Ti_2AlC/TiAl–2Mn composite possesses the bestcompression properties, of which the yield strength (637MPa), ultimate compressionstrength (1694MPa) and fracuture strain (22.2%) are172MPa,279MPa and4.9%higher than those of the TiAl alloy; The4vol.%TiB_2/TiAl–2Co composite possessesthe highest compression strength, of which the yield strength (820MPa), ultimatecompression strength (1906MPa) are355MPa and491MPa higher than those of theTiAl alloy, the fracture strain is similar with that of TiAl alloy.
     4) The influence mechanisms of metal elements (Mn, Fe, Co), in situ ceramic particles(Ti_2AlC, TiB_2, Ti_5Si_3, TiB_2–Ti_2AlC) and metal elements+in situ ceramic particles(Mn+Ti_2AlC, Mn/Fe/Co+TiB_2) on the strength and ductility of TiAl alloy were putforward.
     ⅰ) Mechanisms for improving strength:a) Metal elements: the solid solution strengthening and the grain refinementstrengthening.b) In situ ceramic particles: the second phase strengthening and the grainrefinement strengthening.c) Metal elements+in situ ceramic particles: the solid solution strengthening, thesecond phase strengthening and the grain refinement strengthening.
     ⅱ) Mechanisms for improving ductility:a) Metal elements: the grain refinement and the improvement of crystal structures,electronic structures and elastic properties.b) In situ ceramic particles: the grain refinement and the uniform distribution of fine in situ ceramic particles.c) Metal elements+in situ ceramic particles: the improvement of crystalstructures, electronic structures and elastic properties, the grain refinement andthe uniform distribution of nano–size in situ ceramic particles.
     In summary, the influence law of different kinds and contents of transition metalelements and different kinds, sizes, shapes, quantities and distribution of in situ ceramicparticles on the compression properties of TiAl alloy were explored by the combinationmethods of first principle calculation and experiments; the mechanisms of transition metalelements and in situ ceramic particles for improving the strength and ductility of TiAl alloywere put forward, which laid the necessary theoretical basis for the development of the insitu ceramic particles reinforced TiAl matrix composites with high strength and ductility andits new fabrication technology.
引文
[1] APPEL F, OEHRING M, WAGNER R. Novel design concepts for gamma–basetitanium aluminide alloys [J]. Intermetallics,2000,8:1283–1312.
    [2] APPEL F, WAGNER R. Microstructure and deformation of two–phase γ–titaniumaluminides [J]. Materials Science and Engineering R,1998,22:187–268.
    [3] KOEPPE C, BARETLS A, SEEGER J, et al. General aspects of the thermomechanicaltreatment of two–phase intermetallic TiAl compounds [J]. Metallurgical TransactionsA,1993,24:1795–1806.
    [4] CLEMENS H, BARTELS A, BYSTRZANOWSKI S, et al. Grain refinement inγ–TiAl–based alloys by solid state phase transformations [J]. Intermetallics,2006,14:1380–1385.
    [5] Kim Y W. Ordered intermetallic alloys, part III: gamma titanium aluminides [J].Journal of Metals,1994,46(7):30–39.
    [6] BYSTRZANOWSKI S, BARTELS A, CLEMENS H, et al. Creep behaviour andrelated high temperature microstructural stability of Ti–46Al–9Nb sheet material [J].Intermetallics,2005,13:515–524.
    [7] CHENG T, LORETTO M H. The decomposition of the beta phase in Ti–44Al–8Nband Ti–44Al–4Nb–4Zr–0.2Si alloys [J]. Acta Materialia,1998,46(13):4801–4819.
    [8] GERLING R, CLEMENS H, SCHIMANSKY F P. Powder metallurgical processing ofintermetallic gamma titanium aluminides [J]. Advanced Engineering Materials,2004,6(1–2):23–38.
    [9] Wang Y H., Lin J P, He Y H, et al. Microstructures and mechanical properties ofTi–45Al–8.5Nb–(W,B,Y) alloy by SPS–HIP route [J]. Materials Science andEngineering A,2008,489:55–61.
    [10]DING X F, LIN J P, ZHANG L Q, et al. Microstructures and mechanical properties ofdirectionally solidified Ti–45Al–8Nb–(W, B, Y) alloys [J]. Materials and Design,2011,31:395–400.
    [11]KAWABATA T, FUKAI H, IZUMI O. Effect of ternary additions on mechanicalproperties of TiAl [J]. Acta Materialia,1998,46(6):2185–2194.
    [12]Huang S C, Hall E L. The effects of Cr additions to binary TiAl–base Alloys [J].Metallurgical Transactions A,1991,22:2619–2627.
    [13]LAMIRAND M, BONNENTIEN J L, FERRIèRE G, et al. Relative effects ofchromium and niobium on microstructure and mechanical properties as a function ofoxygen content in TiAl alloys [J]. Scripta Materialia,2007,56:325–328.
    [14]DALOZ D, HECHT U, ZOLLINGER J, et al. Microsegregation, macrosegregation andrelated phase transformations in TiAl alloys [J]. Intermetallics,2011,19:749–756.
    [15]VANMETER M L, KAMPE S L, CHRISTODOULOU L, et al. Mechanical propertiesof near–γ titanium aluminides reinforced with high volume percentages of TiB2[J].Scripta Materialia,1996,34:1251–1256.
    [16]PORTER W J, UCHIC M D, JOHN R, et al. Compression property determination of agamma titanium aluminide alloy using micro–specimens [J]. Scripta Materialia,2009,61:678–681.
    [17]RAO K P, ZHOU J B. Characterization and mechanical properties of in situsynthesized Ti5Si3/TiAl composites [J]. Materials Science and Engineering A,2003,356:208–218.
    [18]HORVITZ D, GOTMAN I, GUTMANAS E Y, et al. In situ processing of denseAl2O3–Ti aluminide interpenetrating phase composites [J]. Journal of the EuropeanCeramic Society,2002,22:947–954.
    [19]AI T T. Microstructure and mechanical properties of in–situ Al2O3/TiAl composites byexothermic dispersion method [J]. Acta Metallurgica Sinica,2008,21(6):437–443.
    [20]ZHANG W J, CHEN G L, APPEL F, et al. Preliminary study on the creep behavior ofTi–45Al–10Nb alloy [J]. Materials Science and Engineering A,2001,315:250–253.
    [21]XU X J, XU L H, LIN J P, et al. Pilot processing and microstructure control of high Nbcontaining TiAl alloy [J]. Intermetallics,2005,13:337–341.
    [22]ZAN X, WANG Y, XIA Y M, et al. Strain rate effect on the tensile behavior of DuplexTi–46.5Al–2Nb–2Cr intermetallics at elevated temperatures [J]. Materials Science andEngineering A,2008,498:296–301.
    [23]MCCULLOUGH C, VALENCIA J J, LEVI C G, et al. Phase equilibria andsolidification in Ti–Al alloys [J]. Acta Materialia,1989,37:1321–1336.
    [24]CHAN K S, KIM Y W. Influence of microstructure on crack–tip micromechanics andfracture behaviors of a two–phase TiAl alloy [J]. Metallurgical Transactions A,1992,23:1663–1667.
    [25]KIM Y W. Microstructure evolution and properties of a forged gamma aluminide alloy[J]. Acta Materialia,1992,40:1121–1134.
    [26]GUO F A, JI V, FRANCOIS M, et al. Effect of internal stresses on the fracturetoughness of a TiAl–based alloy with duplex microstructures [J]. Acta Materialia,2003,51:5349–5358.
    [27]BOEHLERT C J, DIMIDUK D M, HEMKER K J. The phase evolution, mechanicalbehavior, and microstructural instability of a fully–lamellar Ti–46Al(at.%) alloy [J].Scripta Materialia,2002,46:259–267.
    [28]LAPIN J, GABALCOVá Z. Solidification behaviour of TiAl–based alloys studied bydirectional solidification technique [J]. Intermetallics,2011,19:797–804.
    [29]Li B, Lavernia E J. Spray forming and co–injection of particulate reinforced TiAl/TiB2composites [J]. Acta Materialia,1997,45:5015–5030.
    [30]GOTMAN I, KOCZAK M J, SHTESSEL E. Fabrication of Al matrix in situcomposites via self–propagating synthesis [J]. Materials Science and Engineering A,1994,187:189–199.
    [31]CHOI Y, RHEE S W. Effect of aluminium addition on the combustion reaction oftitanium and carbon to form TiC [J]. Journal of Materials Science1993,28:6669–6675.
    [32]SHEN P, ZOU B L, JIN S B, et al. Reaction mechanism in self–propagating hightemperature synthesis of TiC–TiB2/Al composites from an Al–Ti–B4C system [J].Materials Science and Engineering A,2007,454–455:300–309.
    [33]MILANESE C, MAGLIA F, TACCA A, et al. Ignition and reaction mechanism ofCo–Al and Nb–Al intermetallic compounds prepared by combustion synthesis [J].Journal of Alloys and Compounds,2006,421:156–162.
    [34]YEH C L, SHEN Y G. Formation of TiAl–Ti2AlC in situ composites by combustionsynthesis [J]. Intermetallics,2009,17:169–173.
    [35]YEH C L, LI R F. Formation of TiAl–Ti5Si3and TiAl–Al2O3in situ composites bycombustion synthesis [J]. Intermetallics,2008,16:64–70.
    [36]YEH C L, SU S H. In situ formation of TiAl–TiB2composite by SHS [J]. Journal ofAlloys and Compounds,2006,407:150–156.
    [37]ZHANG G, BLENKINSOP P A, WISE L H, et al. Phase transformations in HIPpedTi–48Al–2Mn–2Nb powder during heat–treatments [J]. Intermetallics,1996,4:447–455.
    [38]BIAMINO S, PENNA A, ACKELID U, et al. Electron beam melting ofTi–48Al–2Cr–2Nb alloy: Microstructure and mechanical properties investigation [J].Intermetallics,2011,19:776–781.
    [39]BARTELS A, KOEPPE C, MECKING H, et al. Microstructure and properties ofTi–48Al–2Cr after thermomechanical treatment [J]. Materials Science and EngineeringA,1995,192–193:226–232.
    [40]FUCHS C E. Effect of W additions to Ti–48Al–2Nb–2Cr alloys [J]. Materials Scienceand Engineering A,1995,192–193:707–715.
    [41]CHRAPO SKI J. The effect of lamellar separation on the properties of aTi–46Al–2Nb–2Cr intermetallic alloy [J]. Materials Characterization,2006,56:414–420.
    [42]SONG Y, XU D S, YANG R, et al. Theoretical investigation of ductilizing effects ofalloying elements on TiAl [J]. Intermetallics,1998,6:157–165.
    [43]MORINAGA M, SAITO J, YUKAWA N, et al. Electronic effect on the ductility ofalloyed TiAl compound [J]. Acta Materialia,38(1):25–29.
    [44]LIU S Y, SHANG J X, WANG F H, et al. Ab initio study of surface self–segregationeffect on the adsorption of oxygen on the γ–TiAl(111) surface [J]. Physical Review B,2009,79:075419.
    [45]WOODWARD C, KAJIHARA S, YANG L H. Site preferences and formation energiesof substitutional Si, Nb, Mo, Ta, and W solid solutions in L10Ti–Al [J]. PhysicalReview B,1998,57(21):13459–13470.
    [46]LIE K, HOLMESTAD R, MARTHINSEN K, et al. Experimental and theoreticalinvestigations of EELS near–edge fine structure in TiAl with and without ternaryaddition of V, Cr, or Mn [J]. Physical Review B,1998,57(3):1585–1593.
    [47]ZHOU H B, WEI Y, LIU Y L, et al. First–principles investigation of site preference andbonding properties of alloying element in TiAl with O impurity [J]. Modelling andSimulation in Materials Science and Engineering,2010,18:015007.
    [48]MCANDREW J B, KESSLER H D. Ti–36pct Al as a base for high temperature alloys[J]. Journal of Metals,1956,8:1348–1353.
    [49]SHECHTMAN D, BLACKBURN M J, LIPSITT H A. The plastic deformation of TiAl[J]. Metallurgical Transactions A,1974,5:1373–1381.
    [50]KAWABATA T, KNAAI T, IZUMI O. Positive temperature dependence of the yieldstress in TiAl Ll0type spuerlattice intermetallic compound single crystals at293–1273K [J]. Acta Materialia,1985,337(7):1355–1366.
    [51]KAWABATA T, TADANO M, IZUMI O. Effect of purity and second phase on ductilityof TiAl [J]. Scripta Materialia,1988,22:1725–1730.
    [52]KAWABATA T, TAKEZONO T, KANAI T, et al. Bend tests and fracture mechanismof TiAl single crystals at293–1073K [J]. Acta Materialia,1988,36(4):963–975.
    [53]CHEN G L, SUN Z Q, ZHOU X. Oxidation and mechanical behavior of intermetallicalloys in the Ti–Nb–Al ternary system [J]. Materials Science and Engineering A,1992,153(1–2):597–601.
    [54]ZHANG W J, DEEVI S C, CHEN G L. On the origin of superior high strength ofTi–45Al–10Nb alloys [J]. Intermetallics,2002,10:403–406.
    [55]ZHANG W J, LIU Z C, CHEN G L, et al. Deformation mechanisms in a high–Nbcontaining γ–TiAl alloy at900°C [J]. Materials Science and Engineering A,1999,271:416–423.
    [56]LIU Z C, LIN J P, LI S J, et al. Effects of Nb and Al on the microstructures andmechanical properties of high Nb containing TiAl base alloys [J]. Intermetallics,2002,10:653–659.
    [57]LIN J P, ZHAO L L, LI G Y, et al. Effect of Nb on oxidation behavior of high Nbcontaining TiAl alloys [J]. Intermetallics,2011,19:131–136.
    [58]CHEN G L, WANG J G, SUN Z Q, et al. Continuous ordering in the TiAl–Nb system[J]. Intermetallics,1994,2:31–36.
    [59]WU X H. Review of alloy and process development of TiAl alloys [J]. Intermetallics,2006,14:1114–1122.
    [60]GRAVES J A, PEREPEZKO J H, WARD C H, et al. Microstructure development inrapidly solidified TiAl [J]. Scripta Materialia,1987,21:567–572.
    [61]MCCULLOUGH C, VALENCIA J J, LEVI C G, et al. Microstructural analysis ofrapidly solidified Ti–Al–X powders [J]. Materials Science and Engineering A,1990,124:83–101.
    [62]CHAN K S. Toughening mechanisms in titanium aluminides [J]. MetallurgicalTransactions A,1993,24:569–583.
    [63]MORRIS M A. Dislocation configurations in two phase TiAl alloys I. Annealed andindented structures [J]. Philosophical Magazine A,1993,68(2):237–257.
    [64]SRIRAM S, VASUDEVAN V K, DIMIDUKB D M. Dislocation structures anddeformation behavior of Ti–50/52Al alloys between77and1173K [J]. MaterialsScience and Engineering A,1995,192–193:217–225.
    [65]DENQUIN A, NAKA S. Phase transformation mechanisms involved in two–phaseTiAl–based alloys–II. Discontinuous coarsening and massive–type transformation [J].Acta Materialia,1996,44(1):353–365.
    [66]MORRIS M A. Dislocation mobility, ductility and anomalous strengthening oftwo–phase TiAl alloys: effects of oxygen and composition [J]. Intermetallics,1996,4:417–426.
    [67]CHEONG S W, SADOWITZ J D, BIELER T R. Teixture analysis of twinning and slipin polycrystalline Ti–46.3Al–1.9Nb–1.6Cr in compression at room [J]. ScriptaMaterialia,1996,35(5):661–667.
    [68]BOOTH A S, ROBERTS S G. The brittle–ductile transition in γ–TiAl single crystals [J].Acta Materialia,1997,45(3):1045–1053.
    [69]TIAN H, NEMOTO M. Effect of carbon addition on the microstructures andmechanical properties of γ–TiAl alloys [J]. Intermetallics,1997,5:237–244.
    [70]AOKI K, IZUMI O. Flow and fracture behaviour of Ni3(Al·Ti) single crystals tested intension [J]. Journal of Materials Science,1979,14(8):1800–1806.
    [71]HANAMURA T, TANINO M. A new type of twinning in TiAl–2wt%Mn intermetalliccompound [J]. Journal of Materials Science Letters,1989,8:24–28.
    [72]TSUJIMOTO T, HASHIMOTO K. Structures and properties of TiAl–base alloyscontaining Mn [J]. Materials Research Society Proceedings,1988,133:391.
    [73]HUG G, LOISEAU A, VEYSSIèRE P. Weak–beam observation of a dissociationtransition in TiAl [J], Philosophical Magazine A,1988,57(3):499–523.
    [74]JIN Y G, WANG J N, WANG Y, et al. Effect of Mn on formation of lamellar structurein a γ–TiAl alloy [J]. Materials Letters,2004,58:3756–3760.
    [75]HUANG S C, HALL E L. Characterazation of the effect of vanadium additions to TiAlbase alloys [J]. Acta Materialia,1991,39(6):1053–1060.
    [76]WANG D N, INUI H, LIN D L, et al. Effects of Sn additions on the microstructuresand tensile properties of two–phase TiAl alloys [J]. Intermetallics,1996,4:191–200.
    [77]SUN F S, FROES F H. Effect of Mg on the microstructure and properties of TiAlalloys [J]. Materials Science and Engineering A,2003,345:255–261.
    [78]HUANG B Y, HE Y H, WANG J N. Improvement in mechanical and oxidationproperties of TiAl alloys with Sb additions [J]. Intermetallics,1999,7:881–888.
    [79]LIU Q, NASH P. The effect of Ruthenium addition on the microstructure andmechanical properties of TiAl alloys [J]. Intermetallics,2011,19:1282–1290.
    [80]KONG F T, CHEN Y Y, LI B.H. Influence of yttrium on the high temperaturedeformability of TiAl alloys [J]. Materials Science and Engineering A,2009,499:53–57.
    [81]XIA K, LI W, LIU C. Effects of addition of rare earth element Gd on the lamellar grainsizes of a binary Ti–44Al alloy [J]. Scripta Materialia,1999,41(1):67–73.
    [82]SUN F S, CAO C X, KIM S E, et al. Effect of Nd on the microstructure and propertiesof a TiAl alloy [J]. Scripta Materialia,2001,44:2775–2780.
    [83]KIM Y W. Strength and ductility in TiAl alloys [J]. Intermetallics,1998,6:623–628.
    [84]ZHAO L, BEDDOES J, MORPHY D, et al. Microstructure and mechanical propertiesof a PM TiAl–W alloy processed by hot isostatic pressing [J]. Materials Science andEngineering A,1995,192–193:957–964.
    [85]WU X H, HU D. Microstructural refinement in cast TiAl alloys by solid statetransformations [J]. Scripta Materialia,2005,52:731–734.
    [86]IMAYEV V, IMAYEV R, KUZNETSOV A. Mechanical properties ofthermomechanically treated Ti–rich γ+α2titanium aluminide alloys [J]. ScriptaMaterialia,2003,49:1047–1052.
    [87]CAO R, LI L, CHEN J H, et al. Study on compression deformation, damage andfracture behavior of TiAl alloys Part II. Fracture behavior [J]. Materials Science andEngineering A,2009,527(10–11):2468–2477.
    [88]CALDERON H A, GARIBAY–FEBLES V, UMEMOTO M, et al. Mechanicalproperties of nanocrystalline Ti–Al–X alloys [J]. Materials Science and Engineering A,2002,329–331:196–205.
    [89]LIU B, LIU Y, ZHANG W, et al. Hot deformation behavior of TiAl alloys prepared byblended elemental powders [J]. Intermetallics,2011,19:154–159.
    [90]LEE T K, MOSUNOV E I, HWANG S K. Consolidation of a gamma TiAl–Mn–Moalloy by elemental powder metallurgy [J]. Materials Science and Engineering A,1997,239–240:540–545.
    [91]CHUBB S R, PAPACONSTANTOPOULOS D A, KLEIN B M. First–principles studyof L10Ti–Al and V–Al alloys [J]. Physical Review B,1988,38(17):12120–12124.
    [92]HAO Y L, XU D S, CUI Y Y, et al. The site occupancies of alloying elements in TiAland Ti3Al alloys [J]. Acta Materialia,1999,47(4):1129–1139.
    [93]LIU S M, ZHANG D L, JING X N, et al. Upper critical field of Ti and α–TiAl alloys:Evidence of an intrinsic type–II superconductivity in pure Ti [J]. Physical Review B,2000,62(13):8695–8698.
    [94]YU R, HE L L, YE H Q. Effect of W on structural stability of TiAl intermetallics andthe site preference of W [J]. Physical Review B,2002,65:184102.
    [95]DENG W, HUANG Y Y, WU D H, et al. Effects of Cr and Sn on defects and electrondensities in TiAl alloys [J]. Materials Letters,2002,56:593–596.
    [96]ZOPE R R, MISHIN Y. Interatomic potentials for atomistic simulations of the Ti–Alsystem [J]. Physical Review B,2003,68:024102.
    [97]BENEDEK R, VAN DE WALLE A, GERSTL S S A, et al. Partitioning of solutes inmultiphase Ti–Al alloys [J]. Physical Review B,2005,71:094201.
    [98]DANG H L, WANG C Y, YU T. Light impurity effects on the electronic structure inTiAl [J]. Journal of Physics: Condensed Matter,2006,18:8803–8815.
    [99]GONG H R. Electronic structure and related properties of Pd/TiAl membranes [J].Intermetallics,2009,17:562–567.
    [100] LI Y J, HU Q M, XU D S, et al. Strengthening of γ–TiAl–Nb by short–range orderingof point defects [J]. Intermetallics,2011,19:793–796.
    [101] YANG J L, XIAO C Y, XIA S D, et al. Site preference of ternary additions in TiAl: Adensity–fuctional cluster–model study [J]. Physical Review B,1992,46:13709–13712.
    [102] ZHOU L G, DONG L, HE L L, et al. Ab initio pseudopotential calculations on theeffect of Mn doped on lattice parameters of L10TiAl [J]. Intermetallics,2000,8:637–641.
    [103] SONG Y., YANG R, LI D, et al. A first principles study of the influence of alloyingelements on TiAl: Site Preference [J]. Intermetallics,2000,8:563–568.
    [104] JIANG C. First–principles study of site occupancy of dilute3d,4d and5d transitionmetal solutes in L10TiAl [J]. Acta Materialia,2008,56:6224–6231.
    [105] MUSIC D, SCHNEIDER J M. Effect of transition metal additives on electronicstructure and elastic properties of TiAl and Ti3Al [J]. Physical Review B,2006,74:174110.
    [106] VITOS L, KORZHAVYI P A, JOHANSSON B. Stainless steel optimization fromquantum mechanical calculations [J]. Nature Materials,2003,2:25–28.
    [107] LOWTHER J E. Theoretical study of potential high–pressure phases of TaON and aquaternary ZrTaO3N [J]. Physical Review B,2006,73:134110.
    [108] TAGA A, VITOS L, JOHANSSON B, et al. Ab initio calculation of the elasticproperties of Al1xLix(x≦0.20) random alloys [J]. Physical Review B,2005,71:014201.
    [109] SUN F S, KIM S E, CAO C X, et al. A study of Ti5Si3interface in TiAl alloys [J].Scripta Materialia,2001,45:383–389.
    [110] FANTA G, BOHN R, DAHMS M, et al. The effect of ultrafine grainedmicrostructures on the hot–workability of intermetallic/ceramic composites based onγ–TiAl [J]. Intermetallics,2001,9:45–49.
    [111] THOMASON P F, RAUCHS G, WITHERS P J. Multi–scale finite–element modellingof fatigue–crack growth in TiAl intermetallic matrix TiNb and Nb platelet [J]. ActaMaterialia,2002,50:1453–1466.
    [112] PENG L M, LI Z, LI H, et al. Microstructural characterization and mechanicalproperties of TiAl–Al2Ti4C2–Al2O3–TiC in situ composites by hot–press–aided reactionsynthesis [J]. Journal of Alloys and Compounds,2006,414:100–106.
    [113] CHEN C L, LU W, LIN J P, et al. Orientation relationship between TiB precipitateand γ–TiAl phase [J]. Scripta Materialia,2007,56:441–444.
    [114] FOROUZANMEHR N, KARIMZADEH F, ENAYATI M H. Synthesis andcharacterization of TiAl/α–Al2O3nanocomposite by mechanical alloying [J]. Journal ofAlloys and Compounds,2009,478:257–259.
    [115] WANG Y H, LIN J P, HE Y H, et al. Microstructural characteristics ofTi–45Al–8.5Nb/TiB2composites by powder metallurgy [J]. Journal of Alloys andCompounds,2009,468:505–511.
    [116] SUN T, WANG Q, SUN D L, et al. Study on dry sliding friction and wear propertiesof Ti2AlN/TiAl composite [J]. Wear,2010,268:693–699.
    [117] ZHANG W K, GAO L Z, LEI Y, et al. TiAl/B4C composite fabricated by high energyball milling and hot press sintering processes and its mechanical properties [J].Materials Science and Engineering A,2010,527:7436–7441.
    [118] XIANG L Y, WANG F, ZHU J F, et al. Mechanical properties and microstructure ofAl2O3/TiAl in situ composites doped with Cr2O3[J]. Materials Science and EngineeringA,2011,528:3337–3341.
    [119] HIROSE A, HASEGAWA M, KOBAYASHI K F. Microstructures and mechanicalproperties of TiB2particle reinforced TiAl composites by plasma arc melting process[J]. Materials Science and Engineering A,1997,239–240:46–54.
    [120] NODA T, OKABE M, ISOBE S, et al. Silicide precipitation strengthened TiAl [J].Materials Science and Engineering A,1995,192–193:774–779.
    [121] ZHANG L M, QIU G H, WU J S. A preliminary research on the microstructure andthe mechanical properties of TiAl–Ti5Si3dual phase alloys [J]. Scripta Materialia,1995,32(10):1683–1688.
    [122] HSU F Y, KLAAR H J, WANG G X, et al. Influence of Si content on microstructureof TiAl alloys [J]. Materials Characterization,1996,36:371–378.
    [123] BOHN R, FANTA G, KLASSEN T, et al. Mechanical behavior and advancedprocession of nano–and submicron–grained intermetallic compounds based on γ–TiAl[J]. Scripta Materialia,2001,44:1479–1482.
    [124] BOHN R, KLASSEN T, BORMANN R. Room temperature mechanical behavior ofsilicondoped TiAl alloys with grain sizes in the nano and submicron range [J]. ActaMaterialia,2001,49:299–311.
    [125] BOHN R, KLASSEN T, BORMANN R. Mechanical behavior of submicron–grainedγ–TiAl–based alloys at elevated temperatures [J] Intermetallics,2001,9:559–569.
    [126] LIU K W, ZHANG J S, WANG J G, et al. Formation of TiAl/Ti5Si3nanocompositeby mechanical alloying and subsequent annealing [J]. Scripta Materialia,36:1113–1117.
    [127] SENKOV O N, FROES F H, BABURAJ E G. Development of a nanocrystallinetitanium aluminide–titanium silicide particulate composite [J]. Scripta Materialia,1997,37:575–579.
    [128] DU Y J, RAO K P, CHUNG J C Y, et al. Phase transitions in reactive formation ofTi5Si3/TiAl in situ composites [J]. Metallurgical and Materials Transactions A,2000,31:763–771.
    [129] SENKOV O N, CAVUSOGLU M, FROES F H. Synthesis and characterization of aTiAl/Ti5Si3composite with a submicrocrystalline structure [J]. Materials Science andEngineering A,2001,300:85–93.
    [130] KLASSEN T, SURYANARAYANA C, BORMANN R. Low–temperaturesuperplasticity in ultrafine grained Ti5Si3–TiAl composites [J]. Scripta Materialia,2008,59:455–458.
    [131] MEI B C, MIYAMOTO Y. Investigation of TiAl/Ti2AlC composites prepared byspark plasma sintering [J]. Materials Chemistry and Physics,2002,75:291–295.
    [132] MEI B C, MING Y, ZHU J Q, et al. Preparation of TiAl/Ti2AlC composites withTi/Al/C powders by in–situ hot pressing [J]. Journal of Wuhan University ofTechnology,2006,21:14–16.
    [133] YANG F, KONG F T, CHEN Y Y, et al. Effect of spark plasma sintering temperatureon the microstructure and mechanical properties of a Ti2AlC/TiAl composite [J].Journal of Alloys and Compounds,2010,496(1–2):462–466.
    [134] WRZESINSKI W R, RAWERS J C. Self–propagating high–temperature synthesis ofTiAl–SiC and TiAl–Al2O3intermetallic composites [J]. Journal of Materials ScienceLetters,1990,9:432–435.
    [135] RAMASESHAN R, KAKITSUJI A, SESHADRI S K, et al. Microstructure and someproperties of TiAl–Ti2AlC composites produced by reactive processing [J].Intermetallics,1999,7:571–577.
    [136] LEE T W, LEE C H. Microstructure and mechanical properties of TiB2/TiAlcomposites produced by reactive sintering using a powder extrusion technique [J].Journal of Materials Science Letters,1999,18:801–803.
    [137] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First–principles simulation:ideas, illustrations and the CASTEP code [J]. Journal of Physics: Condensed Matter,2002,14:2717.
    [138] VANDERBILT D. Soft self–consistent pseudopotentials in a generalized eigenvalueformalism [J]. Physical Review B,1990,41:7892–7895.
    [139] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, andsurfaces: Applications of the generalized gradient approximation for exchange andcorrelation [J]. Physical Review B,1992,46:6671–6687.
    [140] MONKHORST H J, PACK J D. Special points for Brillouin–zone integrations–areply [J]. Physical Review B,1977,16:1748–1749.
    [141] WANG H Y, SI W P, LI S L, et al. First–principles study of the structural and elasticproperties of Ti5Si3with substitutions Zr, V, Nb, and Cr [J]. Journal of MaterialsResearch,2010,25:2317–2324.
    [142] MUNIR Z A, HOLT J B. Combustion and plasma synthesis of high–temperaturematerials [M]. New York: VCH,1990.
    [143] ZHANG M X, HU Q D, HUANG B, et al. Study of formation behavior of ZrC in theFe–Zr–C system during combustion synthesis [J]. International Journal of RefractoryMetals and Hard Materials,2011,29(5):596–600.
    [144] SONG M S, HUANG B, ZHANG M X, et al. Study of formation behavior of TiCceramic obtained by self–propagating high–temperature synthesis from Al–Ti–Celemental powders [J]. International Journal of Refractory Metals and Hard Materials,2009,27(3):584–589.
    [145] RUBIN B H, KORTH G E, WILLIAMSON R L. Fabrication of titaniumcarbide–alumina composites by combustion synthesis and subsequent dynamicconsolidation [J]. Communications of the American Ceramic Society,1990,73:2156–2157.
    [146] KUNRATH A O, STROHAECKER T R, MOORE J J, et al. Combustion synthesis ofmetal–matrix composites: part I, the Ti–TiC–Al2O3system [J]. Scripta Materialia,1996,34:175–181.
    [147] SINGH M. Thermodynamic analysis for the combustion synthesis of SiC–B4Ccomposites [J]. Scripta Materialia,34:923–927.
    [148] SAIDI A, CHRYSANTHOU A, WOOD J V, et al. Preparation of Fe–TiC compositesby the thermal–explosion mode of combustion synthesis [J]. Ceramics International,1997,23:185–189.
    [149] TOMOSHIGE R, MURAYAMA A, MATSUSHITA T. Production of TiB2–TiNcomposites by combustion synthesis and their properties [J]. Journal of the AmericanCeramic Society,1997,80:761–764.
    [150] ZHU P, LI J C M, LIU C T. Reaction mechanism of combustion synthesis of NiAl [J].Materials Science and Engineering A,2002,329–331:57–68.
    [151] ZHANG X H, ZHU C C, WEI Q, et al. Self–propagating high temperaturecombustion synthesis of TiC/TiB2ceramic–matrix composites [J]. Composites Scienceand Technology,2002,62:2037–2041.
    [152] KWON Y J, KOBASHI M, CHOH T, et al. Fabrication of TiB2/Al composite bycombustion synthesis of Al–Ti–B system [J]. Materials Transactions,2002,43:2796–2801.
    [153] XU Q, ZHANG X H, HAN J C, et al. Combustion synthesis and densification oftitanium diboride–copper matrix composite [J]. Materials Letters,2003,57:4439–4444.
    [154] ZHANG W F, ZHANG X H, WANG J L, et al. Effect of Fe on the phases andmicrostructure of TiC–Fe cermets by combustion synthesis/quasi–isostatic pressing [J].Materials Science and Engineering A,2004,381:92–97.
    [155] WILLIAMS J J, YE Y Y, KRAMER M J, et al. Theoretical calculations andexperimental measurements of the structure of Ti5Si3with interstitial additions [J].Intermetallics,2000,8:937–943.
    [156] WANG H Y, ZHANG N, WANG C, et al. First–principles study of the generalizedstacking fault energy in Mg–3Al–3Sn alloy [J]. Scripta Materialia,2011,65:723–726.
    [157] ERSCHBAUMER H, PODLOUCKY R, ROGL P, et al. Atomic modelling of Nb, V,Cr, and Mn substitutions in γ–TiAl. I: c/a ratio and site preference [J]. Intermetallics,1993,1:99–106.
    [158] PUGH S F. Relations between the elastic moduli and the plastic properties ofpolycrystalline pure metals [J]. Philosophical Magazine,1954,45:823–843.
    [159] HANAMURA T, UEMORI R, TANINO M. Mechanism of plastic deformation ofMn–added TiAl L10–type intermetallic compound [J]. Journal of Materials Research,1988,3:656–644.
    [160] GOUMA P I, DAVEY S J, LORETTO M H. Microstructure and mechanicalproperties of a TiAl–based powder alloy containing carbon [J]. Materials Science andEngineering A,1998,241:151–158.
    [161] KUMAGAI M, SHIBUE K, KIM M S, et al. Influence of chlorine on the oxidationbehavior of TiAl–Mn intermetallic compound [J]. Intermetallics,1996,4:557–566.
    [162] CROFTS P D, BOWEN P, JONES J P. The effect of lamella thickness on the creepbehaviour of Ti–48Al–2Nb–2Mn [J]. Scripta Materialia,1996,35:1391–1396.
    [163] CHEN S H, MUKHERJI D, SCHUMACHER G, et al. Microstructuralcharacterisation of defect structures in a TiAl–baseTi–47Al–2Nb–2Mn(at.%)+0.8vol.%TiB2alloy [J]. Materials Science and EngineeringA,2001,300:199–308.
    [164] QIU F, WANG H Y, LIU T, et al. Influence of Al content on the microstructure andmechanical property of the (Zr2Cu)100xAlxalloys [J]. Journal of Alloys andCompounds,2009,468:195–199.
    [165] AFRIN N, CHEN D L, CAO X, et al. Strain hardening behavior of a friction stirwelded magnesium alloy [J]. Scripta Materialia,2007,57:1004–1007.
    [166] LIAN J S, GU C D, JIANG Q, et al. Strain rate sensitivity of face–centered–cubicnanocrystalline materials based on dislocation deformation [J]. Journal Applied Physics,2006,99:076103.
    [167] BEDDOES J, ZHAO L, IMMARIGEON J P, et al. The isothermal compressionresponse of a near γ–TiAl+W intermetallic [J]. Materials Science and Engineering A,1994,183:211–222.
    [168] LUO J, LI M Q, YU W X, et al. The variation of strain rate sensitivity exponent andstrain hardening exponent in isothermal compression of Ti–6Al–4V alloy [J]. Materialsand Design,2010,31:741–748.
    [169] ASARO R J, SURESH S. Mechanistic models for the activation volume and ratesensitivity in metals with nanocrystalline grains and nano–scale twins [J]. ActaMaterialia,2005,53:3369–3382.
    [170] WANG G Y, JIANG Z H, JIANG Q, et al. Mechanical behavior of anelectrodeposited nanostructured Cu with a mixture of nanocrystalline grains andnanoscale growth twins in submicrometer grains [J]. Journal of Applied Physics,2008,104:084305.
    [171] SOMEKAWA H, SCHUH C A. Effect of solid solution elements on nanoindentationhardness, rate dependence, and incipient plasticity in fine grained magnesium alloys [J].Acta Materialia,2011,59:7554–7563.
    [172] DIOLOGENT F, KRUML T. Measurement of the effective activation volume in45XD titanium aluminides by repeated transient tests [J]. Materials Science andEngineering A,2008,487:377–382.
    [173] VIGUIER B, BONNEVILLE J, MARTIN J L. The mechanical properties of singlephase γ–Ti47Al51Mn2polycrystals [J]. Acta Materialia,1996,44:4403–4415.
    [174] PAUL J D H, APPEL F. Work–hardening and recovery mechanisms in gamma–basedtitanium aluminides [J]. Metallurgical and Materials Transactions A,2003,34:2103–2111.
    [175] CHEN X H, LU L. Work hardening of ultrafine–grained copper with nanoscale twins[J]. Scripta Materialia,2007,57:133–136.
    [176] PAULY S, DAS J, DUHAMEL C, et al. Effect of titanium on microstructure andmechanical properties of Cu50Zr50–xTix(2.5    [177] LIN Z J, ZHUO M J, ZHOU Y C, et al. Microstructural characterization of layeredternary Ti2AlC [J]. Acta Materialia,2006,54:1009–1015.
    [178] BARSOUM M W, ALI M, EL–RAGHY T. Processing and characterization of Ti2AlC,Ti2AlN, and Ti2AlC0.5N0.5[J]. Metallurgical and Materials Transactions A,2000,31:1857–1865.
    [179] KULKARNI S R, DATYE KUANG–HIS WU A V. Synthesis of Ti2AlC by sparkplasma sintering of TiAl–carbon nanotube powdermixture [J]. Journal of Alloys andCompounds,2010,490:155–159.
    [180] KHOPTIAR Y, GOTMAN I. Ti2AlC ternary carbide synthesized by thermalexplosion [J]. Materials Letters,2002,57:72–76.
    [181] GAUTHIER–BRUNET V, CABIOC’H T, CHARTIER P, et al. Reaction synthesis oflayered ternary Ti2AlC ceramic [J]. Journal of the European Ceramic Society,2009,29:187–194.
    [182] JIANG W H, SONG G H, HAN X L, et al. Synthesis of TiC/Al composites in liquidaluminium [J]. Materials Letters,1997,32:63–65.
    [183] CHEN Y L, YAN M, SUN Y M, et al. The phase transformation and microstructure ofTiAl/Ti2AlC composites caused by hot pressing [J]. Ceramics International,2009,35:1807–1812
    [184] NIIHARA K, SUZUKI Y, Strong monolithic and composite MoSi2materials bynanostructure design [J]. Materials Science and Engineering A,1999,261:6–15.
    [185] ZBIB H M, OVERMAN C T, AKASHEH F, et al. Analysis of plastic deformation innanoscale metallic multilayers with coherent and incoherent interfaces [J]. InternationalJournal of Plasticity,2011,27:1618–1639.
    [186] SUN B B, SUI M L, WANG Y M, et al. Ultrafine composite microstructure in a bulkTi alloy for high strength, strain hardening and tensile ductility [J].Acta Materialia,2006,54:1349–1357.
    [187] ZHAO Y H, BINGERT J F, LIAO X Z, et al. Simultaneously increasing the ductilityand strength of ultra–fine–grained pure copper [J]. Advanced Materials,2006,18(22):2949–2953.
    [188] ZOU B L, SHEN P, JIANG Q C. Reaction synthesis of TiC–TiB2/Al composites froman Al–Ti–B4C system [J]. Journal of Materials Science,2007,42:9927–9933.
    [189] SONG M S, ZHANG M X, ZHANG S G, et al. In situ fabrication of TiC particulateslocally reinforced aluminum matrix composites by self–propagating reaction duringcasting [J]. Materials Science and Engineering A,2008,473:166–171.
    [190] MANESH S H, FLOWER H M. Liquidus projection of Ti–Al–Si ternary system invicinity of γ alloys [J]. Materials Science and Technology,1994,10:674–680.
    [191] HORVITZ D, GOTMAN I. Pressure–assisted SHS synthesis of MgAl2O4–TiAl in situcomposites with interpenetrating networks [J]. Acta Materialia,2002,50:1961–1971.
    [192] CLARKE D R. Interpenetrating phase composites [J]. Journal of the AmericanCeramic Society,1992,75:739–759.
    [193] Alman D E. Reactive sintering of TiAl–Ti5Si3in situ composites [J]. Intermetallics,2005,13:572–579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700