用户名: 密码: 验证码:
负重跑台训练对衰老大鼠骨骼肌的作用效果及MGF基因表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界人口的老龄化已经成为许多国家需要面对的突出的社会问题。面对快速增长的老年人口,如何延长老年人的健康寿命,提高老年人的生活质量得到各国政府和社会各界的高度关注。预防衰老和延缓衰老已成为当前老年医学领域中的研究热点。近年来研究发现,老年人生活质量的下降与肌肉力量的下降有着重要的联系,老年人骨骼肌功能的衰退会加速人体整体的衰老进程,因此延缓骨骼肌衰老和恢复骨骼肌功能对提高老年人的健康水平和生活质量具有十分重要的意义。
     运动作为抗衰老手段和方法,已被诸多的研究所证实。但就如何预防和延缓由衰老引起的骨骼肌质量的减小和力量的衰退,科研人员正在进行积极探索。相关的研究多以有氧运动或短期力量训练为主,对骨骼肌刺激更明显的长期抗阻力量训练或负重训练的研究较少,并且缺少运动抗骨骼肌衰老的机理及综合指标的研究,作用效果也有待于进一步探索。
     本研究通过测量和比较大鼠骨骼肌腓肠肌重量及相对重量、骨骼肌总蛋白、肌糖原、肌酸激酶含量,骨骼肌组织病理学和电镜观察,运用分子生物学技术检测机械生长因子(MGF)、骨骼肌肌动蛋白(α-actin)、肌球蛋白重链(MHCⅠ、MHCⅡa、MHCⅡb、MHCⅡx)mRNA等指标,探讨大鼠骨骼肌增龄变化特点以及负重训练对青年大鼠和老年大鼠的影响,进一步揭示适宜的负重训练在预防和延缓骨骼肌衰老中的作用机制,为指导中老年人科学的健身,合理进行力量训练,提高健康水平和生活质量,提供实验依据和理论参考。
     实验分为三部分:
     一、大鼠骨骼肌增龄变化的特征及MGF基因表达的实验研究
     5月龄雄性Wistar健康大鼠6只(Q),17月龄大鼠6只(Z),30月龄大鼠6只(L),所有大鼠取完整腓肠肌,比较各组腓肠肌重量与相对重量、骨骼肌组织切片、电镜观察、骨骼肌组织生化以及分子生物学指标,探讨大鼠骨骼肌增龄变化特征及MGF基因随增龄表达的变化特点
     二、负重跑台训练对青年大鼠骨骼肌的作用效果及MGF基因表达的实验研究
     3月龄雄性Wistar健康大鼠56只,随机分为7组:安静对照组(QD)、小负荷短时间组(XD)、小负荷长时间组(XC)、中负荷短时间组(ZD)、中负荷长时间组(ZC)、大负荷短时间组(DD)、大负荷长时间组(DC),除对照组外其他各组进行为期8周负重跑台训练。8周后处死大鼠,测试指标同实验一,探讨负重跑台训练对青年大鼠骨骼肌的作用效果及MGF基因表达的变化。
     三、负重跑台训练对老年大鼠骨骼肌的作用效果及MGF基因表达的实验研究
     15月龄雄性Wistar健康大鼠56只,随机分为7组:安静对照组(LD)、小负荷短时间组(LXD)、小负荷长时间组(LXC)、中负荷短时间组(LZD)、中负荷长时间组(LZC)、大负荷短时间组(LDD)、大负荷长时间组(LDC),除对照组外其他各组进行为期8周负重跑台训练。8周后处死大鼠,测试指标同实验一,探讨负重跑台训练对老年大鼠骨骼肌的作用效果及MGF基因表达的变化。
     结果如下:
     1.腓肠肌重量与相对重量:L组和Z组大鼠腓肠肌总重量和相对重量均显著低于Q组(P<0.01),L组与Z组相比,L组大鼠显著下降(P<0.01);负重跑台训练使青年大鼠和老年大鼠各组腓肠肌总重量和相对重量普遍增高,说明骨骼肌质量随增龄而减少,负重跑台训练可以提高骨骼肌质量。
     2.骨骼肌组织生化指标:与Q组相比,L组和Z组大鼠骨骼肌蛋白、肌糖原、肌酸激酶含量出现显著下降(P<0.01或P<0.05)。负重跑台训练使青年大鼠和老年大鼠各组骨骼肌蛋白、肌糖原、肌酸激酶含量出现增高趋势。青年组以DC和ZC组最为显著(P<0.05),老年组以LZC最为显著(P<0.05),说明骨骼肌蛋白、肌糖原、肌酸激酶含量随增龄而减少,负重跑台训练可以提高骨骼肌蛋白、肌糖原、肌酸激酶含量。
     3.骨骼肌组织切片:光镜下观察Q组大鼠为正常骨骼肌组织学特征,L组和Z组出现不同程度的肌细胞萎缩或退行性改变特征,以L组变化最为明显。负重跑台训练使青年大鼠和老年大鼠骨骼肌组织学特征发生变化,提示负重跑台训练可以改善大鼠骨骼肌细胞形态结构,延缓大鼠骨骼肌衰老进程。
     4.骨骼肌组织电镜观察:电镜下观察Q组大鼠为正常骨骼肌超微结构,L组和Z组出现不同程度的肌原纤维排列异常和细胞器退行性改变特征,以L组变化最为明显。负重跑台训练使青年大鼠和老年大鼠骨骼肌超微结构发生变化,说明负重跑台训练可以改善大鼠骨骼肌超微结构,延缓大鼠骨骼肌衰老。
     5.骨骼肌组织分子生物学指标:与Q组相比,L组和Z组大鼠骨骼肌MGF mRNA、α-actin mRNA、MHCⅡa mRNA、MHCⅡxmRNA表达显著减少(P<0.01),MHCⅠmRNA表达没有明显变化,MHCⅡbmRNA表达显著增加(P<0.01)。负重跑台训练使青年大鼠和老年大鼠骨骼肌MGF mRNA、α-actin mRNA、MHCⅠmRNA、MHCⅡa mRNA、MHCⅡxmRNA表达出现增高趋势,青年组以DC和ZC组最为显著(P<0.01),老年组以LZC组最为显著(P<0.01)。MHCⅡbmRNA表达显著减少(P<0.01),青年组以DC和ZC组最为显著(P<0.01),老年组以LZC组最为显著(P<0.01)。说明随年龄增加骨骼肌MGFmRNA表达显著减少,负重跑台训练可以促进骨骼肌MGFmRNA表达增加,并使α-actin、MHC各型mRNA的表达发生变化。
    
     结论: 1.增龄使大鼠骨骼肌生化指标、微观结构和分子指标表现出递减趋势,伴随增龄MGF mRNA表达显著减少,骨骼肌合成代谢降低,骨骼肌功能下降。
     2. 8周负重跑台训练可以有效改善大鼠骨骼肌生化指标、病理学指标和分子生物学指标。不同的负荷和时间所起到的效果不同,青年大鼠以大负重长时间训练效果最好,老年大鼠以中等负荷长时间训练效果最好。
     3.对老年大鼠进行不同负荷和时间的负重训练,通过检测α-actin、MHCⅠ、Ⅱa、Ⅱx和Ⅱb mRNA的表达,显示老年骨骼肌具有明显的锻炼可塑性,适宜的强度和时间进行训练,可有效改善骨骼肌的收缩蛋白代谢。
     4.负重训练改善增龄大鼠骨骼肌的结构和功能,延缓老年大鼠骨骼肌衰老可能机制:MGF作为对力量训练敏感指标,可通过适宜的力的刺激,激活MGF的表达,从而通过诱导骨骼肌肥大等途径提高骨骼肌代谢水平和运动能力。
The aging of the word’s population has become prominent social problems in many countries. In the face of the rapidly growing elderly population, how to extend the life of the elderly and improve the quality of the elderly have been great concern by the governments and the community. The prevention of aging and anti-aging has become hotspot research in gerontology. Recent studies have found that there have been important links between the decline of life quality and decline of muscle strength of the elderly. The decay of muscle function accelerate the aging process of human body, so it is very important of slowing down skeletal muscle aging and restoring skeletal muscle to improve the health and life quality of the elderly.
     Many researches have confirmed that exercise is methods of anti-aging, but the researchers actively explored how to prevent and delay the decrease of skeletal muscle mass and strength decline which were caused by the aging. The most research are about aerobic and short term strength training, the patterns of long resistance and weight training which are effective to the skeletal muscle are lack, especially be short of researches in mechanism and comprehensive index of exercise interference skeletal muscle aging, and the effect also need to be further research.
     In the study, measuring and comparing gastrocnemius muscle weight, relative weight, muscle total protein, muscle glycogen, creatine kinase, muscle histopathology and electron microscopy, mechanical growth factor, actin, myosin heavy chain mRNA, we discuss the age-related changes of rat skeletal muscle and effect of weight training on young and aged rats, reveal further the mechanism of appropriate weight training in the prevention and delay skeletal muscle aging, to provide experimental evidence and theoretical reference to guide the science fitness and improve health and quality life.
     Experiment was divided into three parts.
     1. Experiment of age-related changes and MGF gene expression of rat skeletal muscle
     six 5 month (Q), six 17 month (Z), six 30 month (L) male Wistar rats were taken full gastrocnemius to compare the weight and relative weight, skeletal muscle biopsy, electron microscopy, molecular biology index of three groups, in order to explore the characteristics of age-related changes and MGF gene expression of rat skeletal muscle.
     2. Experiment of the effect of weighting training and MGF gene expression on young rat skeletal muscle
     Fifty-six 3 month male Wistar rats were randomly divided into 7 groups: sedentary control group (QD), small load short time group (XD), small load long time group (XC), middle load short time group (ZD), middle load long time group (ZC), big load short time group (DD), and big load long time group (DC). Except sedentary control group, other groups had done weight treadmill training. After 8 weeks, all rats were killed, indicators were the same with experimental 1, and we discussed the effect of weight training on young rat skeletal muscle and MGF gene expression changes.
     3. Experiment of the effect of weighting training and MGF gene expression on young rat skeletal muscle
     Fifty-six 15 month male Wistar rats were randomly divided into 7 groups: sedentary control group (LD), small load short time group (LXD), small load long time group (LXC), middle load short time group (LZD), middle load long time group (LZC), big load short time group (LDD), and big load long time group (LDC). Except sedentary control group, other groups had done weight treadmill training. After 8 weeks, all rats were killed, indicators were the same with experimental 1, and we discussed the effect of weight training on old rat skeletal muscle and MGF gene expression changes.
     Results
     1. Gastrocnemius muscle weight and the relative weight: compared with group Q, rat gastrocnemius muscle weight and the relative weight in group L and group Z were significantly higher(P<0.01); Compared with group Z, group L were significantly lower(P<0.01). Weight treadmill training increased gastrocnemius muscle weight and the relative weight in all young groups rats and old groups rats. Results indicated that skeletal muscle mass decreased with age, and weight treadmill training can alleviate the trend.
     2. Skeletal muscle biochemical indicators: compared with group Q, skeletal muscle protein, muscle glycogen, creatine kinase level significantly decreased in group L and group Z (P<0.01, P<0.05). Weight treadmill training could increase skeletal muscle protein, muscle glycogen, creatine kinase level of all young and old groups , group DC and group ZC had more obvious appearance in young rats (P<0.05), group LZC had more obvious appearance in old rats (P<0.05). Result indicated that skeletal muscle protein, muscle glycogen, creatine kinase level decreased with age, and weight treadmill training could alleviate the trend.
     3. Skeletal muscle biopsy: rats in group Q were normal skeletal muscle characteristics through light microscope, and group L and group Z appeared different degree of muscle cell atrophy or degenerative changes characteristics, especially the rats in group L. Weight training changed the skeletal muscle histology characteristics of young rats and old rats. Result indicated that weight training changed skeletal muscle cell morphology and slowed down skeletal muscle aging.
     4. Skeletal muscle electron microscopy: rats in group Q were normal skeletal muscle ultrastructure through electron miscroscopy, and group L and group Z appeared different degree of abnormal arrangement myofibrils and organelles degenerative changes characteristic, especially the rats in group L. Weight training changed the skeletal muscle ultrastructure of young rats and old rats. Result indicated that weight training changed skeletal muscle ultrastructure and slowed down skeletal muscle aging.
     5. Skeletal muscle molecular biological markers: compared with group Q, skeletal muscle MGF mRNA、α-actin mRNA、MHCⅡa mRNA、MHCⅡx mRNA expression in group L and group Z were lower (P<0.01), MHCⅠmRNA expression did not change, and MHCⅡb mRNA expression was higher (P<0.01). Weight training could increase MGF mRNA、α-actin mRNA、MHCⅠmRNA、MHCⅡa mRNA、MHCⅡx mRNA expression of young rats and old rats, group DC and group ZC had more obvious appearance in young rats (P<0.01), and group LZC had more obvious appearance in old rats (P<0.01). It could decrease MHCⅡb mRNA expression (P<0.01), group DC and group ZC had more obvious appearance in young rats (P<0.01), and group LZC had more obvious appearance in old rats (P<0.01). Result indicated that skeletal muscle MGF mRNA expression decreased with aging, but weight training increased skeletal MGF mRNA expression, and changeα-actin, various types MGF mRNA expression.
     Conclusion
     1. Rats skeletal muscle biochemical indicators, microscopic structure, and molecular indicators showed degression trend, MGF mRNA expression was significant low, anabolism reduced and function decreased with ageing.
     2. 8-week weight training could effective improve skeletal muscle biochemical indicators, pathological indicators and molecular biological indicators. The effect of different load and time on skeletal muscle was different, big load long time group had more appearance in young rats, and middle load long time group had more appearance in old rats.
     3. After different load and time weight training,α-actin、MHCⅠ、Ⅱa、Ⅱx andⅡb mRNA expression of old rat skeletal muscle were tested, we founded that aged skeletal muscle had obvious trainability, and proper intensity and time training could effectively improve skeletal muscle protein metabolism.
     4. Weight training improved structure and function of aging skeletal muscle, and delayed skeletal muscle aging. Its mechanism: MGF as a sensitive indicator was stimulated to express by appropriate force, which improved skeletal muscle metabolic level and athletic ability through some channels such as induced skeletal muscle hypertrophy.
引文
[1]民政部《2006年民政事业发展统计报告》.中华人民共和国民政部, http://www.mca.gov.cn/,2007.
    [2]Riley DA, Bain J L, Romatowski J G, et al. Skeletal muscle fiber atrophy: altered thin filament density changes slow fiber force and shortening velocity[J]. Am J Physiol Cell Physiol,2005,288(2):C360-365.
    [3]Sayer A A, Dennison E M, Syddall H E, et al. The developmental origins of sarcopenia: using peripheral quantitative computed tomography to assess muscle size in older pepple[J]. J Gerontol A Biol Sci Med Sci,2008,63(8):835-840.
    [4]Robinson S M, Jameson K A, Batelaan S F, et al. Diet and its relationship with grip strength in community-dwelling older men and women: the Hertfordshire Cohort Study[J]. J Am Geriatr Soc,2008,56(1):84-90.
    [5]Maria L, Maria A, Singh F, et al. Exercise training effects on skeletal muscle plasticity and IGF-1 receptors in frail elders[J]. AGE,2005,27(2):117-125.
    [6]Yang S Y, Goldspink G. Different roles of the IGF-1Ec peptide(MGF) and mature IGF-1 in myoblast proliferation and differentiation[J]. FEBS Lett,2002,522:156-160.
    [7]Hameed M, Lange K H, Anderson J L, et al. The effect of recombinant human growth hormone and resistance training on IGF-1mRNA expression in the muscle of elderly men[J]. J Physiol,2004,555,231-240.
    [8]韩明向,涂晋文,周文泉.现代延缓衰老学[M].北京:人民卫生出版社,2004,78.
    [9]张学梓,钱秋海,郑翠娥.中医养生学!M].北京:中国医药科技出版社,2002:77.
    [10]张悦,王丽敏,韩银淑.中西医结合抗衰老研究的现状及展望[J].齐齐哈尔医学院学报,2000,21(3):333-335.
    [11]Herrera B, Alvarez A M, Sanchez A, et al. Reactive oxygen species(ROS) mediates the mitochondrial dependent apoptosis induced by transforming growth factor(beta) in fetal hepatocytes[J]. FASEB J,2001,15(3):741-751.
    [12]Stadtman E R, Levine R L. Free dadical-mediated oxidation of free amino acids and amino acid residues in proteins[J]. Amino Acids,2003,25(3-4):207-218.
    [13]Levine R L. Carbonyl modified proteins in cellular regulation, aging, and disease[J]. Free Radical Bio Med,2002,32(9):790-796.
    [14]陈瑾.自由基与衰老关系的研究进展[J].川北医学院学报,2004,19(1):207-209.
    [15]王春霖,郭芳,王永利.自由基与衰老[J].河北医科大学学报,2005,26(4):308-311.
    [16]Terman A, Brunk U T. Oxidative stress, accumulation of biological‘garbage’, and aging[J]. Antioxid Redox Signal,2006,8(1-2):197-204.
    [17]Brunk U T, Teman A. Lipofuscin: mechanisms for age-related accumulation and influence on cell function[J]. Free Radic Biol Med,2002,33(5):611-619.
    [18]Moorthy K, Yadav U C, Siddiqui M R, et al. Effect of hormone replacement therapy in normalizing age related neuronal markers in different age groups of naturally menopausal rats[J]. Biogerontology,2005,6(5):345-356.
    [19]Terman A, Brunk U T. The aging myocardium: roles of mitochondrial damage and lysosomal degradation[J]. Heart Lung Circ,2005,14(2):107-114.
    [20]Grune T, Merker K, Jung T, et al. Protein oxidation and degradation during postmitotic senescence[J]. Free Radic Biol Med,2005,39(9):1208-1215.
    [21]Inal M E, Kanbak G, Sunal E. Antioxidant enzymen activities and malondial-dehyde levels related ti aging[J]. Clin Chim Acta,2001,305(1):75-80.
    [22]Tarazona R, Solana R, Ouyang Q, et al. Basic biology and clinical impact of immunosenescence[J]. Exp Gerontol,2002,37:183
    [23]邢文英,张,丁一等.不同年龄大鼠免疫器官的衰老细胞[J].解剖学杂志,2006,29(6):731-733.
    [24]夏云阶.胸腺、免疫与衰老[J].中国老年保健医学,2004,2(2):3-6.
    [25]Malaguaxnexa L, Fexlito L, Imbesi R M, et al. Immunosenescence: a review[J]. Arch Gexontol Gexiatx,2001,32:1.
    [26]Johansson A, Koskiniemi S, Gottfridsson P, et al. Multiple-locus variable-number tandem repeat analysis for typing of Staphylococcus epidrrmidis[J]. J Clin Microbiol,2006,44(1):260-265.
    [27] Wang W, Wu J, Zhang Z, et al. Characterization of regulatory elements on the promoter region of p16 (INK4a) that contribute to over-expression of p16 in senescent fibroblasts[J]. JBiol Chem,2001,276(52):48655-48661.
    [28]Finch C E, Tanzi R E. Genetics of aging[J]. Science,1997,278(5337):407-411.
    [29]Stevens J B, Shephered J M, Vories P A, et al. A mixture of mivacurium and rocuromium is comparable in clinical onset to succinylochline[J]. J Clin Anesth,1996,8(6):486-490.
    [30]Susin S A, Lorenzo H K, Zamzami N, at al. Molecular characterization of mitochondrial apopotosis inducing factor[J]. Nature,1999,397(4):441-445.
    [31]Harley C B, Futcher A B, Greider C W. Telomeres shorten during ageing of human fibroblasts[J]. Nature,1990,345(6274):458-460.
    [32]Cooper J P. Telomere transitions in yeast: the end of the chromosome as we know it[J]. Current Opinion in Genetics and Development,2000,10:169-177.
    [33]Allsopp R C, Vaziri H, Patterson C, et al. Telomere length predicts replicative capacity of human fibroblasts[J]. Proc Natl Acad Sci USA,1992,89:10114-10119.
    [34]Tzukerman M, Selig S, Skorecki K. Telomeres and teloemerase in human health and disease[J]. J Pediatr Endocrinol Metab,2002,15(3):229-240.
    [35]Bodnar A G, Quellete M, Frolkis M, et al. Extension of life-span by introduction of telomerse into normal human cells[J]. Science,1998,279(5349):349-352.
    [36]Rufer N, Migliaccio M, Antonchuk J, et al. Transfer of the human telomerase reverse transcriptase (TERT) gene into T lymphocytes results in extension of replicative potential[J]. Blood,2001,98(3):597-603.
    [37]Barazzoni R, Short K R, Nair K S. Effect of aging on mitochondrial DNA copy number and cytochromec oxidese gene expression in rat skeletal muscle, liver and heart[J]. J Biol Chem,2000,275(5):3343-3347.
    [38]Khaidakov M, Heflich R H, Manjanatha M G, et al. Accumulation of point mutations in mitochondrial DNA of aging mace[J]. Mutat Res,2003,52b(1-2):1-7.
    [39]Lee H C, Lu CY, Fahn H J, et al. Aging and smoking associated alteration in the relative content of mitochondrial DNA in human lung[J]. FEBS Lett,441(2):292-296.
    [40]陈彩珍,卢健.有氧运动训练对增龄小鼠线粒体DNA缺失的影响[J].中国运动医学杂志,2002,21(4):364-366.
    [41]药立波.医学分子生物学[M].北京:人民卫生出版社,2004,257-262.
    [42]刘思金,马学军,陈星彪,等.绝经后体育教师与非运动老年女性骨密度和骨代谢生化标志物的研究[J].中国运动医学杂志,2001,20(2):151-153.
    [43]Burger E H, J Kelein-Nulend, A Vander Plas, et al. Function of osteocytes in bone-their role in mechance transduction[J]. J Nutr,1995,125:2020-2023.
    [44]陈吉棣.有氧运动、基因表达和慢性病[J ].中国运动医学杂志,2002, 21 (1) : 61-65.
    [45]Latham N K, Anderson C S, Lee A, et al. A randomized, controlled trail of quadriceps resistance exercise and vitamin in D in frail older people: the Frailty Interventions Trial in Elderly Subject (FITNESS)[J]. Am Geriatr Soc,2003,51(4):291-299.
    [46]沈志祥.运动和衰老[J].体育科学,2004,24(7):37-43.
    [47]Edstrom E, Altun M, Hagglund M, et al. Atrogion-1/MAFbx and MuRF1 Are Downregulated in Aging-Related Loss of Skeletal Muscle[J]. J Gerontol A Biol Sci Med Sci,2006,61(7):663-674.
    [48]Yong A, et al. Size and strength of the quadriceps muscle of old and young women[J]. Eur J Clin Invest,1984(14):282-287.
    [49] Gary R Hunter. Effect of Resistance Training on Older Adults[J]. Sport Med, 2004, 34 (5): 329-348.
    [50]Goodpaster B, Won Park S, Harris T B, et al. The loss of skeletal muscle strength, mass, and quality in older adults: The Health, Agig and Body Composition Study[J]. Gerontol Biol Sci Med Sci,2006,61A:1059-1064.
    [51]Walter R Frontera, Virginia A Hughes, Roger A Fielding, et al. Aging of skeletal muscle: a 12-yr longitudinal study[J]. J Appl Physiol,2000,88:1321-1326.
    [50]McMurdo ME and L. M. RENNIE. Improvements in quadriceps strength with regular seated exercise in the institutionalized elderly. Arch. Phys. Med. Rehabil. 75:600-603, 1994.
    [51] www.the free encyclopedia.com. Wikipedia网站
    [54]邓树勋.运动生理学[M].北京:高等教育出版社,1999:473.
    [55]Hakkinen K, Hakkinen A. Muscle cross-sectional area force production and relaxation characteristics in women at different ages[J]. Eur J Appl Physiol,1991,62:410-414.
    [56]Susan. V. Brooks ,John. A Faulker. Contraction - induced injury :recovery of skeletal muscles in young and old mice [J] . Am. J .Physiol ,1990 , (258) :C436 - C442.
    [57]Balagopal P, Rooyackers O E, Adey D B, et al. Effect of aging on in vivo synthesis of Skeletal muscle myosin heavy-chain and sarcoplasmic protein in human[J]. Am J Physiol Endocrinol Metab,1997,273:E790-800.
    [58]Gallagher D, Visser M, De Meersman R E, et al. Appendicular skeletal muscle mass: effects of age, gender, and ethnicity[J]. J Appl Physiol,1997,83:229-239.
    [59]Janssen I, Heymsfield S B, Wang Z M, et al. Skeletal muscle mass and distribution in 468 men and women aged 18-88yr[J]. J Appl Physiol,2000,89:81-88.
    [60]Takahashi K, Takahashi HE, Nakadaira H, et al.Different changes of quantity due to aging in the psoas major and quadriceps femoris muscles in women[J]. Muscul skeleton Neuronal Interact. 2006 Jun;6(2):201-205.
    [61]Marybeth. Brown change in fiber size , not number , in ageing skeletal muscle [J] . Age and Ageing ,1987 ,(16) :244 - 248.
    [62]Marko T Korhonen, Alexander Cristea, Markku Alen, et al. Aging, muscle fiber tybe, and contractile function in sprint-trained athletes[J]. J Appl Physiol,2006,101:906-917.
    [63]刘宇,彭千华,田石榴.老年人肌力流失与肌肉疲劳的肌动图研究[J].体育科学,2007,27(5):57-64.
    [64]Rantanen Tetal.Gri pstren gthchan gesover 27 yr in Japanese-American men[J]. J Appl Physiol, 1998 ,85 :2047-2053
    [65]Metzer D E. Age dependence of Oympic weightlifting ability. Med Sci Sports Exerc, 1994,26 :1053-1067 .
    [66]Hakkinen K, et al. Acute hormone responses to heavy resistance lower and upper extremity exercise in young versus old men[J]. Eur J Appl Physiol, 1998,77:312 -319 .
    [67]Klein C, et al. Fatigue and recovery contractile properties of young and elderly men[J]. Eur J Appl Physiol,1998,57:684-690.
    [68]Visser M, Goodpaster BH, Kritchevsky S B, Newman AB, Nevitt M, Rubin SM, Simonsick EM, Harris TB.Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. [J] Gerontol A Biol Sci Med Sci. 2005 Mar;60(3):324-330.
    [69]Tzankoff, S. P. and A. H. Norris. Longitudinal changes in basal metabolic rate in man[J].J Appl. Physiol,1978,33:536-539,.
    [70]Sinaki M, M C McPhee, S F Hodgson. Relationship between bone mineral density of spine and strength of back extensors in healthy postmenopausal women[J]. Mayo Clin Proc. 1986,61:116-122.
    [71]Bevier W C, R A Wiswell, G. Pyka, et al. Relationship of body composition, muscle strength, and aerobic capacity to bone mineral density in older men and women[J]. J Bone Miner Res,1989, 4:421-432.
    [72]Kolterman O G, J Insel, M Saekow, et al. Mechanisms of insulin resistance in human obesity: evidence for receptor and postreceptor defects.[J] J. Clin. Invest,1980,65:1272-1284.
    [73]Bonnefoy M.Sarcopenia, muscle function and prevention[J].Nut Clin Metab,2004,18:175-180.
    [74]Water D.L, Baumgartner R.N, Garry, P.J. Sarcopenia: current perspectives. [J] The Journal of Nutrition, Health&Aging,2000,4(3):133-139.
    [75]Melton L J, Khosla S, Crowson C S, et al. Epidemiology of Sarcopenia[J]. J Am Geriatr Soc,2000,48(6):625-630.
    [76]Vandervoort A A, T B Symons. Function and Metabolic Consequences of Sarcopenia[J]. Canadian Journal Of Applied Physiology,2001,26(1):90-101.
    [77] [192]Greenlund L J S, Nair K S. Sacopenia-consequences, mechanisms, and potential therapies[J]. Mech Aging Dev,2003,(124):287-299.
    [78]Van Den Beld A W,De Jong F H ,Grobbee D E ,et al .Measures of bioavailable serum testosterone and est radiol and their relationships wit h muscle st rengt h ,bone density ,and body composition in elderly men [J] . Clin Endo Metab ,2000 , (85) :3276-3282.
    [79]Roubenoff R. Sarcopenia : a major modifiable cause of f railty in t he elderly [J] . Nut Health Aging,2000 ,4 (3) : 140-142.
    [80]Liu W, Thomas S G, Asa S L, et al. Myostatin is a skeletal muscle target of growth hormone anabolic action[J]. J.Clin.Enocrinol,2003,88:5490-5496.
    [81]Cooper R.N, Butler-Browne G.S, Mouly V. Human muscle stem cells[J]. Curr. Opin. Pharmacol,2006,6 (3), 295–300.
    [82]Gibson M.C, Schultz E. Age-related differences in absolute numbers of skeletal musclesatellite cells[J]. Muscle Nerve,1983,6:574–580.
    [83]Kadi F, Charifi N, Denis C, et al. Satellite cells and myonuclei in young and elderly women and men[J]. Muscle Nerve,2004a,29:120-127.
    [84]Conboy I.M, Conboy M.J, Wagers A.J, et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment[J].Nature,2005,433, 760–764.
    [85]Carlson B.M, Faulkner J.A. Muscle transplantation between young and old rats: age of host determines recovery[J]. Am J Physiol,1989,256:1262–1266.
    [86]Brown W F. A method for estimating the number of motor units in thenar muscles and the changes in motor unit count with aging[J]. J Neurol Neurosurg Psych,1972,35:845-852.
    [87]Doherty, Brown W F. The estimated numbers and relative size of thenar motor units as selected by multiple point stimulation in young and older adults[J]. Muscle Nerve,1993,16:355-366.
    [88]Gutmann E, Hanzlikova. Faet and slow motor units in aging[J]. Gerontology,1976,22:280-300.
    [89]Avan A S, Holly E Syddall, et al. Falls, sarcopenia and growth in early life[J]. Am J Epidemiol,2006,164(7):665-671.
    [90]Roth S M, R E Ferrel, B F Hurley. Strength Training for the Prevention and Treatment of Sarcopenia[J]. The Journal of Nutrition, Health & Aging,2000,4(3):143-155.
    [93]Pette D, R S Staron. Mammalian skeletal muscle fiber type transitions[J]. Int Rev Cytol,1997,170:143-223.
    [94] [193]y chain expression[J]. Med Sci Sports Exerc,2001,33(10):1674-1681.
    [95] [195]Jaschiski Frank, Michael S, et al. Changes in myosin heavy chain mRNA and protein isforms of rat muscle during forced contractile activity[J]. Am J Physiol,1998,274(43):C365-370.
    [96] [194]Hortobagyi T, Dempsey L, Fraser D, et al. Changes in muscle strength, muscle fiber size and myofibrillar gene expression after immobilization and retraining in human[J]. J Physiol,2000,524,293-304.
    [97] [188]Short K R, Vittone J L, Bigelow M L, et al. human skeletal muscle with age and endurance exercise training[J]. Appl Physiol,2005,99(1):95-102.
    [98] [189]Balagopal P, Schimke J C, Ades P, et al. Age effect on transcript levels and synthesis rate of muscle MHC and response to resistance erxrcise[J]. Am J Physiol Endocrinol Metab,2001,280:E203-208.
    [99] [190]Sullivan V K, Powers S K, Criswell D S, et al. Myosin heavy chain composition in young and old rat skeletal muscle: effects of endurance exercise[J]. J Appl Physiol,1995,78(6):2115-2120.
    [100] [191]Marx J O, Kraemer W J, Nindl BC, et al. Effects of going on human skeletal muscle myosin heavy-chain mRNA content and protein isform expression[J]. J Gerontol A BIol Sci Med Sci,2002,57(6):B232-238.
    [101]Manning J M, et al. Suppression of puberty in rats by exercise: effects on hormone levels and reversal with GnRH infusion[J]. Am J Physiol,1991,260(29):R717-723.
    [102] [187]刘丰彬.负重训练和补充大豆多肽干预大鼠骨骼肌衰老效果及机制研究[D].河北师范大学,石家庄, 2009.
    [103]Kreamer W J, et al. Changes in hormonal concentration after different heavy-resistance exercise protocols in women[J]. Int J Sports Med,1993,75(2):594-604.
    [104]Philip B. Clenbuterol prevents or inhibits loss of specific mRNAs in atrophying rat skeletal muscle[J]. Am J Physiol,1988,254(Cell Phtsiol.23):657-660.
    [105]Joanna Szczepanowska. Effects of denervation and muscle inactivity on organization of F-actin[J]. Muscle Nerve,1998,21:309-317.
    [106]ilty D A. Disproportionate loss of filaments in human soleus muscle after 17-day bed rest[J]. Muscle Nerve,1998,21:1280-1289.
    [107]Thomason D B. Altered actin and myosin expression in muscle during exposure to microgravity[J]. J Appl Physiol,1992,73(2):90-93.
    [108]Li M, Cai D Q, Wang Y, et al. Two novel myogenic factors were identified and isolated by sequential isoelectric focusing electrophoresis[J]. Electrophoresis,2000,21:289-292.
    [109]Li M, Chan K M, Cai D Q, et al. identification and purification of an intrinsic human muscle myogenic factor that enhance muscle repair and regeneration[J]. Archives of Biochemistry and Biophysics,2000,384:263-268.
    [110]Cai D Q, Jao Z X, Li M, et al. Analysis of age-related changes of aqueous proteins in ratsoleus using two-dimensional eletrophoesis[J]. Proceedings of the Annual Conference of the IEEE Engineering in Medicine and Biology Society,1998,(20):2772-2774.
    [111]Phillips T, Leeuwenburgh C. Muscle fiber specific apoptosis and TNF alpha signaling in Sarcopenia are attenuated by life-long calorie rest riction [J] . Faseb J ,2005,(19): 668-670.
    [112]Arden K C. Foxo: Linking new signaling pathways[J]. Mol Cell. 2004 May 21,14(4):416-418.
    [113]Sandri M, Sandri C, Gilbert A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy[J].Cell. 2004 Apr 30,117(3):399-412.
    [114]Kostek M C, Delmonico M J, Reichel J B, et al. Muscle strength response training is influenced by insulin-like growth factor 1 genotype in older adults[J]. J Appl Physiol,2005,98:2147-2154.
    [115]Fatouros I G, Kambas A, Katrabasas I, et al. Resistance training and detraining effects on flexibility performance in the elderly are intensity-dependent[J]. J Strength Cond Res,2006,20(3):634-642.
    [116]Tracy R L, et al. Muscle quality.Ⅱ.Effect of strength training in 65 to 75yr-old men and women[J]. J Appl Physiol,1999,86:195-201.
    [117]Kalapotharakos V I, Tokmakidis S P, Smilios I, et al. Resistance training in older women: effect on vertical jump and functional performance[J]. J Sports Med Phys Fitness,2005,45(4):570-575.
    [118]age S T, Amory J K, Bowman F D, et al. Exogenous testosterone (T) alone or with finasteride increase physical performance, grip strength, and lean body mass in older men with low serum T[J]. J Clin Endocrinol Metab,2005,90(3):1502-1510.
    [119]Papadakis M A, Grady D, Black D, et al. Growth hormone replacement in healthy older men improves body composition but not functional ability[J]. Ann Intern Med,1996,124:708-716.
    [120]Castaneda C, Charnley J M, Evans W J, et al. Elderly women accommodate to a low-protein diet with losses of body cell mass, muscle function, and immune response[J]. Am J Clin Nutr,1995,62:30-39.
    [121]张宏,严隽陶,徐俊,等.静力训练结合推拿手法治疗对老年大鼠蛋白质代谢的影响[J].上海中医药大学学报,2004,18(1):35-37.
    [122]Florini J R, Ewton D Z, Coolican S A. Growt h hormone and insulin like growt h factor system in myogenesis [J]. Endocr Rev,1996,7(5):481-517.
    [123]Yang S Y, Goldspink G. Different roles of the IGF-IEc peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation[J]. FEBS Letters,2002,522(1):156~160.
    [124]Musaro A, McCullagh K, Paul A, et al. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle[ J ]. N at Genet,2001,2 (2):195-200.
    [125] [177]Hill M, Goldspink G. Expression and splicing of the insulin like growt h factor gene in rodent muscle is associated with muscle satellite(stem) cell activation following local tissue damage[J]. J Physiol,2003,549(2):409-418.
    [126]Riddoch-Contreras J, Yang S Y, Dick J R, et al. Mechano-growth factor, an IGF-I splice variant, rescues motoneurons and improve muscle function in SOD1(G93A)mice[J]. Exp Neurol,2009,215(2):281-289.
    [127]Aperghis M, Johnson I P, Cannon J, et al. Different levels of neuroprotection by two insulin-like growth factor-1 splice variants[J]. Brain Resh,2004,1009(1-2):213-218.
    [128]Skarli M, Yang S Y, Bouloux P, et al. Upregulation and alternative splicing of the IGF-1 gene in the rabbit heart following a brief pressure/volume overload[J]. J Physiol,1998,509:192P.
    [129]Goldspink G, Goldspink P. Use of the insulin-like-growth factor 1 splice variant MGF for the prevention of myocardial damage.US patent,20050048028A1.2005-03-03.
    [130]鲜成玉.机械拉伸对大鼠成骨细胞生理活性及IGF-1、力生长因子表达的影响[D].重庆:重庆大学,2005.
    [131] [175]Chakravarthy M V, Davis B S, Booth FW. IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle[J].J Appl Physiol,2000,89:1365-1379.
    [132] [171] [176]Owino V, Yang SY, Goldspink G.Age-related loss of skeletal muscle function and the inability to express the autocrine form of insulin-like growth factor-1 (MGF) in response to mechanical overload[J].FEBS Lett,2001,505:259–263.
    [133]Hameed M, Harridges D, Goldspink G, et al.Sarcopenia and hypertrophy: a role for insulin-like growth factor-1 in aged muscle?[J].Exerc sport Sci Rev,2002,30:152-191.
    [134] [179]Hameed M, Orrell R W, Cobbold M, et al . Expression of IGF-I Splice Variants in Young and Old Human Skeletal Muscle after High Resistance Exercise[J]. J Physiol,2003a,547:247-254.
    [135]Frost R A, Nystrom G J, Lang C H. Regulation of IGF-1mRNA and signal stransducers and activators of transcription-3 and-5 by GH in C2C12 myoblasts[J]. Endo, 2002,143:492-503.
    [136]Sadowski C L, Wheeler T T,Sadowski H B. GH regulation of IGF-1 and suppressor of cytokine signaling gene expression in C2C12 skeletal muscle cell[J]. Endocrinology,2001,142:3890-3900.
    [137]Imanaka M, Iida K, Murawaki A, et al. Growth hormone stimulates mechano growth factor expression and activates myoblast transformation in C2C12 cells[J]. Kobe J Med Sci,2008,54(1):E46-54.
    [138]Riqamonti A E, Locatelli L, Cella S G, et al. Muscle expressions of MGF, IGF-IEa, and myostatin in intact and hypophysectomized rats: effects of rhGH and testosterone alone or combined[J]. Horm Metab Res,2009,41(1):23-29.
    [139]Iida K, Itoh E, Kim D S, et al. Muscle mechano growth factor is preferentially induced by growth hormone in growth hormone-deficient lit/lit mice[J]. J Physiol,2004,560(pt2):341-349.
    [140] [173]周廷冲.多肽生长因子基础与临床[M].北京:中国科学技术出版社,1992:42-52.
    [141]Stephen welle, kirti Bhat, Bharati shah, et al. Thornton Insult-like growth factor-1 and myostatin mRNA expression in muscle: comparison between 62-77 and 21-31 yr old men[J]. Experimental Gerontology,2002,37:833-839.
    [142] [174]Hameed M , Lange K H , Andersen J L, et al. The effect of recombinant human growth hormone and resistance training on IGF-I mRNA expression in the muscles of elderly men [J]. J Physiol,2004,555(1):231-240.
    [143]Hameed M, Toft A D, Pedersen B K, et al. Effects of eccentric cycling exercise on IGF-Isplice variant expression in the muscle of young and elderly people[J]. Scand J Med Sci Sports,2008,18(4):447-452.
    [144] [178]Petrella J K, Kim J S, Cross J M, et al. Efficacy of myonuclear addition may explain differential myfiber growth among resistance-trained young and older men and women[J]. Am J Physiol Metab,2006,291(5):E937-946.
    [145]Kim J S, Cross J M, Bamman M M. Impact of resistance loading on myostation expression and cell cycle regulation in young and older men and women[J]. Am J Physiol Endocrinol Metab,2005,288(6):1111-1119.
    [146]Luo J, McNamara B, Moran K. The use of vibration training to enhance muscle strength and power[J]. Sports Med,2005,35(1):23-41.
    [147]史仍飞,卞玉华,危小焰.振动训练对大鼠骨骼肌质量和肌细胞机械生长因子mRNA表达的影响[J].中国运动医学杂志,2008,27(4):508-510.
    [148]Kaeding T S. Sarcopenia and whole body vibration training: an overview[J]. Z Gerontol Geriatr,2009,42(2):88-92.
    [149]Pietrangelo T, Mancinelli R, Toniolo L, et al. Effect of local vibrations on skeletal muscle trophism in elderly people: mechanical, cellular, and molecular events[J]. Int J Mol Med,2009,24(4):503-512.
    [150]Boqaerts A, Delecluse C, Claessens A L, et al. Impact of whole-body vibration training versus fitness training on muscle strength and muscle mass in older men: a 1-year randomized controlled trial[J]. J Gerontol A Biol Sci Med Sci,2007,62(6):630-635
    [151]壄中征哉(日)著,吴士文马维娅译.临床肌肉病理学(第三版修行版)[M].北京:人民军医出版社,2007.10.
    [152]Bedford TG, Tipion CM, Nilson NC, et al. Maximum oxygen consumption of rats and its changes with various experimental procedure[J].JApplPhysiol, 1979, 47(6): 1278-1283.
    [153]闫万军.负重跑训练改善老龄大鼠肌肉丢失的效果与机理[D].石家庄:河北师范大学,2008.
    [154]Daw CK, Starns JW, White TP. Muscle atrophy and hypoplasia with aging: impact of training and food restriction[J]. J Appl Physiol,1988,64(6),2428-2432.
    [155]Holloszy JO, Chen M, Young JC. Skeletal muscle atrophy in old rats: differentialchangesin the three fiber types[J]. Mech Ageing Dev,1991,60(2),199-213.
    [156]Timson BF. Evaluation of animal models for the study of exercise-induced muscle enlargement[J]. Appl Physiol,1990,69(6):1935-1945.
    [157]Zsolt Murlasits, Robert G Cutlip, Kenneth B Geronilla, et al. Resistance training increases heart shock protein levels in skeletal muscle of young and old rat[J]. Experimental Gerontology,2006,41:398-406.
    [158]Sukho Lee, Roger P Farrar. Resistance training induces muscle-specific changes in muscle mass and function in rat[J]. JEponline,2003,6(2):80-87.
    [159]E.R.Blough, J.K.Linderman. Lack of skeletal muscle hypertrophy in very aged male Fischer 344×Brown Norway rat[J]. J Appl Physiol,2000,88:1265-1270.
    [160]Klitgaard H, Marc R, Brunet A, et al. Monod HContractile properties of old rat muscle: effect of increased use[J]. J Appl Physiol,1989a,67(4):1401-1408.
    [161]Welle S, Thornton C, Jozefowicz R, et al. Myofibrillar protein synthesis in young and older men[J]. Am J Phy,1993,(264):E693-E698.
    [162]Kimball SR, O’Malley JP, Anthony JC, et al. Assessment of biomarkers of protein anabolism in skeletal muscle during the life span of the rat: sarcopenia despite elevated protein synthesis[J]. Am J Physiol Endocrinol Metab,2004,287:E772-E780.
    [163]刘无逸,陆爱云.过度训练对大鼠骨骼肌糖原含量、AMPK活性及肌膜GLUT4的影响[J].中国运动医学杂志,2006,25(6):668-673.
    [164]王松,刘刚,童涛,等.有氧耐力训练对不同周龄大鼠骨骼肌代谢酶的影响[J].山东体育学院,2008,24(4):60-63.
    [165]金宏,许志勤,王先远,等.肌酸对游泳大鼠乳酸、肌糖原含量和乳酸脱氢酶活性的影响[J].肌酸和生物资源,2001,23(3):39-40.
    [166]Momken I, Lechene P, Koulmann N, et al. Impaired voluntary running capacity of creatine kinase-deficient mice[J].J Physiol,2005,15;565(Pt3):951-964.
    [167]苏全生,田野,孙君志.大鼠运动性骨骼肌损伤后血液白细胞介素-6、肌酸激酶及其同工酶的时相性变化[J].中国运动医学杂志,2006,25(2):176-180.
    [168]Seger JY, Thorstensson A. Effect of eccentric versus concentric training on thing muscle strength and EMG[J].Int J Sport Med,2005,26(1):45-52.
    [169]时庆德.线粒体在衰老及有氧运动延缓衰老中的作用机制研究[D].北京:北京体育大学,2000. [170 ]杨锡让,傅浩坚.运动生理学进展与思考[M] .北京:北京体育大学出版社,2000 ,8.
    [171]王静.抗阻训练对衰老大鼠骨骼肌中IGF-I、MGF及肌肉生长抑制素的影响[D].华东师范大学,上海,2008.
    [181]刘丰彬,赵斌,闫万军等.负重训练和补充大豆多肽干预大鼠骨骼肌衰老过程的实验研究.天津体育学院学报.2010,25(1):33-37.
    [182]赵琳.不同强度运动对发育过程中雄性大鼠骨骼肌α-actin mRNA表达的影响[D].北京:北京体育大学,2003.
    [184]王瑞元.一次力竭性离心运动后大鼠骨骼肌a-actin代谢、a-actin和MHC基因表达及针刺对其影响[D].北京:北京体育大学,2000.
    [185] Theodore SW. Protein metabolism in rat gastrocnemius muscle after stimulated chronic concentric exercise[J]. J Appl Physiol, 1990, 69(5): 1709-1717.
    [186]Kasperek George, Guy J, Conway R, et al. A reexamination of the effect of exercise on rate of muscle protein degradation[J]. Am. J. Physiol, 1992(263):E1144-1150.
    [196] Pandorf CE, Haddad F, Roy RR, et al. Dynamics of myosin heavy chain gene regulation in slow skeletal muscle: role of natural antisense RNA[J].J Biol Chem,2006,281(50):38330-38342.
    [197] Short KR,Vittone JL,Bigelow ML,et al.Human skeletal muscle with age and endurance exercise training[J].J Appl Physiol,2005,99(1):95-102.
    [198] Marx JO,Kraemer WJ,Nindl BC, et al .Effects of aging on human skeletal muscle myosin heavy-chain mRNA content and protein isoform expression[J].J Gerontol A Biol Sci Med Sci,2002,57(6):B232-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700