用户名: 密码: 验证码:
IGF-Ⅰ与MGF对骨骼肌卫星细胞增殖及迁移的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MGF组:24h时,15ng/ml组、25ng/ml组、35ng/ml组和45ng/ml组OD值均显著高于对照组(P<0.01,P<0.01,P<0.01,P<0.05),55ng/ml组与对照组无显著差异(P>0.05)。48h时,15ng/ml组、25ng/ml组、35ng/ml组OD值均显著高于对照组(P<0.05,P<0.01,P<0.01), 45ng/ml组、55ng/ml组与对照组之间无显著差异(P>0.05)。72h时,15ng/ml、25ng/ml组、35ng/ml组OD值均显著高于对照组(P<0.01),45ng/ml组与对照组之间无显著差异(P>0.05)。而55ng/ml组OD值低于对照组(P<0.05)。96h时,15ng/ml、25ng/ml组、35ng/ml组与对照组之间差异没有显著性(P>0.05)。
     4. Transwell法测定细胞迁移的OD值显示。
     IGF-I组:15ng/ml组、35ng/ml组与对照组之间的无显著差异(P>0.05);25ng/ml、45ng/ml组、55ng/ml组OD值均显著高于对照组(P<0.01),其中25ng/ml组显著高于45ng/ml组(P<0.01),55ng/ml组与45ng/ml组之间的无显著差异(P>0.05)。
     MGF组:15ng/ml组、35ng/ml组与对照组之间无显著差异(P>0.05);25ng/ml、45ng/ml组、55ng/ml组OD值显著高于对照组(P<0.01),其中45ng/ml组和55ng/ml组均显著高于25ng/ml组(P<0.01,P<0.05)。
     结论
     1. IGF-I和MGF均可以促进骨骼肌卫星细胞增殖且呈浓度、时间依赖性,IGF-I最佳促增殖浓度为15ng/ml-35ng/ml , MGF最佳促增殖浓度为25ng/ml-35ng/ml,干预24h后即开始增殖。
     2. IGF-I和MGF均可以促进骨骼肌卫星细胞迁移,IGF-I促迁移的最佳浓度为25ng/ml,MGF最佳浓度为45ng/ml-55ng/ml。MGF组:24h时,15ng/ml组、25ng/ml组、35ng/ml组和45ng/ml组OD值均显著高于对照组(P<0.01,P<0.01,P<0.01,P<0.05),55ng/ml组与对照组无显著差异(P>0.05)。48h时,15ng/ml组、25ng/ml组、35ng/ml组OD值均显著高于对照组(P<0.05,P<0.01,P<0.01), 45ng/ml组、55ng/ml组与对照组之间无显著差异(P>0.05)。72h时,15ng/ml、25ng/ml组、35ng/ml组OD值均显著高于对照组(P<0.01),45ng/ml组与对照组之间无显著差异(P>0.05)。而55ng/ml组OD值低于对照组(P<0.05)。96h时,15ng/ml、25ng/ml组、35ng/ml组与对照组之间差异没有显著性(P>0.05)。
     4. Transwell法测定细胞迁移的OD值显示。
     IGF-I组:15ng/ml组、35ng/ml组与对照组之间的无显著差异(P>0.05);25ng/ml、45ng/ml组、55ng/ml组OD值均显著高于对照组(P<0.01),其中25ng/ml组显著高于45ng/ml组(P<0.01),55ng/ml组与45ng/ml组之间的无显著差异(P>0.05)。
     MGF组:15ng/ml组、35ng/ml组与对照组之间无显著差异(P>0.05);25ng/ml、45ng/ml组、55ng/ml组OD值显著高于对照组(P<0.01),其中45ng/ml组和55ng/ml组均显著高于25ng/ml组(P<0.01,P<0.05)。
     结论
     1. IGF-I和MGF均可以促进骨骼肌卫星细胞增殖且呈浓度、时间依赖性,IGF-I最佳促增殖浓度为15ng/ml-35ng/ml , MGF最佳促增殖浓度为25ng/ml-35ng/ml,干预24h后即开始增殖。
     2. IGF-I和MGF均可以促进骨骼肌卫星细胞迁移,IGF-I促迁移的最佳浓度为25ng/ml,MGF最佳浓度为45ng/ml-55ng/ml。
OBJECTIVE
     During myogenesis, skeletal muscle satellite cells play a key role in the process of repair and renewal of myofibers. In the unperturbed state, skeletal muscle satellite cells remain in a nonproliferative, quiescent state. In response to stimulation, the satellite cells become activated, proliferate, emigrate to the damaged region and fuse to the existing myofiber or fuse together themselves first, then repair the damaged region. In order to discover the relationship between the IGF-I/MGF and skeletal muscle satellite cell regeneration, this research used rat skeletal muscle satellite cell culture, examined the effects of IGF-I and MGF on the proliferation and migration of muscle satellite cells (SC).
     METHODS
     The primary passage SC were derived from gastrocnemius muscle and soleus muscle of the Sprague-Dawley rats (4 weeks of age, male). The SC were digested with 0.1% Collagenase II and 0.25% Trypsin, purified with means of differential attachment technique and identified withα-sarcometric actin. The third passage SC were treated with IGF-I and MGF at five different doses: 15ng/ml, 25ng/ml, 35ng/ml, 45ng/ml, 55ng/ml. The cell proliferation rate was measured by CCK-8 cell proliferation assay after 24h, 48h, 72h, 96h and the ideal dose of proliferation was determined. The cell migration rate was measured by Transwell assay after 14h and the ideal does of migration was determined.
     RESULTS
     1. Assessment of cell viability showed that the live SC proportion was 97.8%.
     2. The immunocytochemistry showed that the proportion ofα-sarcometric actin positive SC was 96.9%.
     3. The proliferation of SC was positively correlated with the CCK-8 OD value. IGF-I: at 24h, 15ng/ml, 25ng/ml, 35ng/ml were significantly higher than normal control group (P<0.05, P<0.01, P<0.01). At 48h, 25ng/ml group and 35ng/ml group were significantly higher than normal control group (P<0.01). At 72h, 15ng/ml group, 25ng/ml group, 35ng/ml group were significantly higher than normal control group (P<0.01, P<0.01, P<0.05). At 96h, 15ng/ml group, 25ng/ml group were high than normal control group and 35ng/ml group (P<0.05). MGF: at 24h, 15ng/ml, 25ng/ml, 35ng/ml and 45ng/ml were significantly higher than normal control group (P<0.01, P<0.01, P<0.01, P<0.05). At 48h, 15ng/ml, 25ng/ml, 35ng/ml were significantly higher than normal control group (P<0.05, P <0.01, P<0.01). At 72h, 15ng/ml, 25ng/ml, 35ng/ml were significantly higher than normal control group (P<0.01). At 96h, there was no significant difference between 15ng/ml, 25ng/ml, 35ng/ml and normal control group (P>0.05).
     4. The migration of SC was positively correlated with the Transwell OD value. IGF-I: After 14h, there was no significant difference between 15ng/ml, 35ng/ml and normal control group (P>0.05); 25ng/ml, 45ng/ml, 55ng/ml were significantly higher than normal control group (P<0.01), 25ng/ml was significantly higher than 45ng/ml group (P<0.01), there was no significant difference between 55ng/ml and 45ng/ml group (P>0.05).
     MGF : After 14h, there was no significant difference between 15ng/ml, 35ng/ml and normal control group (P>0.05); 25ng/ml, 45ng/ml, 55ng/ml were significantly higher than normal control group (P<0.01), 45ng/ml and 55ng/ml were significantly higher than 25ng/ml group (P<0.01, P<0.05). CONCLUSIONS
     1. IGF-I and MGF can promote skeletal muscle satellite cell proliferation. They promote SC to proliferate in a dose-dependent and a time-dependent manner. The ideal range of dose of IGF-I is from 15ng/ml to 35ng/ml, MGF is from 25ng/ml to 35ng / ml. SC begin to proliferate at 24h with the treatment of them.
     2. IGF-I and MGF can promote skeletal muscle satellite cell migration. The ideal dose of IGF-I is 25ng/ml, MGF is from 45ng/ml to 55ng/ml.
引文
[12] DaSilva M, Trafton PG. Bilateral femoral neck stress fractures in an amenorrheic athlete [J]. Am J Orthop, 2001, 30(9): 768-774.
    [13]Kurek JB, Bower JJ, Romanella M, Koentgen F, Murphy M, Austin L. The role of leukemia inhibitory factor in skeletal muscle regeneration [J]. Muscle & Nerve, 1997, Jul(27): 815-22.
    [14] Westermarck J, Kahari VMI. Regulation of matrix metalloproteinase expression in tumor invasion [J].The FASEB, 1999, 13: 7812-7921.
    [15] MeCully KK, Carlson BM, Hannu K. The regeneration of skeletal muscle fibers following injury: a review [J]. Med Sci Sports Exerc, 2002, 9(3): 203-233.
    [16]刘丰彬,段立公.骨骼肌再生和骨骼肌肌卫星细胞相关研究的进展[J].中国康复医学杂志, 2006;21(5):475-477
    [17] D.D.W Cornelison, Barbara J.Wold. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells [J]. Developmental Biology, 1997, 191: 270-283.
    [18] Fyfe I, Stranish WD. The use of eccentric mining and stretching in the treatment and prevention of tendon injuries [J]. ClinSports Med,2001, 11(3): 601-624.
    [19] Roth D, Thomas B, Davis BS.Stress fractures [J]. Radiology, 2000, 20(23): 12-23.
    [20] Bennett JH, Morgan MJ, Whawell SA, et al. Metalloproteinase expression in normal and malignant oral keratinocytes :stimulation of MMP-2 and MMP-9 by scatter factor [J]. Eur J Oral Sci, 2004, 108(4): 281-291.
    [21] Bowers DC, Fan S, Walter KA, et al. Scatter factor/hepatocyte growth factor protects against cytctoxic death in human glioblastoma via phosphatidylinositol 3-kinase and AKT-dependent pathways [J]. CancerRes, 2004, 60(15): 4277-4283.
    [22]周廷冲,马贤凯,唐佩弦,等.多肽生长因子基础与临床[M].第1版.中国科学技术出版社, 1992. 42-52.
    [23] Svanberg E, Zachrisson H, Ohlsson C, et al. Role of insulin and IGF-I in activation of muscle protein synthesis after oral feeding [J]. AmJ Physiol, 1996, 270: E614-E620.
    [24] Adams GR, Haddad F. The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy [J] J Appl Physiol, 1996, 81: 2509-2516.
    [25] Barton-Davis ER, Shoturma DI, Musaro A, et al. Viral mediated expression of insulin-like growth factorⅠblocks the aging-related loss of skeletal muscle function [J]. Proc Natl Acad Sci USA, 1998, 95:15603-15607.
    [26] Levinovitz A, Jennische E, Oldfors A, et al. Activation of insulin-like growth factorⅡexpression during skeletal muscle regeneration in the rat: correlation with myotube formation [J]. Mol Endocrinol, 1992, 6:1227-1234.
    [27] Gao M, Craig D, Vogel V,et al. Identifying unfolding intermediates of FN-III(10) by steered molecular dynamics [J]. J Mol Biol, 2002, 323(5): 939-950.
    [28] Sukharev S, Anishkin A. Mechano sensitive channels: what can we learn from 'simple' model systems [J]. Trends Neurosci, 2004, 27(6): 345-351.
    [29] Hill M, Wernig A, Goldspink G. Muscle satellite(stem)cell activation during local tissue injury and repair [J]. J Anat, 2003, 203(1): 89-99.
    [30] Aperghis M, Johnson IP, Cannon J, et al. Different levels of neuroprotection by two insulin-like growth factor-I splice variants [J]. Brain Res, 2004, 1009: 213-218.
    [31] Carpenter V, Matthews K, Devlin G,et al. Mechano growth factor reduces loss of cardiac function in acute myocardial infarction [J]. Heart Lung Circ, 2008, 17: 33-39.
    [32] Lupu F, Terwilliger JD, Lee K, et al.Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth [J]. Dev Biol, 2001, 229(1): 141-162.
    [33] Yakar S, Liu JL, Stannard B, et al. Normal growth and development in the absence of hepatic insulin-like growth factor I [J]. Proc Natl Acad Sci U S A, 1999, 96: 7324-7329.
    [34] Musaro A, Giacinti C, Borsellino G, et al. Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1 [J]. Proc Natl Acad Sci USA, 2004, 101: 1206-1210.
    [35] Yang SY, Goldspink G. Different roles of the IGF-I Ec peptide(MGF) and mature IGF-I in myoblast proliferation and differentiation [J]. FEBS Lett, 2002, 522: 156-160.
    [36] Goldspink G. Mechanical signals, IGF-I gene splicing, and muscle adaptation [J]. Physiology (Bethesda), 2005, 20: 232-238.
    [37] Mills P, Dominique JC, Lafrenière JF, et al. A synthetic mechano growth factor E Peptide enhances myogenic precursor cell transplantation success [J]. Am J Transplant, 2007, 7(10): 2247-2259.
    [38] Barton ER.Viral expression of insulin-like growth factor-I isoforms promotes different responses in skeletal muscle [J]. J Appl Physiol, 2006, 100: 1778-1784.
    [39] Booth F. The many flavors of IGF-I [J]. J Appl Physiol, 2006, 100(6): 1755-1756.
    [26] Levinovitz A, Jennische E, Oldfors A, et al. Activation of insulin-like growth factorⅡexpression during skeletal muscle regeneration in the rat: correlation with myotube formation [J]. Mol Endocrinol, 1992, 6:1227-1234.
    [27] Gao M, Craig D, Vogel V,et al. Identifying unfolding intermediates of FN-III(10) by steered molecular dynamics [J]. J Mol Biol, 2002, 323(5): 939-950.
    [28] Sukharev S, Anishkin A. Mechano sensitive channels: what can we learn from 'simple' model systems [J]. Trends Neurosci, 2004, 27(6): 345-351.
    [29] Hill M, Wernig A, Goldspink G. Muscle satellite(stem)cell activation during local tissue injury and repair [J]. J Anat, 2003, 203(1): 89-99.
    [30] Aperghis M, Johnson IP, Cannon J, et al. Different levels of neuroprotection by two insulin-like growth factor-I splice variants [J]. Brain Res, 2004, 1009: 213-218.
    [31] Carpenter V, Matthews K, Devlin G,et al. Mechano growth factor reduces loss of cardiac function in acute myocardial infarction [J]. Heart Lung Circ, 2008, 17: 33-39.
    [32] Lupu F, Terwilliger JD, Lee K, et al.Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth [J]. Dev Biol, 2001, 229(1): 141-162.
    [33] Yakar S, Liu JL, Stannard B, et al. Normal growth and development in the absence of hepatic insulin-like growth factor I [J]. Proc Natl Acad Sci U S A, 1999, 96: 7324-7329.
    [34] Musaro A, Giacinti C, Borsellino G, et al. Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1 [J]. Proc Natl Acad Sci USA, 2004, 101: 1206-1210.
    [35] Yang SY, Goldspink G. Different roles of the IGF-I Ec peptide(MGF) and mature IGF-I in myoblast proliferation and differentiation [J]. FEBS Lett, 2002, 522: 156-160.
    [36] Goldspink G. Mechanical signals, IGF-I gene splicing, and muscle adaptation [J]. Physiology (Bethesda), 2005, 20: 232-238.
    [37] Mills P, Dominique JC, Lafrenière JF, et al. A synthetic mechano growth factor E Peptide enhances myogenic precursor cell transplantation success [J]. Am J Transplant, 2007, 7(10): 2247-2259.
    [38] Barton ER.Viral expression of insulin-like growth factor-I isoforms promotes different responses in skeletal muscle [J]. J Appl Physiol, 2006, 100: 1778-1784.
    [39] Booth F. The many flavors of IGF-I [J]. J Appl Physiol, 2006, 100(6): 1755-1756.
    [40] Cardasis CA, Cooper GW. An analysis of nuclear numbers in individual muscle fibers during differentiation and growth:a satellite cell-muscle fiber growth unit[J]. J Exp Zool,1975,191(3):347-358.
    [41] Bischoff R. Heintz C. Enhancement of skeletal muscle regeneration [J]. Dev Dyn, 1994, 201(1):41-54.
    [42] Gibson MC. Schultz E. Age-related differences in absolute numbers of skeletal muscle satellite cells[J].Muscle Nerve,1983,6(8):574~580.
    [43] Webster C, Pavlath GK, Parks DR, et al. Isolation of human myoblasts with fluorescence-activated cell sorter[J].Exp Cell Res,1988,174:252-265.
    [44]徐蓬,顾晓明.兔骨骼肌卫星细胞的体外培养及生长特性的研究[J].实用口腔医学杂志,2000,16(1):7-9.
    [45]夏家红,谢艾妮,徐磊,等.大鼠骨骼肌卫星细胞体外培养的实验研究[J].中华实验外科杂志,2005,22(2):214-215.
    [46] Mauro A. The satellite cell of skeletal muscle implantation [J]. J Biophys Biochem Cytol, 1961, 9:493 - 496.
    [47] Burton NM, Vierck JL, Krabbenhoft L, et al. Methods for animal satellite cell culture under a variety of conditions [J]. Methods Cell Sci, 2000, 22: 51 - 61.
    [48] J. Park NF. Huang KT, Kurpinski S, Patel S, Hsu S, Li. Mechanobiology of mesenchymal stem cells and their use in cardiovascular repair[J]. Biosci, 2007, 12: 5098-5116.
    [49]刘欣春,朱悦.胰岛素样生长因子-1对骨骼肌源性干细胞的促增殖效应[J].解剖学报, 2008, 39(1): 79-82.
    [50] Menasche P. Skeletal muscle satellite cell transplantation [J]. Cardiovasc Res, 2003, 58 (2): 351-357.
    [51]司徒镇强,主编.细胞培养[M].西安,世界图书出版公司,2004. 71-78.
    [52] Burton NM, Vierck J, KrabbenhoftL, et al. Methods for animal satellite cell culture under a variety of conditions [J]. Methods Cell Sci, 2000, 22 (1): 51-61.
    [53]薄冰. MGF与IGF-I对离体骨骼肌卫星细胞增殖及分化能力的影响[D].上海:上海体育学院, 2009.
    [54]李刚,刘强.肌卫星细胞体外培养及其对胰岛素样生长因子1刺激的反应[J].中华创伤杂志,2006,22(7):531-534.
    [55]吴嵽. MGF对骨骼肌卫星细胞激活及增殖的量效关系影响[D].上海:上海体育学院, 2010.
    [56]张兵兵,姜鹏等.力生长因子在大肠杆菌中的表达及活性分析[J].生物工程学报2008,24(7):1180-1185.
    [57] Shi Yu Yang, Goldspink G. Different roles of the IGF-1 Ec peptide (MGF) and mature IGF-1 in myoblast proliferation and differrentiation[J]. FEBS Letters, 2002, 522: 156-160.
    [58]翟中和编著.细胞生物学[M].第1版.北京:高等教育出版社. 2000.
    [59] Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process[J].Cell, 1996, 84:359~369.
    [60] Gregory MA , Mars M. Mobilisation of satellite cells following ischaemia and reperfusion in primate skeletal muscle[J]. Sports Med , 2004,16(1):17-24.
    [61]张兵兵.力生长因子的制备与研究[D].重庆:重庆大学,2008.
    [62] Lafreniere. JF, Mills. P, Tremblay. JP, Fahime. EE Growth factors improve the in vivo migration of human skeletal myoblasts by modulating their endogenous proteolytic activity[J]. Transplantation77 (2004) 1741–1747.
    [63] Fujita T, Azuma Y, Fukuyama R, et al. Runx2 induces osteoblast and chondro- cyte differentiation and enhances their migration by coupling with PI3K-Akt signaling [J]. J Cell Biol,2004,166(1):85-95.
    [64] Mehrotra M, Krane SM,Walters K,et al.Differential regulation of platelet-derived growth factor stimulated migration and proliferation in osteoblastic cells[J].J Cell Biochem,2004, 93(4):741-752.
    [65] Fukuyama R, Fujita T, Azuma Y, et al.Statins inhibit osteoblast migration by inhibiting Rac-Akt signaling[J]. Biochem Biophys ResCommun,2004,315(3): 636-642.
    [66] Higuchi M, Masuyama N, Fukui Y, et al. Akt mediates Rac/Cdc42-regulated cell motility in growth factor-stimulated cells and in invasive PTEN knockout cells[J]. Curr Biol,2001,11(24):1958-1962.
    [67] Nobes CD, Hall A. Rho GTPases control polarity,protrusion,and adhesion during cell movement[J].J Cell Biol,1999,144(6):1235-1244.
    [68] Parent CA, Devreotes PN. A cell's sense of direction[J]. Science, 1999, 284(5415): 765-770.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700