用户名: 密码: 验证码:
MGF对骨骼肌卫星细胞激活的影响及与其增殖的量效关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     在骨骼肌生长、发育、损伤和修复过程中,骨骼肌卫星细胞起着重要的作用。有在体研究表明,机械生长因子(MGF)可能能激活骨骼肌卫星细胞,并促进其增殖。本研究在此基础上通过离体实验,观察MGF对于骨骼肌卫星细胞的激活作用及促进其增殖的量效关系,探讨MGF对骨骼肌卫星细胞在细胞水平的调节机制,为骨骼肌损伤的修复提供了理论依据。
     实验方法
     原代骨骼肌卫星细胞取自4周龄雄性SD大鼠(2只,120g)双侧的腓肠肌与比目鱼肌。经0.1%Ⅱ型胶原酶结合0.25%胰蛋白酶消化法,通过两次差速贴壁纯化骨骼肌卫星细胞,使用横纹肌肌动蛋白鉴定骨骼肌卫星细胞的纯度。原代骨骼肌卫星细胞经两次传代后,使用不同浓度的MGF干预第三代细胞,浓度分别为10ng/ml,25ng/ml,50ng/ml, 100ng/ml,200ng/ml,在干预24h、48h、72h、96h后利用MTT法进行增殖效果的检测。使用25ng/ml的MGF对血清饥饿24h后的第三代骨骼肌卫星细胞进行干预,对比DMEM干预的骨骼肌卫星细胞,分别在8h、16h、24h、32h后使用流式细胞仪检测其所处细胞周期,测定其激活情况。
     实验结果
     1.骨骼肌卫星细胞活力达到98.8%。
     2.骨骼肌卫星细胞纯度为97.4%。
     3.MTT比色法的A值显示:48h:25ng/ml组、50ng/ml组A值显著高于对照组(P<0.01), 10ng/ml组A值高于对照组(P<0.05), 100ng/ml组、200ng/ml组与对照组之间差异没有显著性(P>0.05), 100ng/ml与200ng/ml组的促增殖作用差异没有显著性(P>0.05);96h:10ng/ml与对照组之间差异没有显著性(P>0.05),25ng/ml组、50ng/ml组、100ng/ml组、200ng/ml组A值显著高于对照组和10ng/ml组(P<0.01),25ng/ml组、50ng/ml组、100ng/ml组、200ng/ml组之间差异没有显著性(P>0.05)。低剂量的MGF即可促进骨骼肌卫星细胞的增殖,随浓度升高至25ng/ml至50ng/ml时,MGF促骨骼肌卫星细胞增殖作用相对更明显,浓度继续升高,会出现增殖速度减缓现象;各个时相检测后发现MGF干预到96h增殖速度减缓。结合时间-剂量的结果显示,在48h时25ng/ml组和50ng/ml组有交互作用。
     4.使用不含血清的DMEM饥饿骨骼肌卫星细胞24h后,处于GO期的细胞达到了86.76%
     5.25ng/ml MGF干预GO期的卫星细胞后,8h时MGF组和对照组之间差异没有显著性(P>0.05),16h时MGF组G0/G 1期细胞含量低于对照组(P>0.05),24h时MGF组低于对照组(P<0.01),32h时MGF组低于对照组(P<0.05)。
     结论
     1.MGF可以促进骨骼肌卫星细胞增殖。
     2.MGF促进骨骼肌卫星细胞增殖呈现剂量和时间依赖性,较理想剂量范围在25ng/ml至50ng/ml之间,干预24h后即开始增殖。
     3.不含血清的DMEM饥饿骨骼肌卫星细胞24h可以使其退出细胞周期。
     4.MGF可以激活四周龄SD大鼠的GO期骨骼肌卫星细胞。
OBJECTIVE
     During myogenesis, skeletal muscle satellite cells play a key role in the process of repair and renewal of myofibers. Studies have shown that MGF appears to initiate muscle satellite cell activation and proliferation in vivo. And based on that, it has been observed the effects of MGF on activation and the dose-dependent manner on proliferation of SC in vitro which increasing the number available for local repair, as well as the mechanism at the levels of molecular.
     METHODS
     The primary passage SC were derived from gastrocnemius muscle and soleus muscle of the Sprague-Dawley rats (4 weeks of age, male).-The SC were digested with 0.1% CollagenaseⅡand 0.25% Trypsin, purified with means of differential attachment technique and identified withα-sarcometric actin.
     The third passage SC were treated with MGF at five different doses:lOng/ml, 25ng/ml,50ng/ml, 100ng/ml,200ng/ml. The cell proliferation rate was measured by MTT cell proliferation assay after 24h,48h,72h,96h and the best dose of proliferation was determined. The third passage SC were serum starved for 24h without FBS and then were divided equally into experimental groups for different time points and one operated group treated with MGF plus one normal control group cultured with DMEM. The cell cycle was detected with Flow Cytometry after 8h, 16h,24h and 32h.
     RESULTS
     1. Assessment of cell viability showed that the live SC proportion was 98.8%.
     2. The immunocytochemistry showed that the proportion of a-sarcometric actin positive SC was 97.4%.
     3. The proliferation of SC was positively correlated with the MTT A value. 48h:The A values of the operated groups which treated with MGF of 25ng/ml and 50ng/ml were significantly higher than that of normal control group (P<0.01). The A value of 10ng/ml group was higher than that of normal control group (P<0.05). There was no significant difference between 100ng/ml group and normal control group (P>0.05) and the same effect was seen between 200ng/ml group and normal control group (P>0.05). There was no significant difference between 100ng/ml group and 200ng/ml group (P>0.05). 96h:The A values of operated groups of 25ng/ml.50ng/ml. 100ng/ml and 200ng/ml were significantly higher than that of 10ng/ml group as well as normal control group (P<0.01). There was no significant difference among the operated groups of 25ng/ml.50ng/ml, 100ng/ml and 200ng/ml (P>0.05).There was no significant difference between 10ng/ml group and normal control group (P>0.05). With the dose increasing, the proliferation peaked ranging from 25ng/ml to 50ng/ml and was inhibited thereafter. As time went by, the proliferation was inhibited at 96h with the treatment of MGF. Combining the time with the dose, it could be observed that there was an interaction effect between 25ng/ml group and 50ng/ml group at 48h.
     4. The proportion of SC in GO phase was 86.76% by serum starvation with serum-free DMEM for 24 hours.
     5. After 8h and 16h incubation there was no significant difference between the operated group and the normal control group (P>0.05). And there were significant differences between the operated group and the normal control group, the proportion of the SC in G0/G1 phase of operated group treated with 25ng/ml MGF was significantly lower than that in normal control group after 24h (P<0.01) as well as 32h (P<0.05).
     CONCLUSIONS
     1. MGF increases skeletal muscle SC proliferation.
     2. MGF promotes skeletal muscle SC to proliferate in a dose-dependent and a time-dependent manner. And the ideal range of dose may be from 25ng/ml to 50ng/ml. SC begin to proliferate at 24h with the treatment of MGF.
     Serum starvation without FBS can synchronize SC in GO phase within 24h.
     3. MGF appears to initiate skeletal muscle SC activation of 4-week-old Sprague-Dawley rats.
引文
[1]Gros J., Manceau M., Thome V., Marcelle C. A common somitic origin for embryonic muscle progenitors and satellite cells[J]. Nature,2005,435: 954-958.
    [2]Asakura A., Rudnicki M.A. Cellular and molecular mechanisms regulating skeletal muscle development[M]. Mouse Development, Academic Press, Orlando.2002.
    [3]Hasty P., Bradley A., Morris J.H., Edmondson D.G., Venuti J.M., Olson E.N. Klein W.H. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene[J]. Nature,1993,364:501-506.
    [4]Yoon J.K., Olson E.N., Arnold H.H., Wold B.J. Different MRF4 knock out alleles differentially disrupt Myf-5 expression:cis-regulatory interactions at the MRF4/Myf-5 locus[J]. Dev Biol,1997,188:349-362.
    [5]Schmalbruch H., Lewis D.M. Dynamics of nuclei of muscle fibers and connective tissue cells in normal and denervated rat muscles[J]. Muscle Nerve, 200023:617-626.
    [6]许家林.骨骼肌肌卫星细胞体外培养及肝细胞生长因子体外刺激激活的研究[D].上海:上海体育学院,2004.
    [7]Theodore H. Ergographic Studies in Muscular Soreness[J]. Am J Physiol,1902, 7(1):76-92.
    [8]魏源,王革,卓莉.运动性骨骼肌微损伤机制的研究进展[J].上海体育学院学报,2007,31(2):67-73.
    [9]Menetrey J., Kasemkijwattana C., Day CS, et al. Growth factors improve muscle healing in vivo[J]. J Bone Joint Surg Br,2000,82(1):131-137.
    [10]Kirk S., Oldham J., Kambadur R., Sharma M., Dobbie P., Bass J. Myostatin regulation during skeletal muscle regeneration[J]. J Cell Physiol,2000,184(3): 356-363.
    [11]陈世益,李云霞,马昕,等.外源性胰岛素样生长因子-2促进骨骼肌损伤修复的实验研究[J].中国运动医学杂志,2002,21(4):340-345.
    [12]Robertson T.A., Papadimitrious J.M., Grounds M.D., et al. Fusion of myogenic cells to the newly sealed region of damaged myofibers in skeletal muscle regeneration[J]. Neuropathology and Applied Neurobiology,1993,19:350-358.
    [13]Hume T., Kalimo H. Activation of myogenic precursor cells after muscle injury[J]. Med Sci Sports Exercise,1992,24(2):197-205.
    [14]Ates K., Yang, S.Y., Orrell R.W., Sinanan A.C. Simons P. Solomon A., Beech S., Goldspink G., Lewis M.P. The IGF-I splice variant MGF increases progenitor cells in ALS, dystrophic, and normal muscle[J]. FEBS Letters,2007,581(14): 2727-2732.
    [15]邢国刚,樊小力,宋新爱.废用性肌肉萎缩的研究[J].国外医学.物理医学与康复学分册,2000,20(4):145-150.
    [16]Williams H.B. The Value of continuous electrical muscle stimulation using a completely implantable system in the preservation of muscle function following motor nerve injury and repair:an experimental study[J]. Microsurgery,1996,17(11):589-596.
    [17]Qin L., Apell H.J., Chan K.M., Maffuli N. Electrical stimulation prevents immobilization atrophy in skeletal muscle of rabbits [J]. Arch Phys Med Rehabil,1997,78:512-517.
    [18]Malcolm J. J. Free radicals generated by contracting muscle:By-products of metabolism or key regulators of muscle function?[J]. Free Radical Biology & Medicine,2008,44(2):132-141.
    [19]Greenlund L.J.S., Nair K.S. Sarcopenia-consequences, mechanisms, and potential therapies[J]. Mech Aging Develop,2003,124:287-299.
    [20]Renault V., Piron-Hamelin G., Forestier C., DiDonna S., Decary S., Hentati F., Saillant G., Butler-Browne G. S., Mouly V. Skeletal muscle regeneration and the mitotic clock[J]. Experimental Gerontology,2000,35(6-7):711-719.
    [21]Cooper, W.G., Konigsberg I.R. Dynamics of myogenesis in vitro[J]. Anat Rec, 1961,140:195-205.
    [22]Stockdale F.E., Holtzer H. DNA synthesis and myogenesis[J]. Exp Cell Res, 1961,24:508-520.
    [23]Moss F.P., Leblond C.P. Satellite cells as the source of nuclei in muscles of growing rats[J]. Anat Rec,1971,170:421-435.
    [24]Mauro A. Satellite cell of skeletal muscle fibers[J]. J Biophys Biochem Cytol, 1961,9:493-495.
    [25]Hawke T.J., Garry D.J. Myogenic satellite cells:physiology to molecular biology[J]. J Appl Physiol,2001,91:534-551.
    [26]Gros J., Manceau M., Thome V., Marcelle C. A common somitic origin for embryonic muscle progenitorsand satellite cells[J]. Nature,2005,435:954-958.
    [27]Relaix F., Rocancourt D., Mansouri A., Buckingham M. A Pax3/Pax7-dependent population of skeletal muscle progenitor cells[J]. Nature, 2005,435:948-953.
    [28]Schienda J., Engleka K.A., Jun S., Hansen M.S., Epstein J.A., Tabin C.J., Kunkel L.M., Kardon G. Somitic origin of limb muscle satellite and side population cells[J]. Proc Natl Acad Sci,2006,103:945-950.
    [29]Blau H.M., Pavlath G.K., Hardeman E.C., Chiu C.P., Silberstein L.,Webster S.G., Miller S.C., Webster C. Plasticity of the differentiated state [J]. Science, 1985,230:758-766.
    [30]Snow M.H. A quantitative ultrastructure analysis of satellite cells in denervated fast and slow muscles of the mouse[J]. Anat Rec,1983,207:593-604.
    [31]Rosenblatt J.D., Lunt A.I., Parry D.J., Partridge T.A. Culturing.Satellite cells from living single muscle fiber explants[J]. In Vitro Cell Dev Biol Anim,1995, 31:773-779.
    [32]Hawke T.J., Garry D.J. Myogenic satellite cells:physiology to molecular biology[J]. J Appl Physiol,2001,91:534-551.
    [33]Blaveri K., Heslop L., Yu D.S., Rosenblatt J.D., Gross J.G., Partridge T.A., Morgan J.E. Patterns of repair of dystrophicmouse muscle:studies on isolated fibers[J]. Dev Dyn,1999,216:244-256.
    [34]Kuang S., Charge S.B., Seale P., Huh M., Rudnicki M.A. Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis[J].The Journal of Cell Biology, 2006,172(1):103-113.
    [35]Kadi F. Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancement[J]. Br J Pharmacol,2008,154:522-528.
    [36]Alderton W.K., Cooper C.E., Knowles R.G. Nitric oxide synthases:structure, function and inhibition[J]. Biochem J,2001,357:593-615.
    [37]Tidball J.G. Mechanical signal transduction in skeletal muscle growth and adaptation[J]. J Appl Physiol,2005,98:1900-1908.
    [38]Anderson J.E. A role for nitric oxide in muscle repair:nitric oxide-mediated activation of muscle satellite cells[J]. Mol Biol Cell,2000,11:1859-1874.
    [39]Amthor H., Macharia R., Navarrete R., Schuelke M., Brown S.C., Otto A., Voit T., Muntoni F., Vrbova G., Partridge T., Zammit P., Bunger L., Patel K. Lack of myostatin results in excessive muscle growth but impaired force generation[J]. Proc Natl Acad Sci,2007,104:1835-1840.
    [40]Wozniak A.C., Anderson J.E. Nitric oxide-dependence of satellite stem cell activation and quiescence on normal skeletal muscle fibers[J]. Dev Dyn,2007, 236:240-250.
    [41]Tatsumi R., Liu X., Pulido A., Morales M., Sakata T., Dial S., Hattori A., Ikeuchi Y.,Allen R.E. Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor[J]. Am J Physiol Cell Physiol,2006,290:C1487-C1494.
    [42]Gal-Levi R., Leshem Y., Aoki S., Nakamura T., Halevy O. Hepatocyte growth factor plays a dual role in regulating skeletal muscle satellite cell proliferation and differentiation[J]. Biochim Biophys Acta,1998,1402:39-51.
    [43]Conboy I.M., Conboy M.J., Smythe G.M., Rando T.A. Notch-mediated restoration of regenerative potential to aged muscle[J]. Science,2003,302: 1575-1577.
    [44]Conboy I.M., Rando T.A. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis[J]. Dev Cell, 2002,3:397-409.
    [45]Carlson M.E., Conboy I.M. Regulating the Notch pathway in embryonic, adult and old stem cells[J]. Curr Opin Pharmacol 2007,7:303-309.
    [46]Nagata Y., Partridge T.A., Matsuda R., Zammit P.S. Entry of muscle satellite cells into the cell cycle requires sphingolipid signaling[J]. J Cell Biol,2006, 174:245-253.
    [47]Sabourin L.A., Rudnicki M.A. The molecular regulation of myogenesis[J]. Clin Genet,2000,57:16-25.
    [48]Moss F.P., Leblond C.P. Nature of dividing nuclei in skeletal muscle of growing rats[J]. J Cell Biol,1970,44:459-462.
    [49]Olguin H.C., Olwin B.B. Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells:a potential mechanism for self-renewal [J]. Dev Biol,2004,275:375-388.
    [50]Zammit P.S., Heslop L., Hudon V., Rosenblatt J.D., Tajbakhsh S., Buckingham M.E., Beauchamp J.R., Partridge T.A. Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers[J]. Exp Cell Res,2002,281:39-49.
    [51]Crameri R.M., Aagaard P., Qvortrup K., Langberg H., Olesen J., Kjaer M. Myofibre damage in human skeletal muscle:effects of electrical stimulation versus voluntary contraction[J]. J Physiol,2007,583:365-380.
    [52]Bowers D.C., Fan S., Walter K.A. Scatter factor/hepatocyte growth factor protects against cytotoxic death in human glioblastoma via phosphatidylinositol 3 kinase and AKT dependent pathways[J]. Cancer Res,2000,60(15): 4277-4283.
    [53]邵素霞,马洪骏,赵春芳,等.EGF、BFGF和PHGF对大鼠骨骼肌卫星细胞增殖的影响[J].细胞生物学杂志,2004,26(4):425-428.
    [54]Kadi F., Eriksson A., Holmner S., Butler-Browne G.S., Thornell L.E. Cellular adaptation of the trapezius muscle in strength-trained athletes[J]. Histochem Cell Biol,1999a,111:189-195.
    [55]Kadi F., Charifi N., Denis C., Lexell J., Andersen J.L., Schjerling P., Olsen S., Kjaer M. The behaviour of satellite cells in response to exercise:what have we learned from human studies?[J] Pfluegers Arch,2005,451(2):319-327.
    [56]Goldspink G., Scutt A., Loughna P., Wells D., Jaenicke T., Gerlach G.F. Gene expression in skeletal muscle in response to mechanical signs. Am J Physiol Regul Integr Comp Physiol,1992,262:R326-R363.
    [57]Langley B., Thomas M., Bishop A., Sharma M., Gilmour S., Kambadur R. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression[J]. J Biol Chem,2002,277(2):49831-49840.
    [58]Kim J.S., Cross J.M., Bamman M.M. Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women[J]. Am J Physiol Endocrinol Metab,2005,288:E1110-E1119.
    [59]James W., Putney J.R., Gary St. J. Bird. The inositol phosphate-calcium signaling system in nonexcitable cells[J]. Endocrine reviews.Endocrine Society. 1993,14(55):610-631.
    [60]Charge S.B., Rudnicki M.A. Cellular and molecular regulation of muscle regeneration[J]. Physiological reviews,2004,84(1):209-238.
    [61]危小焰,史仍飞,张平.幼龄大鼠骨骼肌卫星细胞原代培养的实验研究[J].中国运动医学杂志,2007,26(3):318-320.
    [62]徐可,方祖军,等.大鼠骨骼肌卫星细胞体外培养生长和成肌特性[J].上海交通大学学报(医学版).2008,28(7):775-778.
    [63]魏宽海,裴国献,史宇恒,金丹,胡罢生.骨骼肌卫星细胞的培养鉴定及生物学特性[J].中国危重病急救医学,2002,14(2):104-106.
    [64]杨奕.成年大鼠骨骼肌成肌细胞的培养和鉴定[J].哈尔滨医科大学学报,2009,43(2):137-139.
    [65]Park J.S., Huang N.F., Kurpinski K.T., Patel S., Hsu S., Li S. Mechanobiology of mesenchymal stem cells and their use in cardiovascular repair[J]. Biosci, 2007,12:5098-5116.
    [66]李涛,洪光祥.骨髓源性神经样细胞体外存活、增殖的特性[J].中国组织工程研究与临床康复,2007,11(15):2846-2849.
    [67]刘欣春,朱悦.胰岛素样生长因子-1对骨骼肌源性干细胞的促增殖效应[J].解剖学报,2008,39(1):79-82.
    [68]程宝鸾编著.动物细胞培养技术[M].第1版.广州:华南理工大学出版社.2000.
    [69]张力,范明,王伟,等.改良法体外培养大鼠成肌细胞的实验研究[J].军事医学科学学院院刊.2007,31(1):62-65.
    [70]Shi Y.Y., Geoffrey G. Different roles of the IGF-1 Ec peptide (MGF) and mature IGF-1 in myoblast proliferation and differrentiation[J]. FEBS Letters, 2002,522:156-160.
    [71]薄冰.MGF与IGF-I对离体骨骼肌卫星细胞增殖及分化能力的影响[D].上海:上海体育学院,2009.
    [72]陈誉华编著.医学细胞生物学[M].第4版.北京:人民卫生出版社.2008.
    [73]翟中和编著.细胞生物学[M].第1版.北京:高等教育出版社.2000.
    [74]严丽萍,陶茂萱.血清饥饿和接触抑制两种GO期同步化方法效果评价[J].卫生研究.2007,36(3):275-278.
    [75]伍春莲,王宏斌,马红玲,王金发.血清饥饿法诱导人角质细胞HaCaT细胞周期同步化的研究[J].西华师范大学学报(自然科学版).2008,29(2): 127-131.
    [76]何丽洁,王汉民.人肾小管上皮细胞血清饥饿法同步化方法的研究[J].细胞与分子免疫学杂志.2007,23(3):275-276.
    [77]Edward S. Satellite Cell Proliferative Compartments in Growing Skeletal Muscles[J]. Developmental Biology 1996,175(1):84-94.
    [78]Seale P., Sabourin L.A., Girgis-Gabardo A., Mansouri A., Gruss P., Rudnicki M. A. Pax7 is required for the specification of myogenic satellite cells[J]. Cell. 2000,102(6):777-786.
    [79]Maria H., Geoffrey G. Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage[J]. The Journal of Physiology,2003,549(2): 409-418.
    [80]韩贻仁编著.分子细胞生物学[M].第3版.北京:高等教育出版社.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700