用户名: 密码: 验证码:
基于数字化技术的UHMWPE材料摩擦学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以超高分子量聚乙烯(UHMWPE)为代表的热塑性工程塑料在生物医学、微电子机械、海洋工程等高新科技领域以及粮食加工、纺织机械、化工机械等行业中发挥着越来越重要的作用,成为极具应用前景的新型摩擦学材料。但是,在实际使用过程中,UHMWPE等热塑性工程塑料的摩擦学性能还存在一些难以克服的不足,最具代表性的问题是对摩擦温升很敏感,其材料强度,变形与蠕变性能都受到温度的影响。尽管如此,在某些工况条件下,由于系统对这些材料除了摩擦学性能以外的其它性能的特殊要求,使得它们目前还具有不可替代性,因此,热塑性塑料的摩擦学问题已经成为具有重大科学意义的基础研究课题。
     受到国家自然科学基金项目(50175041)的资助,本文主要开展了以下几个方面的研究工作:
     (1) 首先对研究背景和意义进行了论述,明确了解决问题的基本途径。
     (2) 基于宏观地表和微观真实表面之间的内在相似性,将规范的三维表面描述模型DEM方法引入摩擦学,实现了DEM方法对物体真实表面形貌的规范描述,为微观真实粗糙表面几何形貌描述提供了一种新的手段。根据科学计算可视化原理,从二维数字化图像识别技术入手,开发了由二维高度图像获得到三维表面的高度数据的计算程序,解决了三维模型高度数据获取的问题,并经过对AFM,Taylor Hobson等实测表面的重构验证,确定了该方法的实用性和准确性。
     (3) 针对一般接触模型仿真计算中使用参数比较简单,不适用UHMWPE等热塑性塑料摩擦接触研究的问题,专门测定了常温和变温条件下UHMWPE真实变形规律——真实应力应变曲线和温度对强度影响曲线,并将其应用到基于真实压缩变形规律柱状接触模型的建模,使得模型更准确地反映了UHMWPE材料摩擦接触过程中的压缩变形和摩擦热影响规律,更具有实用价值。提出了柱状模型的接触计算方法和计算流程,并编制了相应的计算软件SimConW,用于UHMWPE表面的动态承载能力和摩擦功率分布的量化评价,为UHMWPE材料表面形貌和表面织构的摩擦学评价奠定了基础。
     (4) 研制了用于评价摩擦热对UHMWPE的摩擦学性能影响的准绝热试验装置。应用元胞自动机对摩擦表面温度分布随时间的变化情况进行了模拟计算,寻找影响摩擦温
Thermoplastics, such as UHMWPE, have been successfully used in biomedicine, MEMS, ocean engineering, foodstuff process, spinning mechanism, chemical mechanism and so on. But, there are some insurmountability problems in processes of thermoplastics application, for example, they are sensitive to temperature elevation caused by friction heat; their strength, deformation and creep are all affected by temperature. Even so, they cannot be replaced in some case for their other special properties needed by some systems, hence tribological problems of thermoplastics become basic research project with important scientific meaning.
    Supported by the Natural Science Foundation Committee of China (50175041), the main research work in the present dissertation involves:
    (Ⅰ)The background and meaning of the research were discussed. The way to solve the problem was confirmed.
    (Ⅱ) Based on the internal comparability of macro topography and microcosmic real surfaces, DEM was introduced to tribology and used to describe microcosmic real surface. So a new way to describe tribological surfaces was supplied. Based on the method of science visualization, the technique of two-dimension image identifying was taken as the point of departure and software for obtaining height data of three dimension surfaces from two dimension height images was built. The problem to get the height data of three-dimension model was solved. The practicability and veracity of this method was proofed by the reconstruction of surfaces measured by AFM, Taylor Hobson.
    (Ⅲ) To solve the problem that parameters used in common contact model are relatively simple and not suitable to studies on friction and contact of thermoplastics, the real deformation of UHMWPE under conditions of room temperature and alternating temperature was respectively tested. Thus a real stress-strain curve and a strength-temperature curve were obtained. Both curves were used to build a pole contact model based on real compressive deformation law. Then the model could more exactly and more practically show the compressive deformation regular and friction heat effect regular of UHMWPE during friction and contact processes. The calculating method and program of the contact simulation were brought forward. And furthermore, the software
引文
[1] N. P. Suh, Tribology of polyethylene homocomposites, Wear, 1998, 214:213-236
    [2] Yoshinori Sawae, Effects of synovia constituents on friction and wear of ultra-high molecular weight polyethylene sliding against prosthetic joint materials, Wear, 1998, 216:213-219
    [3] 温诗铸,摩擦学研究的发展趋势,中国机械工程学会会讯,2001,1:9-13
    [4] G.W. Blunn and P.S. Walker, Acta Orthop. Scand., 1992, 63 (3): 247-255
    [5] Z. Rymuza, Goldade, Static friction and adhesion in polymer-polymer microbearings, Wear, 2000, 238:56-69
    [6] A. Unsworth, R. M. Hall, I. C. Burgess and et al, Frictional resistance of new and explanted artificial hip joints, wear, 1995, 190:226-231
    [7] Makoto Ohta, Wear resistance of lightly cross-linked ultrahigh-molecular-weight polyethylene crystallized from the melt under uniaxial compression, Wear, 1999, 225-229: 312-318
    [8] Margam Chandrasekaran, Tribology of UHMWPE tested against a stainless steel counterface in unidirectional sliding in presence of model synovial fluids: part 1, Wear, 1998, 223:13-21
    [9] Yachin Cohen, et al, A Novel Composite Based on Ultra-High-Molecular-Weight Polyethylene, Composites Science and Technology, 1997, 57:1149-1154
    [10] H. Dong, Potential of improving tribological performance of UHMWPE by engineering the Ti6A14V counterfaces, Wear, 1999, 225-229:146-153
    [11] Vesa Saikko, Phospholipids as boundary lubricants in wear tests of prosthetic joint materials, Wear, 1997, 207:86-91
    [12] Chichinadze A. V., Processes in heat dynamics and modeling of friction and wear (dry and boundary friction), Tribology International, 1995,28(1):55-58
    [13] A. Yevtushenko, and O.Ukhanska. Non-stationary temperature field of discrete sliding contact of elastic bodies. Wear, 1994,176:19-23
    [14] S. Wang and K.Komvopoulos. A fractal theory of the interfacial temperature distribution at elastic contacts of fast sliding surface. ASME Journal of Tribology, 1995,117:203-215
    [15] J. Song, Effects of machining on tribological behavior of ultra high molecular weight polyethylene (UHMWPE) under dry reciprocating sliding, Wear, 1999, 225-229:716-723
    [16] 王承鹤,塑料摩擦学,北京:机械工业出版社,1994
    [17] G. Liu, Q. Wang, Y. Ao. Convenient formulas for modeling threee-dimensional thermomechanical asperity contacts. Tribology international, 2002, 35:411-424
    [18] 江晓禹,高分子材料的粘弹性摩擦接触力学研究,高分子材料科学与工程,2000,16:16-19
    [19] 林谢昭,盘式制动器非轴对称瞬态温度场的数值模拟,福州大学学位论文,2001.
    [20] Xie Youbai, Three axioms in tribology, Proceedings of 3rd International Symposium on Tribo-Fatigue, Hunan university press, Changsha, 2000
    [21] D.Taber, Tribology-the last 25 years A personal view, tribology International, Vol.28. No. 1
    [22] 唐少雄,内燃机凸轮机构摩擦学仿真设计建模研究.内燃机工程,2002,23:59-61
    [23] D. Bettge, J. Starcevic, Topographic properties of the contact zones of wear surfaces in disc brakes. Wear, 2003, 254:195-202
    [24] 周仲荣,摩擦学发展前沿,北京:科学出版社,2006
    [25] Z.Rymuza, Static friction and adhesion in polymer-polymer microbearings. Wear, 2000, 238: 56-69.
    [26] Karoly Varadi, Evaluation of the real contact areas, pressure distributions and contact temperatures during sliding contact between real metal surfaces, Wear, 2000, 1-2: 55-62.
    [27] Karoly Varadi, Contact and thermal analysis of bronze and steel machined surfaces in sliding contact, Int. J. Mach. Tools Manufact. Vol. 38:511-517
    [28] Wei Peng, Three-dimensional contact analysis of layered elastic/plastic solids with rough surfaces, Wear, 2001, 249:741-760
    [29] N.K. Myshkin, Simulation of real contact in tribology. Tribology International, 1998, 31: 79-86
    [30] S.A. Chizhik, Analysis of molecular scale roughness effect on contact of solids based on computer modeling, Precision Engineering, 1995, 17:186-191
    [31] 邓昭,微机电系统的微观摩擦学研究进展,摩擦学报,2001,21:494
    [32] M.Wieland, Wavelength-dependent measurement and evaluation of surface topographies: application of a new concept of window roughness and surface transfer function, Wear, 2000, 237 (2): 231-252
    [33] Liu Yuchuan, Calculating of temperature distribution of point contact in mixed lubrication, IST'2001
    [34] 杨楠,多粗糙峰弹塑性接触的有限元分析,摩擦学报,2000,20:202-206
    [35] 唐荣锡,现代图形技术,山东:山东科学技术出版社.http://www.cgn.net.cn/wsdj/
    [36] K. Friedrich, J. F16ck a, K. Váiradi, Z. Néder. Numerical and finite element contact and thermal analysis of real composite-steel surfaces in sliding contact. Wear, 1999, 225-229:368-379
    [37] 许小侠,基于逆向工程的仿生非光滑齿轮表面耐磨性的研究.吉林大学硕士学位论文,2004,13-15
    [38] S.K. Young, Friction reduction in total joint arthroplasty, Wear, 1998, 222:29-37
    [39] 任露泉.仿生非光滑表面滑动摩擦磨损试验研究[J],农业机械学报,2003,34(2):86-88
    [40] 任露泉.激光处理非光滑凹坑表面耐磨试验的均匀设计研究.材料科学与工程,2002,20(2):214-216
    [41] 佟金.天然生物材料及其摩擦学.摩擦学报,2001,21(4):315-320
    [42] 汪家道.规则凹坑表面形貌润滑研究.摩擦学报,2003,23:52-55
    [43] 王国林,任露泉,殷继红等.凸包型推土板减粘降阻的有限元分析.吉林工业大学学报,1997,27:80-85
    [44] Chou et al. 1997, (?)1997 American Vacuum Society, Chapter 4, www.wtec.org/loyola/nano/IWGN.Research.Directions/chapter04.pdf
    [45] 葛世荣,朱华,摩擦学的分形。北京:机械工业出版社,2005
    [46] F·P·鲍登,D·泰伯,摩擦学入门.北京:机械工业出版社,1982
    [47] Majumdar, B. Bhudhan, Fractal model of elastic-plastic cont-act between rough surfaces, Journal of Tribology, 1991, 113:1-11
    [48] 邬伦,地理信息系统--原理、方法和应用,GIS空间站(http://www.gissky.net)
    [49] Ka'roly Va'radi, Evaluation of the real contact areas, pressure distributions and contact temperatures during sliding cont-act between real metal surfaces. Wear, 1996, 200:55-62
    [50] Ka'roly Va'radi, Contact and thermal analysis of bronze andsteel machined surfaces in sliding contact. Int. J. Math. Tools Manufact, 1998, 38:511-517
    [51] K. Friedrich, Numerical and finite element contact and ther-mal analysis of real composite-steel surfaces in sliding contact. Wear, 1999,225-229:368-379
    [52] Z. Rymuza, Static friction and adhesion in polymer-polymermicrobearings. Wear, 2000, 238: 56-69
    [53] S. A. Chizhik, Analysis of molecular scale roughness effecton contact of solids based on computer modeling. PrecisionEngineering, 1995, 17; 186-191
    [54] [苏]克拉盖尔斯基等,摩擦磨损计算原理.北京:机械工业出版社,1982
    [55] Hugo Perlin Noise, http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
    [56] 孙霞,分形原理及其应用.合肥:中国科学技术大学出版社,2003
    [57] A. Wang, D. C. Sun, C. Stark, Wear mechanisms of UHMWPE in total joint replacements, Wear, 1995, 181-183:241-249
    [58] KA'ROLY VA'RADI and etc..: Contact and Thermal Analysis of Bronze and Steel Machined Surfaces in Sliding Contact, Int. J. Mach. Tools Manufact, 1998, 38:511-517.
    [59] KA'ROLY VA'RADI and etc.. : Evaluation of the Real Contact areas, Pressure Distributions and Contact Temperatures during Sliding Contact between Real Metal Surfaces. Wear, 1996, 200: 55-62.
    [60] 魏文光,金属的力学性能测试,北京:科学出版社,1980.
    [61] [美]R.W赫次伯格,工程材料的变形与断裂力学,北京:机械工业出版社,1982
    [62] A.Yevtushenko, O.Ukhanska, R.Chapovska, Friction heat distribution between a strationary pin and a rotating disc. Wear, 1996, 196:219-225
    [63] Chi-Chung Hu, Jiann-Jong Liau, Chen-Yu Lung. A two-dimensional finite element model for frictional heating analysis of total hip prosthesis. Materials Science and Engineering, 2001,266:11-18
    [64] B. Li , P.C. Clapp , J.A. Rifkin , X.M. Zhang, Molecular dynamics calculation of heat dissipation during sliding friction, International Journal of Heat and Mass Transfer, 2003, 46:37-43
    [65] Francis E. Kennedy, Dan Frusescu, Jiaying Li. Thin film thermocouple arrays for sliding surface temperature measurement, wear, 1997, 207:46-54
    [66] Jun Jiang, Heinz Ulbrich. Derivation of coefficient of friction at high sliding speeds from energy conservation over the frictional interface. Wear, 2001,247:66-75
    [67] Munehisa Koizumi, Naohide Tomita, Susumu Tamai, et al. Detection of cracks in polyethelene components of retrieved knee joint prostheses. Orthopadic Science, 1998, 3: 330-335
    [68] Li Jian, Guo Zhiguang, Hua Meng: Tribological characteristics of UHMWPE composite and relationship with its compressive behavior. Science in China Ser. G Physics, Mechanics & Astronomy, 2004, 47:79-87
    [69] Dangsheng Xiong, Shirong Ge. Friction and wear properties of UHMWPE/A1203 ceramic under different lubricating conditions. Wear, 2001, 250:242-245
    [70] A.Wang, A.Essner, Three-body wear of UHMWPE acetabular cups by PMMA particles against CoCr, alumina and zirconia heads in a hip joint simulator. Wear, 2001,250:212-216
    [71] A.A.Edidin, C.M.Rimnac,V.M.Goldberg, et al, Mechanical behavior, wear surface morphology, and clinical performance of UHMWPE acetabular components after 10 year of implantation. Wear, 2001, 250:152-158
    [72] K. Friedrich, J. Flock, K. Varadi, Z. Neder, Numerical and finite element contact and thermal analysis of real composite-steel surfaces in sliding contact. Wear, 1999, 225-229: 368-379
    [73] Z.Rymuza, Z.Kusznierewicz, T.Solarski, et al, Static friction and adhesion in polymer-polymer microbearings, Wear, 2000, 238:56-69
    [74] 陈耕,汪一麟,摩擦与磨损,上海:同济大学出版社,1991
    [75] 郑林庆,摩擦学原理,北京:高等教育出版社出版,1994
    [76] John A. Rogers, Photonic Applications of Printed and Molded Nanostructures. Dekker Encyclopedia of Nanoscience and Nanotechnology. DOI: 10.1081/E-ENN 120009349
    [77] 汪家道,陈大融,孔宪梅等,面接触规则凹坑表面留题润滑计算,清华大学学报(自然科学版,2001,41(2):42-45
    [78] 王云鹏,任露泉,杨晓东等,仿生柔性非光滑表面的结构优化设计,农业工程学报,1999,34(20):86-92
    [79] 王云鹏,任露泉,杨晓东等,仿生柔性非光滑表面减粘降阻的试验研究.农业机械学报,1999,30(4):1-4
    [80] 丛茜,王连成,任露泉等,磷片形非光滑表面的仿生设计,吉林工业大学学报,1998,28(2):12-17
    [81] 王再宙,激光处理非光滑凸包表面的耐磨性试验,吉林大学学报,2002,32(2):45-48
    [82] 潘开林,激光微细加工技术及其在MEMS微细制造中的应用,制造技术与机床,2002(2):5~7
    [83] Younan Xia, George M. Whitesides. Soft lithography, Annu. Rev. Mater. Sci.,1998, 28: 153-184
    [84] Giovanni Vozzi, Christopher Flaim, Arti Ahluwalia. Fabrication of PLGA scaffolds using soft lithogrpahy and microsyringe depostion, Biomaterials, 2003, 24:2533-2540
    [85] H.-G. Braun, E. Meyer, Thin microstructured polymer films by surface-directed film formation, Thin Solid Fillms, 1999, 345:222-228
    [86] L.Weh, Self-organized structures at the surface of thin polymer films, Materials science and engineering C, 1999, 8-9:463-467
    [87] Y. Lu, S.C. Chen, Micro and nano-fabrication of biodegradable polymers for drug delivery, Advanced drug delivery reviews, 2004, 56:1621-1633
    [88] 应济,贾昱,陈子辰等,粗糙表面接触热阻的理论和试验研究.浙江大学学报(自然科学版),1997,31(1):104-1409
    [89] 徐烈,张涛,熊炜等.真空低温下接触表面对接触热阻的影响[J].真空与低温,1998,4(1):1-4
    [90] 韩玉阁,宣益民,汤瑞峰,接触界面传热规律研究,南京理工大学学报,1998,22(3):260-263
    [91] 赵兰萍,徐烈,李兆慈等,反复加载情况下低温固体界面间接触导热的研究,低温与超导,2000,28(1):52-54
    [92] G.W. Blunn and P.S. Walker, Acta Orthop. Scand., 1992,63 (3): 247-255.
    [93] S.M.Kurtz, C.M.Rimnac, L. Pruitt, The relationship between the clinical performance and large deformation mechanical behavior of retrieved UHMWPE tribial inserts, Biomaterials, 2000, 21:283-291
    [94] Hidyuki Sakoda, John fisher, The effect of accelerated aging on the wear of UHMWPE, Journal of materials science: materials medicine, 2001, 12:1043-1047
    [95] G. B. Cornwall, C. M. Hansson, A. J. Bowe, Surface degradation features and microstructural properties of ultra-high molecular weight polyethylene (UHMWPe), Journal of materials science: materials in medicine, 1997, 8:303-309
    [96] O. Jacobs, N. Mentz, A. Poeppel, Sliding wear performance of HD-PE reinfoced by continuous UHMWPE fibres, Wear, 2000, 244:20-28
    [97] Chae I. Yim, Kwi J. Lee, Jae Y. Jho, Wear resistance of some modified ultra-high molecular weight polyethylenes and its correlation with tensile properties, Polymer bulletin, 1999, 42: 433-440
    [98] Munehisa Koizumi, Naohide Tomita, Susumu Tama, Detection of cracks in polyethylene components of retrieved knee joint protheses, Journal of orthopaedic science, 1998, 3: 330-335
    [99] Weiping Ren, Shang-You Yang, Hsu-Wei Fang, Distinct gene expression of receptor activaor of nuclear factor-kB and rank ligand in the flammatory response to variant morphologies of UHMWPE particles, Biomaterials, 2003, 24:4819-4826
    [100] Gladius Lewis, Robert M. Fencl, Michael Carroll, The relative influence of fivel variables on the in vitro wear rate of uncrosslinked UHMWPE accetabular cup liners, Biomaterials, 2003, 24:1925-1935
    [101] R. M. Hall, A. Unsworth, B. M. Wroblewski, The friction of explanted hip prostheses, British journal of rheumatology, 1997, 36:20-26
    [102] F. J. Medel, F. García-(?)lvarez, E. Gómez-Barrena, Microstructure changes of extruded ultra high molecular weight polyethylene after gamma irradication and shelf-aging, Polymer degradation and stability, 2005, 88:435-443
    [103] 谢小鹏,表面形貌和表面的摩擦学作用,广东石油化工高等专科学校学报,2000,10:35-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700