用户名: 密码: 验证码:
缸盖内沸腾传流固耦合模拟及其可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过冷沸腾传是缸盖冷却水腔中存在的一种重要换方式,然而现有的沸腾传模型并没有考虑局部流动与发生沸腾时产生气泡对流动沸腾传的影响,同时也没有考虑流速项对沸腾换量、临界流密度点及空泡份额的影响。因此,应进一步发展其模型,更加精确地模拟、预测和评价缸盖冷却水腔内的沸腾传现象,更加合理的设计缸盖结构。本文的主要研究内容包括以下几个部分:
     1、在现有的单相流沸腾换模型的基础上,考虑流速对沸腾换量和临界流密度点的影响,通过数学推导建立空泡质量控制方程,利用质量与空泡份额的转换关系反映两相流的存在,基于线性叠加原理实现沸腾换量的引入,完整描述沸腾换曲线,进而建立新的单相均匀流沸腾换模型,通过UDF与UDS子程序接口将模型嵌入CFD软件中进行联立求解,利用该模型的模型结果与试验结果对比表明两者结果吻合性较好。
     2、为方便沸腾换的模拟计算,在单相均匀流沸腾换模型的基础上提出一种沸腾换的修正算法,通过对单相对流换的修正反映沸腾换的影响;针对该模型在缸盖水腔设计中的应用,提出以5mm参考截面高度内的平均空泡份额值作为缸盖冷却水腔设计中沸腾换应用的极限判据,推荐的合理取值范围应在[0.20,0.94]之间,完整的建立了沸腾换体系。
     3、基于流固耦合算法的基本思想,结合缸盖流动传的特点,在CFD与FEA软件的基础上采用C语言与Python语言开发出一种用于缸盖冷却水腔流动传的自动化流固耦合模拟软件;通过点云快速配准算法与MPCI自动进程控制管理实现耦合面间大规模数据的快速匹配和不同进程之间的自动排队控制,采用Python语言实现不同软件接口之间的数据传递与转换。以226-B型柴油机为例,将该算法的模拟结果与传统方法的模拟结果进行对比表明该算法具有足够的精度,具有重要的应用价值。
     4、针对某柴油机缸盖,采用自行开发的自动化流固耦合算法对其进行流动传负荷模拟计算分析,得到了压力场、流场分布.根据计算结果对冷却水腔结构进行更改,更改后各缸流动均匀性得到明显改善,排气门周围及喷油器周围流速得到提高。采用平均空泡份额极限值判据对冷却水腔5mm平均空泡份额值进行评判,平均空泡份额值均在极限值[0.20,0.94]之内,说明冷却水腔内沸腾状况没有出现过渡沸腾,不会发生损坏,反映出空泡份额极限值判据比速度判据具有更为广泛的意义。考虑沸腾换影响后,沸腾强化传对缸盖冷却水腔内传的作用十分明显,不可忽略。
     5、采用三种实现方法利用沸腾换修正算法对缸盖进行温度场模拟,模拟结果表明三种实现方法的结果具有较好一致性;从模拟迭代收敛时间和实现过程的难易程度上看,采用方法二进行沸腾换的修正模拟最为合理。对比单相均匀流沸腾换模型与修正算法的模拟结果表明两种算法的结果具有较好一致性。为验证数值模拟的准确性,在距缸盖火力面6mm处布置3个测点进行温度场测量试验。将测量结果与模拟结果进行对比:表明单相均匀流沸腾换模型及修正算法都具有足够的模拟精度。
     6、采用有限元分析方法,对缸盖进行机械、热机耦合应力模拟并在此基础上进行疲劳分析,根据模拟结果对缸盖结构提出更改措施,更改后满足强度疲劳要求;同时对比分析了沸腾换对应力疲劳的影响,沸腾换可以使缸盖保持在较低温度环境中工作,使缸盖鼻梁区和冷却水腔应力降低,安全系数增大,火力面的低周疲劳性得到改善,增强材料的抗疲劳性能。
For water-cooled internal combustion engine, sub-cooled boiling heat transfer is an important heat transfer mode of cooling water-jacket in cylinder head. However the existing boiling heat transfer model does not consider the influence both of local flow and air bubbles on flow boiling heat transfer and the velocity on boiling heat transfer flux, the critical heat flux point and the void fraction. Therefore, in order to simulate, predict and evaluate the boiling heat transfer phenomena of cooling water-jacket in cylinder head more accurately and design cylinder head more rationality, the fluid-solid coupling numerical simulation of boiling heat transfer and reliability in cylinder head is studied in this paper including the following aspects:
     1、Based on the existing single-phase flow boiling heat transfer model, considered the influence of velocity for boiling heat transfer flux and the critical heat flux point, a conservative void mass equation was established through theoretical analysis and mathematical derivation. The void fraction distribution of the flow was estimated indirectly by the relationship between void mass and void fraction to reflect the existence of two-phase flow. Calculated the boiling heat transfer flux by the linear superposition theory and described the boiling heat transfer curve completely, then a new homogenous flow boiling heat transfer model was established. Embedded the new boiling heat transfer model into CFD software by UDF and UDS subroutines to solve the mixed flow with single-phase flow equations and void mass equation. Comparation between the simulation results of the new boiling heat transfer model and the experimental results shows that they were achieved a good agreement.
     2、For the convenience of numerical simulation of boiling heat transfer, a corrected algorithm that simulated boiling heat transfer was put forward based on the single-phase flow boiling heat transfer model. The impact of boiling heat transfer was reflected by correcting single-phase convective heat transfer. Aiming at the application of the boiling heat transfer model which is applied to the design of cylinder head, it was proposed that the critical value of mean void fraction which is located from the wall to the height of 5 mm was used as the criterion for judging the limit state of nucleate boiling of cooling water-jacket in cylinder head and to evaluate whether the boiling heat transfer in cooling water-jacket of cylinder head exceed the limit state of nucleate boiling. The reasonable mean void fraction was between 0.20 and 0.94. Then the boiling heat transfer system was established completely.
     3、Based on the basic theory of fluid-solid coupled algorithm, combined with the characteristics of flow and heat transfer in cylinder head, a new automated fluid-solid numerical simulation software was developed adopting C and python language with CFD and FEA software. The point cloud quick registration algorithm is used to obtain rapid match of mass dataon coupling face. Via MPCI to control and manage the transformation of different process automation, used python language to convert and transfer data between the different software. Take 226B diesel engine for example, compared simulation results of automated fluid-solid coupled algorithm with results of traditional methods showed that this automated fluid-solid coupled algorithm had more enough precision and important industrial application value.
     4、The automated numerical simulation of fluid-solid coupling on flow and boiling heat transfer of cooling water-jacket in cylinder head of diesel engine was employed using the software of CFD and FEA, and obtained the distribution of the stress field and flow field in the cooling water-jacket. According to the simulation results, the shape of cooling water-jacket was modified, the modified results showed that the flow uniformity improved obviously and the velocity around the exhaust valve and injector improved. The valve of mean void fraction which is located from the wall to the height of 5 m m in the cooling water-jacket was less than its'critical value, indicating that the nucleate boiling heat transfer in cooling water-jacket of cylinder head was safe and the criterion of mean void fraction had more extensive significance. Considered the impact of boiling heat transfer, boiling plays an evident role in enhancing heat transfer of cooling water-jacket in cylinder head, which should not be ignored in numerical calculation.
     5、The numerical simulation of heat transfer in cylinder head was performed using three kinds of methods by boiling heat transfer correction algorithm, the simulation results indicated that the result of three kinds of methods have a good agreement. According to the simulation iteration convergence time and the degree of difficulty, the second method was the most reasonable one. Comparation the simulation results of the new homogenous flow boiling heat transfer model with boiling heat transfer correction algorithm, indicating that had a good agreement. In order to verify the accuracy of numerical simulation, the temperature on interior of cylinder head in diesel engine was measured using copper-constantan thermocouple. Compared the simulation results with the experimental results, the two results were in good agreement with each other, the new homogenous flow boiling heat transfer model and boiling heat transfer correction algorithm have enough simulation precision.
     6、The finite element analysis for structure stress and thermal-structure stress of cylinder head were calculated and the fatigue analysis for cylinder head was calculated. According to the simulation results the shape of the cylinder head was modified, the modified results showed that the fatigue strength was improved. Meanwhile the influence of boiling heat transfer on both stress and fatigue were analyzed, it showed that cylinder head could work in a lower temperature condition because of boiling heat transfer which could reduce the thermal stress value, increase safety coefficient and intensifie their capability of preventing thermal fatigue.
引文
[1]楼狄明,万品力,周岳敏等.大功率机车柴油机气缸盖负荷研[J].内燃机车,2006(9):9-12
    [2]廖日东,左正兴,邹文胜.温度对气缸盖应力分布影响的研究[J].内燃机学报,2001,19(5):253-257
    [3]ZhaoWen Wang, Ronghua Huang, XiaoBei Chen et al. Tests And Numerical Simulations On The Thermal Load Of The Cylinder Head In Heavy-Duty Vehicle Diesel Engines. Proceedings of the 2007 Spring Technical Conference of the ASME Internal Combustion Engine Division, Indiana, USA,2007.
    [4]ZhaoWen Wang, RongHua Huang, XiaoBei Chen et al. Experiment and simulation analysis on heat load of heavy-duty vehicle diesel engine. SAE Paper 2007-01-2069,682-693.
    [5]Norris P M, Wepfer W J, Hoag K L, Coutine White D. Experimental and Analytical Studies of Cylinder Head Cooling[C]. SAE Paper 931122,1993.
    [6]Pamela M Norris, Mardi C Hastings, William J Wepfer. An Experimental Investigation of Liquid Coolant Heat Transfer in a Diesel Engine[C]. SAE Paper 891898,1989
    [7]李迎.内燃机流固耦合传问题数值仿真与应用研究[D].杭州:浙江大学,2006
    [8]刘铁刚.柴油机冷却水套模拟分析及结构优化[D].长春:吉林大学,2007
    [9]谈秀菊.内燃机气缸盖冷却水腔的优化分析研究[D].天津:天津大学,2005
    [10]H H Pang,C J Brace. Review of Engine Cooling Technologies for Modern Engines [R]. Proc. Inst. Mech. Eng. Aotumob. Eng. 2004,218(D11)
    [11]K Robinson, N A F Campbell, J G. Hawley and D G Tilley. A Review of Precision Engine Cooling[C].SAE Pape 1999-01-0578,1999
    [12]Finlay I C, Tugwell w, Biddulph T W and Marshall R A. The Influence of Coolant Temperature on the Performance of a Four Cylinder 1100 cc Engine Employing a Dual Circuit Cooling[C]. SAE Paper 880263,1988
    [13]MAKKAPATI Satheesh, POE Steve, SHAIKH Zafar et al. Coolant velocity correlations in all IC engine coolant jacket[C]. SAE Paper 2002-01-1203,2002
    [14]屈盛官,夏伟,黄荣华等.发动机气缸盖冷却水流动试验及CFD分析[J].华南理工大学学报,2004,32(8):42-46
    [15]钱作勤,王卫华,王苏丹.硬度塞法测量柴油机缸盖温度的实验研究[J].船舶工程,2005,27(1):59-61
    [16]潘剑锋,赵金刚,李德桃等.多缸柴油机气缸盖温度场试验研究[J].车用发动机,2009,81(2):36-38
    [17]Mohan K V, Arich O, Yang S L, et al. A computer simulation of the turbocharged vehicle engine cooling system simulation[c]. SAE 971804.
    [18]Siders J A,Tiuey D G. Optimizing cooling system performance using simulation[C]. SAE 971802.
    [19]SHIH Stephen, ITANO Edwin, XIN Jun. Engine knock toughness improvement through water jacket optimization[C]. SAE Paper 2003-01-3259,2003
    [20]YE Jian, COVEY Jim, AGNEW Daniel D. Coolant flow optimization in a racing cylinder block and head using CFD analysis and testing[C]. SAE Paper 2004-01-3542,2004
    [21]张小矛,Li Gang等.V型发动机冷却水套改进及三维数值模拟分析[J].车用发动机,2007,167(1):80-82
    [22]陶建忠,李国祥,佟德辉等.基于CFD的柴油机气缸体冷却水腔改进设计[J].农业机械学报,2008,39(2):188-191
    [23]赵维茂,张卫正,原彦鹏等.柴油机功率强化前后气缸盖的温度场模拟与试验[J].农业机械学报,2009,40(3):51-55
    [24]郭立新,杨海涛,夏兴兰等.应用直接耦合法模拟计算汽缸盖、机体温度场[J].内燃机工程,2007,28(5):35-40
    [25]辛喆,张克鹏,谢斌等.耦合法用于柴油机冷却系统传的研究[J].农业工程学报,2010,26(1):177-181
    [26]Mohan K V, Arich O, Yang S L, et al. A Computer Simulation of the Twbocharged Vehicle Engine Cooling System Simulation[C]. SAE 971804,1997
    [27]Arici 0, Jhonson J H, and Kulkarni A J. The Vehicle Engine Cooling System Simulation Part1 Model Development [C]. SAE 1999-01-0240,1999
    [28]Woschni G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine[C]. SAE Trans 670931,1967
    [39]白敏丽,吕继祖,丁铁新.六缸柴油机冷却系统流动与传的数值模拟研究[J].内燃机学报,2004,22(6)
    [30]骆清国,刘红彬,龚正波等.柴油机气缸盖流固耦合传分析研究[J].兵工学报,2008,29(7):769-773
    [31]傅松 胡玉平 李新才等.柴油机缸盖水腔流动与沸腾传的流固耦合数值模拟[J].农业机械学报,2010,4:26-30
    [32]Robinson, K. IC Engine Coolant Heat Transfer Studies[D].PhD thesis. University of Bath, UK.2001
    [33]Robinson K., Hawley J. G., Campell N.A.F. Experimental and Modeling Aspects of Flow Boiling Heat Transfer for Application to Internal Combustion Engines. Proc. Inst. Mech. Eng. Automob. Eng.,2003,217 (D10)
    [34]Hawley J. G., Wilson M., Campbell N. A. F. etc. Predicting Boiling Heat Transfer Using computational Fluid Dynamics. Proc. Inst. Mech. Eng. Automob. Eng.,2004,218 (D5)
    [35]Hosny Z., Abou-Ziyan. Forced Convection and Subcooled Flow Boiling Heat Transfer in A symmetrically Heated Ducts of T-section. Energy Conversion and Management 45(2004): 1043-1065
    [36]王兆文,黄荣华,成晓北,等.发动机气缸盖内复杂流动与传的研究与发展[J].中国内燃机学会2005年学术年会暨APC2005年学术年会论文集,2005,10:432-436
    [37]Helfried Steiner, Alexander Kobor, Ludwig Gebhard. A Wall Heat Transfer Model for Subcooled Boiling Flow[J]. International Journal of Heat and Mass Transfer, 2005,48(19):4161-4173
    [38]Tao Bo. CFD Homogeneous mixing flow modeling to Simulate Sub-cooled Nucleate Boiling Flow[C]. SAE Paper 2004-01:1512-1526
    [39]H. Steiner et al. Nucleate boiling flow-experimental investigations and wall heat flux modeling for automotive engine applications[J].2008
    [40]刘永,李国祥,付松等.一种适用于缸盖水腔沸腾传计算的模型[J].内燃机学报,2008(1);76-82
    [41]李智,黄荣华,程晓军等.内燃机缸盖水腔内过冷沸腾数值模型研究[J].内燃机学报,2010(3);247-252
    [42]傅松.缸盖冷却水套内沸腾传特性的研究[D].济南:山东大学,2010
    [43]刘金祥,廖日东,张有等.6114柴油机缸盖有限元结构分析[J].内燃机学报,2004,22(4):367-372
    [44]陶建忠,佟德辉,李国祥等.6200型柴油机气缸盖强度的有限元分析[J].农业机械学报,2007,38(11):601-604
    [45]刘洁.柴油机铝合金气缸盖多场耦合强度分析[D]. [硕士论文].成都:西南交通大学,2009
    [46]Kandlikar, S. G. Heat Transfer Characteristics in Partial Boiling, Fully Developed Boiling, and Signifieant Void Flow Regions of Subcooled Flow Boiling[J]. Journal of Heat Transfer,1998,120:395-401.
    [47]Chen, J. C. A Correlation for Boiling Heat Transfer to Saturated Fluids in Convection Flow[R]. Industrial and Engineering Chemistry, Process Design and Development, 1966,5:322-329.
    [48]Warrier, G. R., Dhir, V. K. Heat Transfer and Wall Heat Flux Partitioning During Subcooled Flow Nucleate Boiling-A Review[J]. Journal of Heat Transfer,2006,128:1243-1256.
    [49]Davis, E. J., Anderson, G. H. The incipience of nucleate boiling in forced convection flow. Am. Inst. Chem. Engrs J.,1966,12(4),774-780.
    [50]Cipolla, G. Heat transfer correlations applicable to the analysis of IC engine head cooling. In Proceedings of the International Centre for Mass and Heat Transfer conference, Dubrovnic, September 1987 (1989, Hemisphere,, New York), pp.373-396.
    [51]Bergles, A. E., Rohsenow, W. M. The determination of forced convection surface boiling heat transfer. ASME paper 63, HT-22,1963.
    [52]刘永.冷却水腔内沸腾传与缸盖工作状态仿真[D]. [硕士论文].济南:山东大学,2006
    [53]杨世铭,陶文铨.传学[M].北京:高等教育出版社,1998,
    [54]Incropera F P, Dewitt D P.Introduction to heat transfer-3rd ed[M]. New York:John Wiley&Sons.1996:506-508
    [55]徐济鋆.沸腾传和气液两相流[M].原子能出版社.1993
    [56]张强,李娜,王志明.车用柴油机缸盖冷却水腔的CFD分析[.J].车用发动机,2005(6):59—62.
    [57]陈红岩,李婷.柴油机活塞缸套冷却系统固流耦合传研究 [J].农业机械学报.2006,37(5)::37—40.
    [58]AVL FIRE User Manual[M]. AVL List Gmbll Graz.2002
    [59]夏文庆,明晓,朱春玲.基于状态空间的流固祸合传的分析[J].南京航空航天大学学报,2004(2):112-116
    [60]肖翀,左正兴,覃文浩.柴油机气缸盖的耦合场分析及应用[J].车用发动机,2006(4):26-29
    [61]BATHE K J, ZHANG H, SHAN Ji. Finite element analysis of fluid flow s fully coupled with structural interactions[J].Computers & Structures, 1999,72(1):1-16.
    [62]苏波,钱若军.袁行飞流固耦合界面信息传递理论和方法研究进展[J].空间结构,2010(3):3-10
    [63]李磊.流场模拟和流固耦合问题的网格新方法[D].上海:上海交通大学,2009
    [64]俞小莉,郑飞,严兆大.内燃机气缸体内表面稳态传边界条件的研究[J].内燃机学报,1987(4):324-332.
    [65]杨涛.:V型柴油机机体强度及缸套变形计算分析[D].济南:山东大学,2006
    [66]Franz Koch, Franz Maasen, Frank Haubner.Coling System Development and Optimization with the Computer Code Cool [C].SAE Paper 980425,1998
    [67]刘巽俊,陈群,李骏等.车用柴油机冷却系统的CFD分析[J].内燃机学报,2003,2:125-129
    [68]杨连生.内燃机设计[M].北京:中国农业机械出版社.1988:394-414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700