用户名: 密码: 验证码:
基于多场耦合分析的柴油机气缸盖结构仿真研究及疲劳寿命预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气缸盖是影响柴油机整体性能的关键部件,工作时承受着高强度的机械负荷和负荷,由于其结构内部及冷却液流动情况十分复杂,导致温度和应力分布很不均匀,很容易产生应力集中现象,严重时会发生疲劳破坏。本文以柴油机缸盖为研究对象,以流体动力学、传学等有限元理论为分析基础,建立了缸盖、机体、螺栓、气缸垫、冷却水腔的有限元模型,采用非线性接触分析方法对缸盖进行了流固耦合、机耦合仿真分析。通过对冷却液流动与传情况及缸盖在预紧工况、预紧-爆发工况、应力工况、机耦合工况下的应力场的分析,找出缸盖应力集中主要区域,并以此为依据对缸盖结构进行了多方案改进设计。通过对比改进后缸盖耦合分析结果,选取最能够增强冷却效果、降低缸盖温度、缓解应力集中问题的设计方案,采用疲劳分析软件,计算缸盖疲劳寿命,探索了机械载荷、负荷对缸盖疲劳强度的影响。
     论文应用前处理软件Hypermesh对缸盖、机体、螺栓、气缸垫、水腔等三维实体模型进行了适当简化,并分别划分了接触分析所需的固体域网格及流体分析边界层网格。把缸盖和水腔耦合模型导入流体动力学软件CFX,运用整场离散、整场求解方法,对气缸盖及冷却液进行了直接耦合传分析。分析结果显示,冷却液流速合理,基本达到缸盖冷却要求。但缸盖上水孔布置不太合理,导致缸盖冷却不充分,尤其是两排气道之间鼻梁区及排气道靠近缸盖顶板处冷却液流速偏低,冷却效果较差,这也解释了缸盖在排气道侧温度偏高的原因。
     论文把流场分析得出的缸盖温度映射到ANSYS分析模型中,计算了缸盖在应力工况、预紧力工况、预紧力-爆发工况、机耦合工况下的应力场。计算结果显示,在预紧力和爆发压力作用下,最大应力值都位于螺栓支撑凸台附近,由此可知,缸盖只承受机械载荷作用时,应力集中主要出现在预紧力作用区域。而在应力及机耦合两种工况下,应力集中区域基本相同,主要分布在缸盖底板水道壁面、火力面鼻梁区及两排气道之间的鼻梁区附近,而这些区域在单纯机械负荷作用下的应力值较低,证明了负荷对其应力水平起主导作用。
     通过对计算结果的分析,论文提出五种缸盖结构改进方案,探索了降低底板厚度、增大入水孔直径、底板加工卸载槽、增大底板冷却水孔直径等结构改进形式对冷却液冷却效果、缸盖温度场及各种工况下的应力分布的影响。通过与原方案对比,发现缸盖入水孔直径增大以后,冷却液流动更加合理、冷却效果增强,缸盖温度明显降低;而在底板处加工卸载槽以后,由于火力面的承面积增加,使缸盖最高温度有所升高。应力计算结果显示,对缸盖进行上述改进后,虽然使缸盖承受了更大的机械载荷,但负荷作用下的应力值呈下降趋势。增大缸盖底板冷却水孔直径后,进气道壁面温度下降明显,但缸盖最高温度反而略有增加,这主要是由于上水孔流出的冷却液很大一部分经冷却水孔直接流向出水口,而减少了排气道侧的冷却液流量,冷却效果下降。
     论文把应力计算结果导入到疲劳分析软件FE-safe中,选取应力计算结果最优方案与原缸盖结构进行对比,分别计算了缸盖在机械载荷和负荷作用下的疲劳寿命。结果证明,改进方案降低了缸盖应力集中区域的应力应变水平,疲劳循环次数增多,寿命加强。火力面鼻梁区、两排气道之间的鼻梁区、螺栓支撑凸台等区域容易发生疲劳破坏,寿命相对较小,这些区域在缸盖抗疲劳设计过程中应重点考虑。通过对比发现,在机械载荷工况下,预紧力对缸盖疲劳寿命起到主导作用;而在机耦合工况下,应力对缸盖底板处的疲劳寿命影响较大。
The cylinder head is one of the key parts for the diesel engine. When it is working, thecylinder bears high temperature and pressure. Besides, because of its complex geometricshape and flow situation in water jacket, heat stress and mechanical stress distribution is notuniform, it is easy to produce the stress concentration phenomenon which can cause seriousfatigue damage. The paper takes a diesel engine as the research object, based on some theoriesof finite element analysis such as the fluid dynamics theory, heat transfer theory and so on.Multi-physics field coupling analysis was taken on the the model which is combined bycylinder head, engine body, bolts, cylinder cushion, and other parts using nonlinear contactanalysis method. In order to calculate the stress and strain field results in the workingconditions such as the prestressing force, explosion pressure, heat load and the thermalmechanical coupling conditions. Then the paper explored the influence on the cylinder headfatigue strength cased by mechanical stress and thermal stress, found out the main stressconcentration areas. At last, the paper put forward some structure improvement measuresbased on the results above to forecast the fatigue life of the cylinder head using fatigueanalysis software FE-safe.
     The paper built both the finite element assembly model and fluid analysis model afterof the simplification for the cylinder head, engine body, water jacket and cylinder cushionwith the specialized processing software Hypermesh. And then I put the mesh to the Fluiddynamics software CFX, took the directly coupled heat transfer analysis the based on thetheory of disperse integrally and solve integrally. The analysis results showed that watervelocity is reasonable, and can basically meet with cylinder head cooling requirements. Butthere are also some shortcomings in the water inlets, especially in the area near the two exhausting channels, the water velocity is too slow, this also explains the cause of the hightemperature in exhausting channels.
     Then the paper mapped the cylinder head temperature made in flow analysis to theanalysis model, calculated the stress field in the four working conditions such as theprestressing force, explosion pressure, heat load and the thermal mechanical couplingconditions, The results indicated that the stress concentration is mainly distributed close to thebolt support convex platforms when it bears bolt prestressing force and explosion pressure.We can conclude that stress concentration occurs in Mechanical load condition. Besides, onthe thermal stress and heat coupling conditions, stress concentrated areas are almost the same,which are mainly distributed in the cylinder water channel floor , nose bridge surface betweentwo exhaust ports in fire floor, near the water-jacket fillets between close to cylinder boltholes in cylinder base floor. so the results confirms that thermal stress takes a key role in theseregions..
     This paper puts forward five improvements of cylinder head such as the change ofbottom thickness, inlet diameter, processing discharge groove which can influence thecylinder head temperature distribution and cooling liquid cooling effect. Then analyzed theheat transfer effect and stress distribution in various working conditions, through thecomparison with the original model, we found that the cooling fluid flow more reasonable,and cylinder head temperature has reduce. After the improvement of processing dischargegroove, the highest temperature raised because of the increase of heated area. In addition, nodoubt that the mechanical load had increased after the thinning improvement of cylinderbaseboard, but heat load stress and strain reduced significantly to the contrary. When thediameter of cooling hole increased, the intake surface temperature dropped significantly,while the highest temperature increased on the contrary. It is mainly because that most of thecooling water has gone to the output directly through the cooling hole, which reduced thecooling effect in the region of exhaust channel.
     Finally, the paper exported stress results into the fatigue analysis software FE-safe tocalculate the cylinder head fatigue life of the optimal case. The results show that high stress and strain are located in the regions such as the nose bridge surfaces both in fire floor andbetween two exhaust ports and bolt support convex platforms, where we should make aspecial consideration in diesel engine design. By comparison, the paper also found that thefatigue cyclic numbers and service life have both increased after improvement. Through thecomparison with the original model, we find that pretightening force plays an important rolein the mechanical load conditions; while the thermal stress has a key effect on the fatigue lifein the bottom floor of cylinder head.
引文
[1]李舜铭.机械疲劳与可靠性设计[M].北京:科学出版社,2006.9
    [2]张明,王珉,左敦稳.抗疲劳制造技术的研究现状与发展趋势[J].机械设计与制造.2002,(2):100-102
    [3]徐聪聪.柴油机气缸盖-流-固多场耦合仿真研究.太原:中北大学,2011.6
    [4]刘金祥,廖日东,张有等. 6114柴油机缸盖有限元结构分析[J].发动机学报.2004,22(4):369-372
    [5]张翼,董小瑞,苏铁熊.150型柴油机气缸盖的有限元强度分析[J].华北工学院学报.2003,24(6):458-460
    [6]李成林.LJ465Q-2A型汽油发动机的缸盖结构有限元分析及主要部件分析[D].南宁:广西大学,2008.6
    [7]李婷.发动机耦合系统中稳态流-固耦合传问题的数值仿真研究[D].浙江:浙江大学,2006.6
    [8]傅松,胡玉平,李新才等.柴油机缸盖水腔流动与沸腾传的流固耦合数值模拟[J].农业机械学报.2010.41(4):26-30
    [9] Jianye,Jim Covey,Daniel D.Agnew. Coolant Flow Optimization in a Racing CylinderBlock and Head Using CFD Analysis and Testing. SAE Paper,2004-01-3542
    [10] F.Payri, J.Benajes, X.Margot, etc. CFD modeling of the in-cylinder flow in directinjection diesel engines. Computers & Fluids 33 (2004) 995–1021
    [11] M. G. Gavali, A. V. Subbarao ,N. V. Marathe.Optimization of Water Jacket UsingCFD for Effective Cooling of Water-Cooled Diesel Engines [C].SAE Paper2007-26-049.
    [12] M.Fadaei,H. Vafadar,A. Noorpoor. New thermo-mechanical analysis of cylinderheads using a multi-field approach. Scientia Iranica. 2011,18 (1), 66–74
    [13]孙洪飞.发动机缸盖冷却水道流场及冷却特性的分析研究[D]北京:北京交通大学,2010.
    [14]叶伊苏,辛喆.车用柴油机冷却水套的CFD分析与优化[J].柴油机.2006,14(2):24-28.
    [15]瞿承玮.大型柴油机气缸系统流场/-机耦合场非线性三维有限元分析[D].上海:同济大学,2007.
    [16]张少杰. Phaser210TiN天然气发动机负荷分析[D].河北:河北工业大学,2008.
    [17]吴雨亭.发动机活塞、气缸体和气缸盖负荷仿真分析[D].北京:北京交通大学,2010.
    [18] Shiang-Woei Chyuan.Finite element simulation of a twin-cam 16-valve cylinderstructure.Finite Elements in Analysis and Design.2000.35.201-212
    [19] Chang-Chun Lee, Kuo-Ning Chiang, Wen-King Chen, etc. Design and analysis of gasketsealing of cylinder head under engine operation condition. Finite Elements in Analysisand Design 41 (2005) 1160–1174
    [20] M H Shojacfard, M RGhaffarpour, A R Noorpoor,S Alizadehnia.Thermo-mechanicalanalysis of an engine cylinder head. Automobile Engineering. 2006.
    [21] Markus Bernd Grieb. Thermo-mechanical fatigue ofkk aluminum alloys for cylinderhead applications-experimental characterization and life prediction. ProcediaEngineering. 2010(2),1767-1776
    [22] Tsuyoshi-Takahashi, Katsuhiko Sasaki. Low cycle fatigue of aluminum alloy cylinderhead in consideration of changing metrology microstructure. Procedia Engineering.2001(2),767-776
    [23] L.Ceschini, Alessandro Morri, Andrea Morri. Predictive equations of the tensileproperties based on alloy hardness and microstructure for an A356 gravity die castcylinder head. Materials and Design. 2010(32), 1367–137
    [24]沈红斌.燃机气缸盖强度和可靠性的有限元法研究[D].天津:天津大学,2003.1
    [25]宋晋宇. Z6110型柴油机气缸盖、气缸垫接触强度分析及其算法的探讨[D].大连:大连理工大学,2005.3
    [26]肖翀,左正兴,覃文洁等.柴油机汽缸盖的耦合场分析及应用[J].车用发动机.2006.4:26-29
    [27]孙平,谢雪峰,顾勤,等.YZ4108ZLQ柴油机两种方案冷却水套的CFD分析[J].汽车技术.2005,10:27-31.
    [28]杜佳正,黄荣华,王龙飞等.发动机机体缸盖冷却水CFD模拟计算分析[J].柴油机设计与制造.2007,15(1):15-18
    [29]骆清国,刘红彬,龚正波.柴油机缸体-缸套-缸盖-冷却水整体耦合传仿真研究[J].车用发动机,2009,1:31-35
    [30]陈群,刘巽俊,李骏等.CA498车用柴油机冷却水套的CFD分析[J].汽车技术,2003,(11):11-15
    [31]陈永杰,苏石川.某V型船用柴油机缸体冷却系统的仿真分析[J].柴油机.2009,31(2):31-38.
    [32]李娜,张强.欧Ⅲ排放柴油机缸盖冷却水腔流动与传的数值解析[J].内燃机工程.2007,28(1):51-55.
    [33]孙洪飞.发动机缸盖冷却水道流场及冷却特性的分析研究[D]北京:北京交通大学,2010.
    [34]王宇.CFD在多缸柴油机冷却系统设计中的应用.[D].大连:大连理工大学,2007
    [35]代秀红. Z6110型柴油机缸盖结构强度分析[D].大连:大连理工大学,2003.6
    [36]毛金龙.气缸盖鼻梁区结构改进分析及可靠性寿命计算[D].南京:中国农业大学,2007.5
    [37]夏春晶,刘玉凤,闫明等.气缸盖蠕变-疲劳寿命预测[J].失效分析与预防.2008,3(14):59-62
    [38]胡定云,陈泽忠,温世杰等.某柴油机气缸盖疲劳的可靠性预测[J].车用发动机.2008.6,(176): 38-42
    [39]刘洁.柴油机铝合金气缸盖多场耦合强度分析[D].成都:西南交通大学,2009.4
    [40]郭立新,杨海涛,夏兴兰.某汽油机气缸盖负荷分析[J].现代车用动力,2006.11,(4):16-20
    [41]范仲. CY4102BZQ型柴油机的缸盖结构强度分析与研究[D].天津:天津大学,2003.4
    [42]李春玲.柴油机气缸盖温度场数值模拟[J].柴油机设计与制造.2004.22(6):18-20
    [43]徐行军.柴油机冷却系统结构优化及缸盖应力分析[D].天津:天津工业大学,2010.3
    [44]岳勇.风力发电机组机械零部件抗疲劳设计方法的研究[D].新疆:新疆农业大学,2005.5
    [45]肖春涛.小缸径柴油机气缸盖流场、温度场的数值模拟[D].大连:大连理工大学,2008.
    [46]王露.轮毅轴承多工况疲劳寿命建模与数值仿真[D].浙江:浙江工业大学,2009.5
    [47]李颖.核主泵叶轮非定常流场及疲劳寿命可靠性分析[D].上海:上海交通大学,2009
    [48]王建平,胡定云.柴油机铝合金活塞疲劳寿命预测[J].机械设计制造.2009.12,(12):149-151
    [49]林杰威.航空发动机叶片疲劳寿命和可靠性研究[D].天津:天津大学,2009.5
    [50]郭昌明,曾高文,侯岳等.大功率柴油机铝合金气缸盖结构优化研究[J].2008.4,(2):5-9
    [51]刘艺.发动机连杆剩余疲劳寿命预测及在制造可行性研究[D].山东:山东大学,2010.4
    [52]吕凯波,刘混举.基于有限元法的机械疲劳寿命预测方法的研究[J].机械工程与自动化.2008,12(8):113-115
    [53]刘静.某特种车辆车架疲劳可靠性分析研究[D].南京:南京理工大学,2007.6
    [54]王凯,赵雨东.小型汽油机缸盖有限元强度分析[J].内燃机.2008.6:1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700