用户名: 密码: 验证码:
浸没式超滤膜处理含藻水及膜污染控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于工业的迅速发展,饮用水水源污染日益严重,尤其是富营养化现象频繁发生,使得目前水厂普遍采用的常规饮用水处理工艺面临严峻的挑战。如何有效的去除富营养化水体中的藻细胞及其分泌物已成为保障供水安全的关键性问题之一。
     采用超滤膜技术去除藻细胞及其分泌物是富营养化水体处理技术研究的新方向。深刻理解藻细胞及其胞外分泌物生长代谢的基本规律和特征是寻找实用性水处理技术和正确应用超滤膜技术的基础。论文以实验室培养的铜绿微囊藻(Microcystis aeruginosa,M. aeruginosa)作为研究对象,从以下5个方面论证超滤膜处理含藻水的可行性:1.通过定性和定量分析揭示了铜绿微囊藻细胞及其分泌物随时间变化的基本规律和特点;2.对比研究了超滤(UF)和粉末炭超滤(PAC/UF)生物反应器对含藻水的处理效果和跨膜压差(Trans-membrane Pressure,TMP)变化及其机理;3.探讨了膜反应器的主要运行参数以及原水水质对聚氯乙烯(Polyvinylchloride,PVC)超滤膜处理含藻水的影响;4.通过中试试验研究了浸没式超滤膜处理受污染水源水的效果;5.研究了不同清洗剂对受污染膜的清洗效能与机理。
     通过对实验室培养的铜绿微囊藻及其胞外分泌物进行研究证实,铜绿微囊藻细胞浓度随生长时间的增加逐渐增大,在稳定期达到最高值后又逐渐降低。在生长对数期和稳定期时,铜绿微囊藻细胞的等电点在pH4~5之间,随着pH值的增大电负性不断加强。研究还发现,在不同生长阶段胞外分泌物的主要成分均为亲水性的大分子物质(大于30kDa)。在对分泌物的重要组成物质(碳水化合物、蛋白质和藻毒素)进行分析后发现,其浓度均随藻细胞的生长繁殖逐渐增加。随着时间的变化,碳水化合物与溶解性有机碳(Dissolve Organic Carbon,DOC)比值逐渐降低,而蛋白质与DOC的比值以及蛋白质与碳水化合物的比值均呈增加的趋势。
     通过对比UF和PAC/UF生物反应器处理含藻水的效果发现,UF能够去除全部的藻细胞,但对胞外有机物的去除效果不明显,从而造成严重膜污染;相比UF工艺,PAC/UF生物反应器可明显减缓TMP的上升速率,同时提高DOC、UV_(254)和MC-LR_(eq)的去除率(分别为10.9±1.7%、27.1±1.7%和40.8±4.2%)。但是,PAC对膜处理碳水化合物和蛋白质等大分子有机物的效果几乎没有改变。UF反应器中对有机物的去除机理主要包括膜截留、生物降解和污染层强化截留作用,PAC/UF反应器中的生物作用优于UF工艺。实验还发现,由于PAC降低了反应器内的光照强度,从而导致PAC/UF反应器中碳水化合物和蛋白质的生成量下降;虽然光照强度对反应器中MC-LR_(eq)影响不明显,但PAC的吸附作用使其浓度大幅降低。
     通过改变PVC超滤膜反应器处理含藻水的运行参数(通量、曝气量和反洗条件等),研究了TMP随时间变化的规律。通量对膜污染的影响随藻细胞浓度的增加而增大;虽然膜污染程度随气液比的增加不断降低,但综合考虑其它因素认为在本实验条件下最适宜的气液比为12:1。随着pH值的提高,污染物与膜表面的负电性逐渐增强,同时高分子量物质所占比例不断增加,使得TMP上升速度不断下降。实验同时证实,相比K~+和Al~(3+),Ca~(2+)对膜污染的缓解效果更加明显。推断认为,Ca~(2+)能更有效地促使水中有机物络合生成大分子物质。藻细胞和腐殖酸间的协同作用,造成了更加严重的膜污染。
     从实际工程改造角度出发,通过中试实验研究了浸没式超滤膜以混凝沉淀作为预处理工艺过滤受污染水的效果。不受原水水质影响,超滤膜出水中浊度始终低于0.1NTU,且完全去除原水中的藻细胞。由于混凝预处理作用,超滤出水中有机物指标基本达到国家饮用水标准。在长期(40天)运行时,膜反应器始终保持高通量运行(不低于40L/m~2/h)。实验结束后采用300mg/L NaClO溶液对膜进行清洗,通量恢复率达到93.6%。
     为了进一步了解藻及其胞外分泌物对膜污染的影响,系统地研究了不同化学药剂(NaOH溶液,NaClO溶液,HCl溶液,EDTA溶液)对被含藻水污染后的超滤膜清洗效果。结果表明,100mg/L NaClO溶液对不可逆污染的清洗效果最佳(88.4±1.1%)。衰减全反射傅里叶转换红外光谱(ATR-FTIR)也证实NaClO溶液能够几乎去除全部的污染物质(如碳水化合物类和蛋白质类物质)。然而,虽然证实500mg/L NaOH溶液能够去除PVC膜表面的部分污染物,但是其对不可逆污染的去除率仅为1.5±1.0%。通过扫描电子显微镜(Scanning Electron Microscope,SEM)和原子力显微镜( Atomic Force Microscope,AFM)分析,发现NaOH可能改变了膜表面残余污染物的化学结构,使它们更紧密的粘附在膜表面;或改变了膜表面性质,从而导致NaOH溶液对通量恢复效果不明显。
With the quick development of industry, the pollution of the drinking water sources has been getting more and more serious. Especially the eutrophication phenomenon which frequently happens makes the waterworks with conventional processes facing austere challenges. It is a key problem to remove the algal cells and their extracellular organic matter (EOM) in eutrophic water to insure the safety of drinking water.
     It is a new technical approach to remove the algal cells and their EOM by ultrafiltration (UF) membrane. To find out intrinsic rules and characteristics of the growth and secretion of the algal cells and the EOM will contribute to find out the practicable water treatment technology and the rational UF membrane application. Microcystis aeruginosa (M. aeruginosa) cultured in the lab was used as the main object in this research. This dissertation consisted of the following contents: 1. To find out the rules and characteristics of the algal cell concentration and the EOM with the time development by qualitative and quantitative analyses; 2. To find out the efficiencies and mechanisms of algal-rich water treatment by UF and PAC/UF bioreactor; 3. To find out the effect of running parameters of the membrane reactor and influent properties on the algal-rich water treatment by polyvinylchloride (PVC) UF membrane; 4. To study the efficiency of polluted source water treatment by immersed UF membrane; 5. To investigate the cleaning efficiencies and mechanisms of different chemical reagents on the fouled membrane by algal-rich water.
     By investigating M. aeruginosa cells cultured in the lab and their extracellular organic matter (EOM), it was found that the cell concentration increased with time and reached maximum at stationary phase, then decreased. The isoelectric point of the algal cells was at pH4~5 during both exponential and stationary phases. With pH increase, the electronegativity of algal cells strengthened. Meanwhile, the EOM in the different phases showed high hydrophilicity and high molecular weight (MW, more than 30 kDa). By analyzing the important components of EOM (carbohydrates, proteins and MC-LR_(eq)), it was found that their concentrations were gradually increasing with the growth of algal cells. The ratio of carbohydrates to dissolve organic carbon (DOC) decreased with the time development, while both the ratios of proteins to DOC and that of proteins to carbohydrates increased.
     By comparing the efficiency of algal-rich water treatment by UF and PAC/UF bioreactor, it was found that UF achieved an absolute removal of M. aeruginosa cells, but a poor removal of algogenic organic matter (AOM) released into water, with severe membrane fouling. Compared with UF process, PAC/UF bioreactor significantly reduced the development velocity of TMP and enhanced the removal of DOC (by 10.9±1.7%), UV_(254) (by 27.1±1.7%), and MC-LR_(eq) (by 40.8±4.2%). However, PAC had little effect on the rejection of high MW AOM such as carbohydrates and proteins. The mechanisms of organic matter removal in UF reactor included membrane sieving, biological oxidation and strengthening sieving by cake layer. The biological oxidation effect in PAC/UF reactor was much more obvious than that in UF reactor. It was also identified that PAC reduced the concentrations of carbohydrates and proteins in the reactor due to decreased light intensity; as well as the MC-LR_(eq) concentration by PAC adsorption when there was little effect of lower light intensity on MC-LR_(eq) secretion.
     The influences of the running parameters (including flux, aeration, backwashing) on the trans-membrane pressure (TMP) development were also investigated. The influence of flux on membrane fouling enhanced with the algal cell concentration increasing. Increasing the ratio of air to liquid could alleviate membrane fouling phenomenon. However, it was considered that the best ratio of air to liquid was 12:1 under the test condition in this dissertation . It was also found that increasing pH value enhanced the electronegativity of the pollutant and membrane surface, and promoted the increasing of the ratio of high MW EOM, which led to the reduction of the TMP increasing velocity. Meanwhile, it was revealed that with the comparison of K~+ and Al~(3+), Ca~(2+) was more efficient to alleviate membrane fouling. It was deduced that Ca~(2+) contributed to the formation of high MW materials. The algal cells and humic acid had synthetic effect on the membrane fouling, which could cause more serious membrane fouling.
     The efficiency of polluted source water treatment by immersed UF membrane with the pretreatment of coagulation and sedimentation was studied in pilot experiment for practical reconstruction. Without being influenced by raw water quality, turbidity in UF effluent was absolutely lower than 0.1NTU. The algal cells could not be found in UF effluent. Due to the pretreatment of coagulation and sedimentation, the contents of organic matters in UF effluent basically reached Chinese sanitary standard for drinking water. During running phase (for 40 days), membrane flux always kept a high value (not less than 40 L/(m~2·h)). The recovery of membrane flux could reach up to 93.6% after cleaning by 300 mg/L NaClO at the end of the experiment.
     To further understand the membrane fouling caused by algal cells and their EOM, the cleaning efficiencies of hollow-fibre PVC membrane with different chemical reagents (NaOH, HCl, EDTA, and NaClO) after ultrafiltration of algal-rich water were also investigated. The result showed that 100 mg/L NaClO exhibited the best performance in terms of removing the irreversible fouling resistance (88.4±1.1%). This might be attributed to the fact that NaClO could eliminate almost all the major foulants such as carbohydrate-like and protein-like materials on the membrane surface, as suggested by attenuated total reflection fourier transform infrared spectroscopy analysis. However, negligible irreversible resistance (1.5±1.0%) was obtained when the membrane was cleaning by 500 mg/L NaOH, although the NaOH solution could also desorb a portion of the major foulants from the fouled PVC membrane. Scanning electron microscope and atomic force microscope analyses demonstrated that NaOH could change the structure of the residual foulants on the membrane, making them more tightly attached to the membrane surface or change the characteristics of membrane surface. This phenomenon might be responsible for the negligible membrane permeability restoration after NaOH cleaning.
引文
[1] Bernhardt H, Clasen J. Flocculation of Micro-organisms[J]. Journal of Water Supply: Research and Technology-AQUA, 1991, 40(2): 76-87.
    [2] Pieterse A J H, Cloot A. Algal Cells and Coagulation, Flocculation and Sedimentation Processes[J]. Water Science and Technology, 1997, 36(4): 111-118.
    [3]胡鸿钧,李尧英,魏印心.中国淡水藻类[M].上海:科学技术出版社,1980:1-11.
    [4]董传辉.江苏几个地区与某湖周围水厂不同类型水微囊藻毒素调查[J].环境与健康杂志,1998,15(5):34-37.
    [5] Zhang Y S. Primary Prevention of Hepatocellular Carcinoma[J]. Journal of Gastroenterology Hepatology, 1995, 10(6): 674-682.
    [6] Kunicane S, Lusse B, Hoyer O, et al. Flocculation and Filtration of the Green Algae Chlorella sp. and Dictyosphaerium sp. under Selected Conditions[J]. Zeitschrift fuer Wasser und Abwasser Forschung, 1986, 19(4): 145-151.
    [7]余国忠,刘军,王占生.藻细胞特性对净水工艺的影响研究[J].环境科学研究,2000,13(6):56-59.
    [8]梁恒,李星,徐广志,等.水体中微囊藻毒素的污染与控制[J].环境与健康杂志,2006,23(2):179-181.
    [9] Watnabe M F, Tsuji K, Wstanabe Y, et al. Release of Heptapeptide Toxin (Microcystin) during the Decomposition Process of Microcystis aeruginosa[J]. Natural Toxins, 1992, 1(1): 48-53.
    [10] Park H, Namikoshi M, Brittains S M, et al. [D-Leul] Microcystin-LR, a New Microcystin Isolated from Waterbloom in a Canadian Prairie Lake[J]. Toxicon, 2001, 39(6): 855-862.
    [11] Pendleton P, Schumann R, Wong S H. Microcystin-LR Adsorption by Activated Carbon[J]. Journal of Colloid Interface Science, 2001, 24(1): 1-8.
    [12] Lawton L A, Robertson P K J, Comish B J P A, et al. Processes Influencing Surface Interaction and Photocatalytic Destruction of Microcystins on Titanium Dioxide Photocatalysts[J]. Journal of Catalysis, 2003, 213(1): 109-113.
    [13]果静,朱慧刚.藻毒素与健康效应的研究进展[J].上海环境科学,1999,18(7):331-334.
    [14] El-Taweel G E, Ali G H. Evaluation of Roughing and Slow Sand Filters for Water Treatment[J]. Water Air, and Soil Pollution, 2000, 120(1): 21-28.
    [15] Saidam M Y, Ramadan S A, Butler D. Upgrading Waste Stabilization Pond Effluent by Rock Filters[J]. Water Science and Technology, 1995, 31(12): 369-378.
    [16] Truax D D, Shindala A. A Filtration Technique for Algal Removal from Lagoon Effluents[J]. Water Environment Research, 1994, 66(7): 894-899.
    [17]彭海清,谭章荣,高乃云,等.给水处理中藻类的去除[J].中国给水排水,2002,18(2):29-31.
    [18]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999:182.
    [19]乐林生,周云,唐意祥,等.上海市长江水源净水厂的优化处理工艺研究[J].中国给水排水,2000,16(6):13-16.
    [20] Johnson B A, Gong B, Bellamy W, et al. Pilot Plant Testing of Dissolved Air Flotation for Treating Boston’s Low-Turbidity Surface Water Supply[J]. Water Science and Technology, 1995, 31(3-4): 83-92.
    [21] Edzwald J K. Algae, Bubbles, Coagulants, and Dissolved Air Flotation[J]. Water Science and Technology, 1993, 27(10): 67-81.
    [22]周群英.微电解杀藻研究[J].上海环境科学,1998,17(1):28-29.
    [23]王华芳.微电解—吸附协同作用灭藻研究[D].大连:大连理工大学无机化学学科硕士学位论文,2005:26-28.
    [24]冯玉杰,李晓岩,尤勇,等.电化学技术在环境工程中的应用[M].北京:化学工业出版社,2002:1-11.
    [25]刘成,高乃云,陈卫.粉末活性炭对微囊藻毒素的吸附效能研究[J].中国建设信息(水工业市场),2008,8:19-23.
    [26]魏军艳,薛文通,马小妮,等.高锰酸钾与粉末活性炭联用处理微囊藻毒素[J].山西农业大学学报(自然科学版),2008,28(3):299-302.
    [27] Chen J J, Yeh H H, Tseng I C. Effect of Ozone and Permanganate on Algae Coagulation Removal-Pilot and Bench Scale Tests[J]. Chemosphere, 2009, 74(6): 840-846.
    [28]施东文,谢曙光,汪蕊,等.常规/臭氧生物活性炭组合工艺处理受污染黄河水研究[J].北京大学学报(自然科学版),2008,43(2):274-277.
    [29] Kim Y, Lee Y, Gee C S, et al. Treatment of Taste and Odor Causing Substances in Drinking Water[J]. Water Science and Technology, 1997, 35(8): 29-36.
    [30]贾瑞宝,刘军,王珂,等.气浮/微絮凝/臭氧/活性炭工艺除藻效果[J].中国给水排水,2003,19(10):47-48.
    [31] Himberg K, Keijola A M, Hiisvirta L, et al. The Effect of Water Treatment Processes on the Removal of Hepatotoxins from Microcystis and Oscillatoria Cyanobacterial: A Laboratory Study[J]. Water Research, 1989, 23(8): 979-984.
    [32] Plummer J D, Edzwald J K. Effect of Ozone on Algae as Precursors for Trihalomethane and Haloacetic Acid Production[J]. Environmental Science and Technology, 2001, 35(18): 3661-3668.
    [33] Rencken G E. Ozonation at Wiggins Water Purification Works, Durban, South Africa[J]. Ozone Science and Engineering, 1994, 16(3): 247-260.
    [34] Jekel M R. Effect and Mechanism Involved in Preoxidation and Particles Seperation Process[J]. Water Science and Technology, 1998, 37(10): 1-7.
    [35] Wachter J K, Andelman J B. Organohalide Formation on Chlorination of Algal Extracellular Products[J]. Environmental Science and Technology, 1984, 18(11): 811-817.
    [36] Steynberg M C, Pieterse A J H, Geldenhuys J C. Improved Coagulation and Filtration as a Result of Morphological and Behavioural Changes Due to Pre-oxidation[J]. Journal of Water Supply: Research and Technology-AQUA, 1996, 45(6): 292-298.
    [37]陈卫,李圭白,邹浩春.高锰酸钾复合药剂去除太湖水中蓝藻的室内试验研究[J].哈尔滨建筑大学学报,2001,34(4):72-74.
    [38] Chen J J, Yeh H H. The Mechanisms of Potassium Permanganate on Algae Removal[J]. Water Research, 2005, 39(18): 4420-4428.
    [39] Petru?evski B, Breemen A N V, Alaerts G. Effect of Permanganate Pre-treatment and Coagulation with Dual Coagulants on Algae Removal in Direct Filtration[J]. Journal of Water Supply: Research and Technology-AQUA, 1996, 45(5): 316-326.
    [40] Yuan B L, Qu J H, Zhang J S, et al. The Efficiency of Algae Removal from Drinking Water by Ferrate[J]. Environmental Science and Technology, 2001, 22(2): 78-81.
    [41] Jun M, Wei L. Effectiveness and Mechanism of Potassium Ferrate (Ⅵ) Preoxidation for Algae Removal by Coagulation[J]. Water Research, 2002, 36(4): 871-878.
    [42] Briley D S, Knappe D R U. Optimizing Ferric Sulfate Coagulation of Algae with Streaming Current Measurements[J]. Journal of American Water Works Association, 2002, 94(2): 80-90.
    [43] Velzeboer R, Drikas M, Donati C, et al. Release of Geosmin by Anabaena Circinalis Following Treatment with Aluminium Sulphate[J]. Water Scienceand Technology, 1995, 31(11): 187-194.
    [44] Drikas M, Chow C W K, House J, et al. Using Coagulation, Flocculation, and Settling to Remove Toxic Cyanobacteria[J]. Journal of American Water Works Association, 2001, 93(2): 100-111.
    [45] Chow C W K, Drikas M, House J, et al. The Impact of Conventional Water Treatment Processes on Cells of the Cyanobacterium Microcystis aeruginosa[J]. Water Research, 1999, 33(15): 3253-3262.
    [46]宁平,朱易,徐小平.三氯化铁在滇池蓝藻爆发期除藻中的应用研究[J].农业环境保护,2001,20(53):48-350.
    [47]赵建伟.富营养化原水中微囊藻毒素分析与去除方法及氧化降解机制研究[D].西安:西安建筑科技大学市政工程学科博士学位论文,2000:70-73.
    [48]余冉.富营养化原水中蓝藻及其毒素的生物降解技术研究[J].给水排水,2002,28(11):88.
    [49]单力.蓝藻危机[J].环境,2007,(7):63-65.
    [50]贤平戈,家长陈,吴伟.太湖蓝藻的爆发和生物治理[J].中国水产,2008,(3):7-11.
    [51] Gschl??l T, Steinmann C, Schleypen P, et al. Constructed Wetlands for Effluent Polishing of Lagoons[J]. Water Research, 1998, 32(9): 2639-2645.
    [52]尤作亮.芦苇塘及其应用问题[J].农业环境保护,1998,17(4):187-189.
    [53] Bonomo L, Pastorelli G, Zambon N. Advantages and Limitations of Duckweed-Based Wastewater Treatment Systems[J]. Water Science and Technology, 1997, 35(5): 239-246.
    [54] Liang X, Yin P H, Zhao L, et al. Removing Red Tide Algae in the Sea by Biomass Carrier as Algae Cide[J]. China Environmental Science, 2001, 21(1): 15-17.
    [55]高以煊,叶凌碧.膜分离技术基础[M].北京:科学出版社,1989:12-19.
    [56]许旭昌. MBR-PAC工艺深度处理效能研究[D].南京:河海大学环境工程学科硕士学位论文,2007:5-6.
    [57]范茂军.粉末活性碳炭和超滤膜组合工艺深度处理上海水源水研究[D].上海:同济大学市政工程学科博士学位论文,2006:5-13.
    [58]许振良.膜法水处理技术[M].北京:化学工业出版社,2001:30-34.
    [59] Kang I J, Yoon S H, Lee C H. Comparison of the Filtration Characteristics of Organic and Inorganic Membranes in a Membrane-Coupled Anacrobic Bioreactor[J]. Water Research, 2002, 36(7): 1803-1813.
    [60]刘忠洲,续曙光,李锁定.微滤、超滤过程中的膜污染与清洗[J].水处理技术,1997,23(4):187-193.
    [61]张志国,陈锦屏.浅析UF膜分离过程中的浓差极化问题及其控制方法[J].食品工业科技,2005,26(3):186-187.
    [62]马琳,秦国彤.膜污染的机理和数学模型研究进展[J].水处理技术,2007,33(6):1-4.
    [63] Liikanen R, Kuivila J Y, Laukkanen R. Efficiency of Various Chemical Cleanings for Nanofiltration Membrane Fouled by Conventionally-Treated Surface Water[J]. Journal of Membrane Science, 2002, 195(2): 265-276.
    [64] Kieffer R, Mangin D, Puel F, et al. Precipitation of Barium Sulphate in a Hollow Fiber Membrane Contactor, Part I: Investigation of Particulate Fouling[J]. Journal of Membrane Science, 2009, 64(8): 1759-1767.
    [65]周玮,王国栋,梁忠德.单胞藻浓缩液制备中超滤膜清洗方法的研究[J].大连水产学院学报,2009,24(50):465-469.
    [66] Fane A G, Fell C J D, Suki A. The Effect of pH and Ionic Environment on the Ultrafiltration of Protein Solution with Retentive Membranes[J]. Journal of Membrane Science, 1983, 16: 195-210.
    [67] Choo K H, Lee C H. Effect of Anaerobic Digestion Broth Composition on Membrane Permeability[J]. Water Science and Technology, 1996, 34(9): 173-179.
    [68] Nakao S, Osada H, Kurata H, et al. Separation of Proteins by Charged Ultrafiltration Membranes[J]. Desalination, 1988, 70(l-3): 191-205.
    [69] Al-Malaek H M, Anderson G K. Crossflow Microfiltration with Dynamic Membranes[J]. Water Research, 1997, 31(8): 1969-1979.
    [70] Rovira B M, Giralt F, Cohen Y. Protein Adsorption onto Zirconia Modified with Terminally Grafted Polyvinylpyrrolidone[J]. Journal of Colloid Interface Science, 2001, 235(1): 70-79.
    [71]吕斯濠,迟军,陈福明,等.大豆乳清超滤中膜通量衰减的模拟研究[J].哈尔滨商业大学学报(自然科学版),2007,23(3):289-294.
    [72] Kimura K, Hane Y, Watanabe Y, et al. Irreversible Membrane Fouling during Ultrafiltration of Surface Water[J]. Water Research, 2004, 38(14-15): 3431-3441.
    [73] Lee H, Amy G, Cho J W, et al. Cleaning Strategies for Flux Recovery of an Ultrafiltration Membrane Fouled by Natural Organic Matter[J]. Water Research, 2001, 35(14): 3301-3308.
    [74] Morel G, Ouazzani N, Graciaa A, et al. Surfactant Modified Ultrafiltration of Nitrate Ions Removal[J]. Journal of Membrane Science, 1997, 134(1): 47-57.
    [75] Bird M R, Fryer P J. An Experimental Study of the Cleaning of Surfaces Fouled by Whey Proteins[J]. Food Bioproducts Processing, 1991, 69(1): 13-21.
    [76] Tuladhur T R. Development of a Novel Sensor for Cleaning Studies[D]. University of Cambridge. Ph.D Thesis. 2001: 51-58.
    [77] Song W, Ravindran V, Koel B E, et al. Nanofiltration of Natural Organic Matter with H2O2/UV Pretreatment: Fouling Mitigation and Membrane Surface Characterization[J]. Journal of Membrane Science, 2004, 241(1): 143-160.
    [78] Her N, Amy G, Park H R, et al. Characterizing Algogenic Organic Matter (AOM) and Evaluating Associated NF Membrane Fouling[J]. Water Research, 2004, 38(6): 1427-1438.
    [79] Hung M T, Liu J C. Microfiltration for Separation of Green Algae from Water[J]. Colloids and Surfaces B, 2006, 51(2): 157-164.
    [80] Puspitasaria V, Granville A, Clech P L, et al. Cleaning and Ageing Effect of Sodium Hypochlorite on Polyvinylidene Fluoride (PVDF) Membrane[J]. Separation and Purification Technology, 2010, 72(3): 301-308.
    [81] Kim M H, Yu M J. Characterization of NOM in the Han River and Evaluation of Treatability Using UF-NF Membrane[J]. Environmental Research, 2005, 97(1): 116-123.
    [82] Yuasa A. Drinking Water Production by Coagulation-Microfiltration and Adsorption-Ultrfiltration[J]. Water Science and Technology, 1998, 37(10): 135-146.
    [83] Susanto H, Arafat H, Janssen E M L, et al. Ultrafiltration of Polysaccharide-Protein Mixtures: Elucidation of Fouling Mechanisms and Fouling Control by Membrane Surface Modification[J]. Separation and Purification Technology, 2008, 63(3): 558-565.
    [84] Cho J, Amy G, Pellegrino J. Membrane Filtration of Natural Organic Matter: Factors and Mechanisms Affecting Rejection and Flux Decline with Charged Ultrafiltration (UF) Membrane[J]. Journal of Membrane Science, 2000, 164(1-2): 89-110.
    [85] Lowe J, Hossain M M. Application of Ultrafiltration Membranes for Removal of Humic Acid from Drinking Water[J]. Desalination, 2008, 218(1-3): 343-354.
    [86] Nakatsuka S, Nakate I, Miyano T. Drinking Water Treatment by Using Ultrafiltration Hollow Fiber Membranes[J]. Desalination, 1996, 106(1-3): 55-61.
    [87] Clloi H, Kim H S, Yeom I T, et al. Pilot Plant Study of an Ultrafiltration Membrane System for Drinking Water Treatment Operated in the Feed andBleed Mode[J]. Desalination, 2004, 172(2): 281-291.
    [88] Arora M, Maheshwari R C, Jain S K, et al. Use of Membrane Technology for Potable Water Production[J]. Desalination, 2004, 170(2): 105-112.
    [89] Mozia S, Tomaszewska M, Morawski A W. Application of an Ozonation-Adsorption-Ultrafiltration System for Surface Water Treatment[J]. Desalination, 2006, 190(1-3): 308-314.
    [90] Tian J Y, Liang H, Nan J, et al. Submerged Membrane Bioreactor (sMBR) for the Treatment of Contaminated Raw Water[J]. Chemical Engineering Journal, 2008, 148(2-3): 296-305.
    [91] Omer S, Yaxi S, Ailing H, et al. Effect of PAC Addition on MBR Process for Drinking Water Treatment[J]. Separation and Purification Technology, 2008, 58(3): 320-327.
    [92] Tomaszewska M, Mozia S. Removal of Organic Matter from Water by PAC/UF System[J]. Water Research, 2002, 36(16): 4137-4143.
    [93] Konieczny K, S(?)kol D, P(?)onka J, et al. Coagulation-Ultrafiltration System for River Water Treatment[J]. Desalination, 2009, 240(1-3): 151-159.
    [94] Barbot E, Moustier S, Bottero J Y, et al. Coagulation and Ultrafiltration: Understanding of the Key Parameters of the Hybrid Process[J]. Journal of Membrane Science, 2008, 325(2): 520-527.
    [95] Tian J Y, Liang H, Li X, et al. Membrane Coagulation Bioreactor (MCBR) for Drinking Water Treatment[J]. Water Research, 2008, 42(14): 3910-3920.
    [96] Xia S, Nan J, Liu R, et al. Study of Drinking Water Treatment by Ultrafiltration of Surface Water and Its Application to China[J]. Desalination, 2004, 170(1): 41-47.
    [97]董秉直,陈艳,高乃云,等.混凝对膜污染的防止作用[J].环境科学,2005,26(l):90-93.
    [98] Castaing J B, MasséA, PontiéM, et al. Investigating Submerged Ultrafiltration (UF) and Microfiltration (MF) Membranes for Seawater Pre-treatment Dedicated to Total Removal of Undesirable Micro-algae[J]. Desalination, 2010, 253(1-3): 71-77.
    [99] Ladner D A, Vardon D R, Clark M M. Effects of Shear on Microfiltration and Ultrafiltration Fouling by Marine Bloom-Forming Algae[J]. Journal of Membrane Science, 2010, 356(1-2): 33-43.
    [100]Campinas M, Rosa M J. Evaluation of Cyanobacterial Cells Removal and Lysis by Ultrafiltration[J]. Separation and Purification Technology, 2010, 70(3): 345-353.
    [101]Zazouli M A, Nasseri S, Ulbricht M. Fouling Effects of Humic and AlginicAcids in Nanofiltration and Influence of Solution Composition[J]. Desalination, 2010, 250(2): 688-692.
    [102]Guo W S, Vigneswaran S, Ngo H H, et al. Experimental Investigation of Adsorption-Flocculation-Microfiltration Hybrid System in Wastewater Reuse[J]. Journal of Membrane Science, 2004, 242(1-2): 27-35.
    [103]Kim H S, Katayama H, Takizawa S, et al. Development of Amicrofilter Separation System Coupled with a High Dose of Powdered Activated Carbon for Advanced Water Treatment[J]. Desalination, 2005, 186(1-3): 215-226.
    [104]Kweon J H, Hur H W, Seo G T, et al. Evaluation of Coagulation and PAC Adsorption Pretreatments on Membrane Filtration for a Surface Water in Korea: A Pilot Study[J]. Desalination, 2009, 249(1): 212-216.
    [105]Liang H, Gong W J, Li G B. Performance Evaluation of Water Treatment Ultrafiltration Pilot Plants Treating Algae-Rich Reservoir Water[J]. Desalination, 2008, 221(1-3): 345-350.
    [106]Liang H, Gong W J, Chen J, et al. Cleaning of Fouled Ultrafiltration (UF) Membrane by Algae during Reservoir Water Treatment[J]. Desalination, 2008, 220(1-3): 267-272.
    [107]Kwon B, Park N, Cho J. Effect of Algae on Fouling and Efficiency of UF Membranes[J]. Desalination, 2005, 179(1-3): 203-214.
    [108]梁恒,李圭白,李星,等.不同水处理工艺流程对除藻效果的影响[J].中国给水排水,2005,21(3):5-7.
    [109]Huang W J, Lai C H, Cheng Y L. Evaluation of Extracellular Products and Mutagenicity in Cyanobacteria Cultures Separated from a Eutrophic Reservoir[J]. Science of the Total Environment, 2007, 377(2-3): 214-223.
    [110]Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric Method for Determination of Sugars and Related Substance[J]. Analytical Chemistry, 1956, 28: 350-356.
    [111]Zhang L F, Ping X F, Yang Z G. Determination of Microcystin-LR in Surface Water Using High Performance Liquid Chromatography Tandem Electro Spray Ionization Mass Detector[J]. Talanta, 2004, 62(1): 191-198.
    [112]刘起峰.密云水库水的预氧化及强化混凝研究[D].中国:中国地质大学环境工程学科博士学位论文,2007:24-25.
    [113]江艳,沈怡,武培怡. ATR-FTIR光谱技术在聚合物膜研究中的应用[J].化学进展,2007,19(1):173-185.
    [114]Reznik S G, Katz I, Dosoretz C G. Removal of Dissolved Organic Matter by Granular-Activated Carbon Adsorption as a Pretreatment to Reverse Osmosis of Membrane Bioreactor Effluents[J]. Water Research, 2008, 42(6-7): 1595-1605.
    [115]Lohwacharin J, Takizawa S. Effects of Nanoparticles on the Ultrafiltration of Surface Water[J]. Journal of Membrane Science, 2009, 326(2): 354-362.
    [116]Meng F F, Chae S R, Drews A, et al. Recent Advances in Membrane Bioreactors (MBRs): Membrane Fouling and Membrane Material[J]. Water Research, 2009, 43(6): 1489-1512.
    [117]Karnik B S, Davies S H R, Chen K C, et al. Effects of Ozonation on the Permeate Flux of Nanocrystalline Ceramic Membranes[J]. Water Research, 2005, 39(4): 728-734.
    [118]Tian J Y, Liang H, Yang Y L, et al. Membrane Adsorption Bioreactor (MABR) for Treating Slightly Polluted Surface Water Supplies: As Compared to Membrane Bioreactor (MBR)[J]. Journal of Membrane Science, 2008, 325(1): 262-270.
    [119]罗敏,王浪,王占生.纳滤膜的场发射扫描电镜、能量色散X射线原子力显微镜与傅里叶转换红外光谱分析[J].膜科学与技术,2001,21(5):20-24.
    [120]Bernhardt H, Hoyer O, Schell H, et al. Reaction Mechanisms Involved in the Influence of Algogenic Organic Matter on Flocculation[J]. Zeitschrift fur Wasser und Abwasser Forschung, 1985, 18(1): 18-30.
    [121]Hoyer O, Lüsse B, Bernhardt H. Isolation and Characterization of Extracellular Organic Matter (EOM) from Algae[J]. Zeitschrift fur Wasser und Abwasser Forschung, 1985, 18: 76-90.
    [122]Lüsse B, Hoyer O, Soeder C J. Mass Cultivation of Planktonic Freshwater Algae for the Production of Extracellular Matter (EOM)[J]. Zeitschrift fur Wasser und Abwasser Forschung, 1985, 18(2): 76-90.
    [123]Miranda M T, Schmitt A, Fernández J C, et al. The Aggregation Behaviour of Proteincoated Particles: A Light Scattering Study[J]. European Biophysics Journal, 2003, 32(2): 128-136.
    [124]Gregor J E, Fenton E, Brokenshire G, et al. Interactions of Calcium and Aluminium Ions with Alginate[J]. Water Research, 1996, 30(6): 1319-1324.
    [125]Coble P G. Characterization of Marine and Terrestrial DOM in Seawater Using Excitation Emission Matrix Spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325-346.
    [126]Reynolds D M. The Differentiation of Biodegradable and Nonbiodegradable Dissolved Organic Matter in Waste Waters Using Fluorescence Spectroscopy[J]. Journal of Chemical Technology and Biotechnology, 2002, 77(8): 965-972.
    [127]Chiou Y T, Hsieh M L, Yeh H H. Effect of Algal Extracellular Polymer Substances on UF Membrane Fouling[J]. Desalination, 2010, 250(2): 648-652.
    [128]Her N, Amy G, McKnight D, et al. Characterization of DOM as a Function of MW by Fluorescence EEM and HPLC-SEC Using UVA, DOC, and Fluorescence Detection[J]. Water Research, 2003, 37(17): 4295-4303.
    [129]Myklestad S, Haug A, Larsen B. Production of Carbohydrate by the Marine Diatom Chuetoceros Afinis var. W&I (Gran) Hustedt. II. Preliiinary Investigation of the Extracellular Polysaccharide[J]. Journal of Experimental Marine Biology and Ecology, 1972, 9: 137-144.
    [130]Chronakis I S. Gelation of Edible Blue-green Algae Protein Isolate (Spirulina platensis Strain Pacifica): Thermal Transitions, Rheological Properties, and Molecular Forces Involved[J]. Journal of Agricultural and Food Chemistry, 2001, 49(2): 888-898.
    [131]Henderson R K, Baker A, Parsons S A, et al. Characterisation of Algogenic Organic Matter Extracted from Cyanobacteria, Green Algae and Diatoms[J]. Water Research, 2008, 42(13): 3435-3445.
    [132]Edzwald J K. Coagulation in Drinking Water Treatment: Particles, Organics and Coagulants[J]. Water Science and Technology, 1993, 27(11): 21-33.
    [133]Lancelot C. Extracellular Release of Small and Large Molecules by Phytoplankton in the Southern Bight of the North Sea[J]. Estuarine, Coastal and Shelf Science, 1984, 18(1): 65-77.
    [134]高景峰,郭建秋,陈冉妮,等.三维荧光光谱结合化学分析评价胞外多聚物的提取方法[J].环境化学,2008,27(5):662-668.
    [135]Babichenko S, Kaitala S, Leeben A, et al. Phytoplankton Pigments and Dissolved Organic Matter Distribution in the Gulf of Riga[J]. Journal of Marine Systerms, 1999, 23(1-3): 69-82.
    [136]Sepp(a|¨)l(a|¨) J, Balode M. The Use of Speactral Fluoersenece Methods to Detect Changes in the Phytoplankton Community[J]. Hydorbiologia, 1998, 363(l-3): 207-217.
    [137]Myklestad S, Holm-Hansen O, Vsrum K M, et al. Rate of Release of Extracellular Amino Acids and Carbohydrate from the Marine Diatom Chaetoceros Affinis[J]. Journal of Plankton Research, 1989, 11(4): 763-773.
    [138]Singer P C. Humic Substances as Precursors for Potentially Harmful Disinfection By-products[J]. Water Science and Technology, 1999, 40(9): 25-30.
    [139]Goldman J C, Hansell D A, Dennett M R. Chemical Characterization of Three Large Oceanic Diatoms: Potential Impact on Water Column Chemistry[J].Marine Ecology Progress Series, 1992, 88: 257-270.
    [140]Painter T J. Algal Polysaccharides[M]. New York, 1983: 195-285.
    [141]Percival E, McDowell R H. Chemistry and Enxymology of Marine Algal Polysaccharides[M]. London, 1967: 200-219.
    [142]Gurbuz F, Metcalf J S, Karahan A G, et al. Analysis of Dissolved Microcystins in Surface Water Samples from Kovada Lake, Turkey[J]. Science of the Total Environment, 2009, 407(13): 4038-4046.
    [143]Triantis T, Tsimeli K, Kaloudis T, et al. Development of an Integrated Laboratory System for the Monitoring of Cyanotoxins in Surface and Drinking Waters[J]. Toxicon, 2010, 55(5): 979-989.
    [144]Zhang M M, Li C, Benjamin M M, et al. Fouling and Natural Organic Matter Removal Inadsorbent/Membrane Systems for Drinking Water Treatment[J]. Envionmental Science and Technology, 2003, 37(8): 1663-1669.
    [145]Al-Amoudi A S. Factors Affecting Natural Organic Matter (NOM) and Scaling Fouling in NF Membranes: A Review[J]. Desalination, 2010, 259(1-3): 1-10.
    [146]Bellona C, Marts M, Drewes J E. The Effect of Organic Membrane Fouling on the Properties and Rejection Characteristics of Nanofiltration Membranes[J]. Separation and Purification Technology, 2010, 74(1): 44-54.
    [147]Zhao Y, Song L F, Leong S. Fouling of RO Membranes by Effluent Organic Matter (EfOM): Relating Major Components of EfOM to Their Characteristic Fouling Behaviors[J]. Journal of Membrane Science, 2010, 349(1-2): 75-82.
    [148]Matilainen A, Veps(a|¨)l(a|¨)inen M, Sillanp(a|¨)(a|¨) M. Natural Organic Matter Removal by Coagulation during Drinking Water Treatment: A Review[J]. Advances in Colloid Interface Science, 2010, 159(2): 189-197.
    [149]Zhu H T, Wen X H, Huang X. Membrane Organic Fouling and the Effect of Pre-ozonation in Microfiltration of Secondary Effluent Organic Matter[J]. Journal of Membrane Science, 2010, 352(1-2): 213-221.
    [150]Wang Z W, Tang S J, Zhu Y F, et al. Fluorescent Dissolved Organic Matter Variations in a Submerged Membrane Bioreactor under Different Sludge Retention Times[J]. Journal of Membrane Science, 2010, 355(1-2): 151-157.
    [151]Xia S J, Liu Y N, Li X, et al. Drinking Water Production by Ultrafiltration of Songhuajiang River with PAC Adsorption[J]. Journal of Environmental Sciences, 2007, 19(5): 536-539.
    [152]Tumbas I I, Hobby R, Küchle B, et al. P-Nitrophenol Removal by Combination of Powdered Activated Carbon Adsorption and Ultrafiltration-Comparison of Different Operational Modes[J]. Water Research, 2008, 42(15): 4117-4124.
    [153]Boehm H P. Surface Oxides on Carbon and Their Analysis: A Critical Assessment[J]. Carbon, 2002, 40(2): 145-149.
    [154]Adham S S, Snoeyink V L, Clark M M. Predicting and Verifying Organics Removal by PAC in an Ultrafiltration System[J]. Journal of American Water Works Association, 1991, 83(12): 81-91.
    [155]Jack A M, Clark M M. Using PAC/UF to Treat a Low Quality Surface Water[J]. Journal of American Water Works Association, 1998, 90(11): 83-95.
    [156]Yiantsios S G, Karabelas A J. An Experimental Study of Humid Acid and Powdered Activated Carbon Deposition on UF Membrane and Their Removal by Backwashing[J]. Desalination, 2001, 140(2): 195-209.
    [157]Lin C F, Huang Y J, Hao O J. Ultrafiltration Processes for Removing Humic Substances: Effect of Molecular Weight Fractions and PAC Treatment[J]. Water Research, 1999, 33(5): 1252-1264.
    [158]Ottoson J, Hansen A, Bjo|¨)rlenius B, et al. Removal of Viruses, Parasitic Protozoa and Microbial Indicators in Conventional and Membrane Processes in a Wastewater Pilot Plant[J]. Water Research, 2006, 40(7): 1449-1457.
    [159]Campinas M, Rosa M J. Assessing PAC Contribution to the NOM Fouling Control in PAC/UF Systems[J]. Water Research, 2010, 44(5): 1636-1644.
    [160]Donati C, Drikas M, Hayes R, et al. Microcystin-LR Adsorption by Powdered Activated Carbon[J]. Water Research, 1994, 28(8): 1735-1742.
    [161]Campinas M, Rosa M J. Removal of Microcystins by PAC/UF[J]. Separation and Purification Technology, 2010, 71(1): 114-120.
    [162]Lee J, Walker H W. Mechanisms and Factors Influencing the Removal of Microcystin-LR by Ultrafiltration Membranes[J]. Journal of Membrane Science, 2008, 320(1-2): 240-247.
    [163]Listiarini K, Chun W, Sun D D, et al. Fouling Mechanism and Resistance Analyses of Systems Containing Sodium Alginate, Calcium, Alum and Their Combination in Dead-End Fouling of Nanofiltration Membranes[J]. Journal of Membrane Science, 2009, 344(1-2): 244-251.
    [164]Nataraj S, Schom(a|¨)cker R, Kraume M, et al. Analyses of Polysaccharide Fouling Mechanisms during Crossflow Membrane Filtration[J]. Journal of Membrane Science, 2008, 308(1-2): 152-161.
    [165]娄金生,谢水波,何少年.生物脱氮除磷原理与应用[M].北京:国防科技大学出版社,2002:75-78.
    [166]Hwang K J, Sz P Y. Filtration Characteristics and Membrane Fouling in Cross-Flow Microfiltration of BSA/Dextran Binary Suspension[J]. Journal of Membrane Science, 2010, 347(1-2): 75-82.
    [167]Velings N M, Mestdagh M M. Protein Adsorption in Calcium Alginate Gel Beads[J]. Journal of Bioactive and Bompatible Polymers, 1994, 9(2): 133.
    [168]Ang W S, Elimelech M. Protein (BSA) Fouling of Reverse Osmosis Membranes: Implications for Wastewater Reclamation[J]. Journal of Membrane Science, 2007, 296(1-2): 83-92.
    [169]Antoniou M G, Cruz A A de la , Dionysiou D D. Cyanotoxins: New Generation of Water Contaminants[J]. Journal of Environmental Engineering, 2005, 131(9): 1239-1243.
    [170]Vesterkvist P S M, Meriluoto J A O. Interaction between Microcystins of Different Hydrophobicities and Lipid Monolayers[J]. Toxicon, 2003, 41(3): 349-355.
    [171]Liu H B, Yang C Z, Pu W H, et al. Formation Mechanism and Structure of Dynamic Membrane in the Dynamic Membrane Bioreactor[J]. Chemical Engineering Journal, 2009, 148(2-3): 290-295.
    [172]Pustizzi F, MacIntyre H, Warner M E, et al. Interaction of Nitrogen Source and Light Intensity on the Growth and Photosynthesis of the Brown Tide Alga Aureococcus Nophagefferens[J]. Harmful Algae, 2004, 3(4): 343-360.
    [173]B?ttcher G, Chorus I, Ewald S, et al. Light Limited Growth and Microcystin Content of Planktothrix agardhii and Microcystis aeruginosa in Turbidostats[M]. Berlin: Springer, 2001: 115-133.
    [174]Hesse K, Kohl J G. Effects of Light and Nutrient Supply on Growth and Microcystin Content of Different Strains of Microcystis aeruginosa[M]. Berlin: Springer, 2001: 104-115.
    [175]Chen X C, He S B, Huang Y Y, et al. Laboratory Investigation of Reducing Two Algae from Eutrophic Water Treated with Light-Shading Plus Aeration[J]. Chemosphere, 2009, 76(9): 1303-1307.
    [176]Li C W, Chen Y S. Fouling of UF Membrane by Humic Substances: Effects of Molecular Weight and Powder-Activated Carbon (PAC) Pre-treatment[J]. Desalination, 2004, 170(1): 59-67.
    [177]Mozia S, Tomaszewska M, Morawski A W. Studies on the Effect of Humic Acids and Phenol on Adsorption-Ultrafiltration Process Performance[J]. Water Research, 2005, 39(2-3): 501-509.
    [178]王爱兵,李雅,李淑贤,等.超滤过程中膜污染控制和膜清洗的研究进展[J].河北工程大学学报(自然科学版),2009,26(2):98-102.
    [179]Guglielmi G, Saroj D P, Chiarani D, et al. Sub-critical Fouling in a Membrane Bioreactor for Municipal Wastewater Treatment: Experimental Investigation and Mathematical Modeling[J]. Water Research, 2007, 41(17): 3903-3914.
    [180]Wang Z W, Wu Z C, Yin X, et al. Membrane Fouling in a Submerged Membrane Bioreactor (MBR) under Sub-critical Flux Operation: Membrane Foulant and Gel Layer Characterization[J]. Journal of Membrane Science, 2008, 325(1): 238-244.
    [181]Ducom G, Puech F P, Cabassud C. Air Sparging with Flat Sheet Nanofiltration: a Link Between Wall Shear Stresses and Flux Enhancement[J]. Desalination, 2002, 145(1-3): 97-102.
    [182]Tian J Y, Xu Y P, Chen Z L, et al. Air Bubbling for Alleviating Membrane Fouling of Immersed Hollow-Fiber Membrane for Ultrafiltration of River SDD Water[J]. Desalination, 2010, 260(1-3): 225-230.
    [183]李圭白,田家宇,齐鲁.第三代城市饮用水净化工艺及超滤的零污染通量[J].给水排水,2010,36(8):11-15.
    [184]Field R W, Wu D, Howell J A, et al. Critical Flux Concept for Microfiltration Fouling[J]. Journal of Membrane Science, 1995, 100(3): 259-272.
    [185]Kwon D Y, Vigneswaran S, Fane A G, et al. Experimental Determination of Critical Flux in Cross-Flow Microfiltration[J]. Separation and Purification Technology, 2000, 19(1): 69-181.
    [186]Meng F, Yang F, Shi B, et al. A Comprehensive Study on Membrane Fouling in Submerged Membrane Bioreactors Operated under Different Aeration Intensities[J]. Separation and Purification Technology, 2008, 59(1): 91-100.
    [187]Chae S R, Ahn Y T, Kang S T, et al. Mitigated Membrane Fouling in a Vertical Submerged Membrane Bioreactor (VSMBR)[J]. Journal of Membrane Science, 2006, 280(1-2): 572-581.
    [188]Palacio L, Prádanos P, Cavo J I, et al. Fouling Structure and Charges of a Composite Inorganic Microfiltration Membrane[J]. Colloids and Surfaces A, 1998, 138(2-3): 291-299.
    [189]Mets(n|~)muuronen S, Howell J, Nystr(O|¨)m M. Critical Flux in Ultrafiltration of Myoglobin and Baker’s Yeast[J]. Journal of Membrane Science, 2002, 196(1): 13-25.
    [190]Gregor J E, Nokes C J, Fenton E. Optimizing Natural Organic Matter Removal from Low Turbidity Waters by Controlled pH Adjustment of Aluminium Coagulation[J]. Water Research, 1997, 31(12): 2949-2958.
    [191]Dong B Z, Chen Y, Gao N Y, et al. Effect of pH on UF Membrane Fouling[J]. Desalination, 2006, 195(1-3): 201-208.
    [192]Schafer A I, Fane A G, Waite T. Nanofiltration of Natural Organic Matter: Removal, Fouling and the Influence of Multivalent Ions[J]. Desalination, 1998, 118(1-3): 109-122.
    [193]Schafer A I, Pihlajam?ki A, Fane A G, et al. Natural Organic Matter Removal by Nanofiltration: Effects of Solution Chemistry on Retention of Low Molar Mass Acids versus Bulk Organic Matter[J]. Journal of Membrane Science, 2004, 242(1-2): 73-85.
    [194]Arabi S, Nakhla G. Impact of Cation Concentrations on Fouling in Membrane Bioreactors[J]. Journal of Membrane Science, 2009, 343(1-2): 110-118.
    [195]刘振中,宋刚福.水源水中腐殖酸的危害及去除方法[J].江西科学,2006,24(4):247-251.
    [196]Ven W J C van de, Sant K van’t, Pünt I G M, et al. Hollow Fiber Dead-End Ultrafiltration: Influence of Ionic Environment on Filtration of Alginates[J]. Journal of Membrane Science, 2008, 308(1-2): 218-229.
    [197]Kimura K, Maeda T, Yamamura H, et al. Irreversible Membrane Fouling in Microfiltration Membranes Filtering Coagulated Surface Water[J]. Journal of Membrane Science, 2008, 320(1-2): 356-362.
    [198]Wu X H, Ge X P, Wang D S, et al. Distinct Mechanisms of Particle Aggregation Induced by Alum and PACl: Floc Structure and DLVO Evaluation[J]. Colloids and Surfaces A, 2009, 347(1-3): 56-63.
    [199]Letterman R D, Iyer D. Modeling the Effects of Adsorbed Hydrolyzed Aluminum and Solution Chemistry on Flocculation Kinetics[J]. Environmental Science and Technology, 1985, 19(8): 673-681.
    [200]Ruohom(a|¨)ki K, V(a|¨)is(a|¨)nen P, Mets(a|¨)?muuronen S, et al. Characterization and Removal of Humic Substances in Ultra- and Nanofiltration[J]. Desalination, 1998, 118(1-3): 273-283.
    [201]Laine J M, Clark M M, Mallevialle J. Ultrafiltration of Lake Water: Effect of Pretreatment on the Partitioning of Organics, THMFP, and Flux[J]. Journal of American Water Works Association, 1990, 82(12): 82-87.
    [202]Katsoufidou K, Yiantsios S G, Karabelas A J. Experimental Study of Ultrafiltration Membrane Fouling by Sodium Alginate and Flux Recovery by Backwashing[J]. Journal of Membrane Science, 2007, 300(1-2): 137-146.
    [203]Mo H J, Tay K G, Ng H Y. Fouling of Reverse Osmosis Membrane by Protein (BSA): Effects of pH, Calcium, Magnesium, Ionic Strength and Temperature[J]. Journal of Membrane Science, 2008, 315(1-2): 28-35.
    [204]Kerchove A J de, Elimelech M. Formation of Polysaccharide Gel Layers in the Presence of Ca~(2+) and K~+ Ions: Measurements and Mechanisms[J]. Biomacromolecules, 2007, 8(1): 113-121.
    [205]Katsoufidou K, Yiantsios S G, Karabelas A J. An Experimental Study of UF Membrane Fouling by Humic Acid and Sodium Alginate Solutions: The Effectof Backwashing on Flux Recovery[J]. Desalination, 2008, 220(1-3): 214-227.
    [206]Shao J H, Hou J, Song H C. Comparison of Humic Acid Rejection and Flux Decline during Filtration with Negatively Charged and Uncharged Ultrafiltration Membranes[J]. Water Research, 2011, 45(2): 473-482.
    [207]Salehi E, Madaeni S S. Adsorption of Humic Acid onto Ultrafiltration Membranes in the Presence of Protein and Metal Ions[J]. Desalination, 2010, 263(1-3): 139-145.
    [208]Katsoufidou K S, Sioutopoulos D C, Yiantsios S G, et al. UF Membrane Fouling by Mixtures of Humic Acids and Sodium Alginate: Fouling Mechanisms and Reversibility[J]. Desalination, 2010, 264(3): 220-227.
    [209]Lin C F, Huang Y J, Hao O J. Effects of Humic Substance Characteristics on UF Performance[J]. Water Research, 2000, 34(4): 1097-1106.
    [210]Lin C F, Liu S H, Hao O J. Effect of Functional Groups of Humic Substances on UF Performance[J]. Water Research, 2001, 35(10): 2395-2402.
    [211]Yang S H, Kim H S, Yeom I T. Optimization Model of Submerged Hollow Fiber Membrane Modules[J]. Journal of Membrane Science, 2004, 234(1-2): 147-156.
    [212]Myklestad S M. Release of Extracellular Products by Phytoplankton with Special Emphasis on Polysaccharides[J]. Science of the Total Environment, 1995, 165(1-3): 155-164.
    [213]Habarou H, CrouéJ P, Heim V, et al. Identification of Organic Foulants of Nanofiltration Membranes Used for Drinking Water Production[J]. Water Practice Technology, 2006, 1(4): 1-9.
    [214]Amoudi A A, Lovitt R W. Fouling Strategies and the Cleaning System of NF Membranes and Factors Affecting Cleaning Efficiency[J]. Journal of Membrane Science, 2007, 303(1-2): 4-28.
    [215]Yamamura H, Kimura K, Watanabe Y. Mechanism Involved in the Evolution of Physically Irreversible Fouling in Microfiltration and Ultrafiltration Membranes Used for Drinking Water Treatment[J]. Environmental Science and Technology, 2007, 41(19): 6789-6794.
    [216]Hong S, Elimelech M. Chemical and Physical Aspects of Natural Organic Matter (NOM) Fouling of Nanofiltration Membranes[J]. Journal of Membrane Science, 1997, 132(2-3): 159-181.
    [217]Ang W S, Lee S, Elimelech M. Chemical and Physical Aspects of Cleaning of Organic-Fouled Reverse Osmosis Membranes[J]. Journal of Membrane Science, 2006, 272(1-2): 198-210.
    [218]Zhu H, Nystrom M. Cleaning Results Characterized by Flux, StreamingPotential and FTIR Measurements[J]. Colloids and Surfaces A, 1998, 138(2-3): 309-321.
    [219]Mu(n|~)oz-Aguado M J, Wiley D E, Fane A G. Enzymatic and Detergent Cleaning of a Polysulfone Ultrafiltration Membrane Fouled with BSA and Whey[J]. Journal of Membrane Science, 1996, 117(1-2): 175-187.
    [220]Tian J Y, Chen Z L, Yang Y L, et al. Consecutive Chemical Cleaning of Fouled PVC Membrane Using NaOH and Ethanol during Ultrafiltration of River Water[J]. Water Research, 2010, 44(1): 59-68.
    [221]Palacio L, Calvo J I, Prádanos P, et al. Contact Angles and External Protein Adsorption onto UF Membranes[J]. Journal of Membrane Science, 1999, 152(2): 189-201.
    [222]Keurentjes J T F, Harbrecht J G, Brinkman D, et al. Hydrophobicity Measurements of Microfiltration and Ultrafiltration Membranes[J]. Journal of Membrane Science, 1989, 47(3): 333-344.
    [223]Al-Amoudi A, Williams P, Al-Hobaib A S, et al. Cleaning Results of New and Fouled Nanofiltration Membrane Characterized by Contact Angle, Updated DSPM, Flux and Salts Rejection[J]. Applied Surface Science, 2008, 254(13): 3983-3992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700