用户名: 密码: 验证码:
二氧化氯对水中微囊藻毒素和隐孢子虫卵囊的去除效能研究及毒副作用探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随工农业生产的发展越来越多的水体遭受着更为严重的污染,给饮用水安全带来了威胁,同时随着生活水平的提高,人们对水质也提出了越来越高的要求。微囊藻毒素(MCs)与隐孢子虫卵囊即是近年倍受关注的两种污染物。二氧化氯(ClO_2)因高效、广谱、安全等优点已成为水消毒领域中氯系消毒剂的理想替代产品,但在消毒过程中生成的副产物亚氯酸盐也令人担忧。
     本文通过酶联免疫吸附法、液相色谱-质谱、活性染色等检测方法和量子化学手段,对ClO_2去除水中微囊藻毒素及隐孢子虫卵囊的效果、影响因素及机理进行了研究,同时模拟实际水处理工艺研究了ClO_2预氧化及混凝、沉淀、过滤和消毒各单元及整个工艺流程对含藻水的去除效果。此外采用三代大鼠毒理试验方案应用行为学观察及病理解剖手段对ClO_2在消毒过程中最主要的副产物——亚氯酸盐的长期神经发育毒性进行了考察。论文获得了一系列具有创新意义的成果。
     研究了饮用水处理工艺中ClO_2对较低浓度微囊藻毒素(MCs)的去除特性,揭示了MCs与ClO_2反应的机理和反应产物。证实了ClO_2对于微囊藻毒素MC-LR、MC-RR和MC-YR具有良好的去除效果,去除规律相似,去除的容易程度为MC-RR>MC-YR>MC-LR,去除效果受ClO_2浓度、反应时间影响很大,受pH值和反应温度影响不显著。确定了反应过程中,MCs结构中Adda基团两端的碳原子被羟基自由基攻击,最终生成各自的二羟基取代物。
     全面考察了常规饮用水处理工艺中对含藻水的去除效果,提出了含藻原水的ClO_2强化预氧化解决方案。证实了在常规工艺中,混凝沉淀工艺单元除藻效果较好,但对含MCs的去除极其有限,处理效果的主要影响因素是混凝剂投量,其次是沉淀时间和慢搅转速。过滤工艺中无烟煤所占比例越高的滤池,出水水质越好。消毒工艺中,滤前投加ClO_2有利于高锰酸盐指数、浊度等指标的去除,且出水中亚氯酸盐的含量更低,但滤后投加ClO_2对MCs的去除率较高。模拟工艺证明:对于典型含藻原水,采用2.5 mg/L ClO_2预氧化40 min,然后投加聚合氯化铝铁20 mg/L混凝,60 r/min慢搅20 min后,沉淀30 min,再投加0.8 mg/L ClO_2,最后经无烟煤:石英砂为2:1的滤池以10 m/h的滤速过滤,处理效果优异。
     研究了ClO_2对隐孢子虫卵囊的杀灭特性,证实了ClO_2可以有效地杀灭隐孢子虫卵囊,主要的影响因素是反应时间,ClO_2投量和反应温度,如果水中存在较高的浊度和高锰酸盐指数,则隐孢子虫卵囊的杀灭效果会有所下降。同时发现ClO_2在灭活隐孢子卵囊的过程中表现出很强穿透力和渗透性,可在不破坏卵囊外部整体性的情况下将其灭活,
     研究并提出了亚氯酸盐的长期神经毒理学效应,发现连续三代摄入高浓度的亚氯酸盐可引起第二代、第三代个别仔鼠小脑产生病变,影响运动能力,还可能会对学习、记忆能力造成影响。确定了对于Wistar大鼠运动神经发育的无明显副作用剂量为30 mg/L。
     本文所得出的研究结果不仅为ClO_2控制水中的MCs和隐孢子虫卵囊提供了理论依据,也为含藻水的处理提出了可行的ClO_2预处理方案,具有重要的理论意义与应用价值。此外推进了亚氯酸盐的毒理学研究,可为扩大ClO_2的应用及标准的制定提供参考。
Along with the development of agriculture and industry, water body has been suffered serious pulution that threatened the water safety. People also demand higher quality water followed by the improvement of the living standard. Microcystins (MCs) and Cryptosporidium are of great concern under this background. Chlorine dioxide has been considered as an ideal substitution of chlorine in potable water treatment, however chlorite produced in the disinfection process has been an issue.
     Enzyme-linked immunosorbent assay, HPLC-MS/MS method, intravital staining and quantum chemistry method were used to invesgated the efficiency, influence factors and reaction mechanism of chlorine dixoide removing microcystins and Cryptosporidium oocysts in water. Treatment efficiencies of chlorine dioxide proixidation, coagulation, sedimentation, filtration and disinfection on algae-laden water were studied by simulative processes. In addition, the neurotoxicity of chlorite in prolonged exposure was preliminarily investigated by the methods of ethology and neuroanatomy assay in three generation rat pups. A series of original conclusions were drawn through this thesis.
     Performance of chlorine dioxide removing MCs were studied. And the recction mechanism and products between MCs and chlorine dioxide were also determined. The results showed that chlorine dioxdide can degrade MC-LR, MC-RR and MC-YR effectively. The reactions follow similar pattern and affected greatly by chlorine dioxide concertration and reaction time while slightly by pH and temperature. In the reactions, carbon atoms at the end of Adda groups were attacted, and then Adda groups were oxidated followed by dihydroxy substituendums formated.
     Treatment effect of algea-laden water by conventional drinking water treatment processes was investigated in the general. It was found that coagulation and sedimentation can hardly remove microcystins but can remove large amount of algae. The filter contained higher ratio of blind coal resulted in better effluent. In the disinfection process, more microcystins can be removed by adding chlorine dioxide before filtration than after. However, higher removal rates of potassium permanganate index and turbidity and lower chlorite formation can be abtained when adding chlorine dioxide after filtration. Satisfactory water quality can be gotten at the condition that: proxidation by 2.5 mg/L chlorine dioxide for 40 min, coagulation at 60 r/min for 20 min, sedimentation for 30 min,addition 0.8 mg/L chlorine dioxide for disinfection and then filtration at 10 m/L with the ratio of blind coal and quartz sand of 2:1.
     Performance of chlorine dioxide inactivating Cryptosporidium oocysts in water was studied. The results showed that chlorine dioxide can kill Cryptosporidium oocysts effectively. Inactivate rate affected mostly by chlorine dioxide dosage, reaction time and temperature. And it decreased at high turbidity and high potassium permanganate index. The Cryptosporidium oocysts inactivated by chlorine dioxide is still remained integrality in shape.
     The neurotoxicology performance of chlorite was proposed. It is found that prolonged exposure to excessive chlorite for three generations can cause damage in cerebellum for rat pups in the second and the third generation, which leading to adverse impact on physical ability. And the learning memory ability seemed also impaired. The no observed adverse effect level of neurotoxicology for three generation Wistar rat is 30 mg/L.
     The results obtained in the paper not only provide theoretical basis for controlling microcystins and Cryptosporidium oocysts in potable water, but also bring out a feasible way of chlorine dioxide proxidation for water treatment, which is of important theory and application value. Furthermore, the toxicity of chlorite has also been complemented and can be references for extending the application of chlorine dioxide and standard developing.
引文
[1] Hernández J M, López-Rodas V, Costasb E Microcystins from Tap Water Could Be a Risk Factor for Liver and Colorectal Cancer: A Risk Intensified by Global Change[J].Medical Hypotheses. 2009,72(5): 539-540.
    [2] Svircev Z, Krstic S, Miladinov M, et al. Freshwater Cyanobacterial Blooms and Primary Liver Cancer Epidemiological Studies in Serbia[J]. Journal of Environmental Science and Health, Part C. 2009, 27(1): 36-55.
    [3] D?rr F A, Pinto E, Soares R M, et al. Microcystins in South American Aquatic Ecosystems: Occurrence, Toxicity and Toxicological Assays [J]. Toxicon. 2010, 56(7): 1247-1256.
    [4]余贵英,蔡承铿,刘汝青,等.水中贾第鞭毛虫和隐孢子虫检测方法的探讨[J].中国卫生检验杂志. 2004, 14(5): 549-550.
    [5] Solo-Gabriele H, Neumeister S. US Outbreaks of Cryptosporidiosis[J]. Journal of the American Water Works Association. 1996, 88(9): 76-86.
    [6]中华人民共和国卫生部.生活饮用水卫生标准[S].北京:中国标准出版社, 2006.
    [7]刘成,高乃云,陈卫.液氯消毒工艺去除微囊藻毒素的试验研究[J].中国给水排水. 2009, 25(23): 51-54.
    [8] Betancourt W Q, Rose J B. Drinking Water Treatment Processes for Removal of Cryptosporidium and Giardia[J]. Veterinary Parasitology. 2004, 126(1-2): 219-234
    [9]黄君礼.水消毒剂和处理剂——二氧化氯[M].北京:化学工业出版社, 2010.
    [10]许川,舒为群.微囊藻毒素污染状况、检测及其毒效应[J].国外医学卫生学分册. 2005, 32(1): 56-60.
    [11] 2007年环境状况公报[R].北京:环境保护部, 2008.
    [12] Sivonen K. Cyanobacterial Toxins and Toxin Production[J]. Phycologia. 1996,35(6): 12-24.
    [13] Rinehart K L, Namikoshi M, Choi B W. Structure and Biosynthesis of Toxinsfrom Blue-green Algae (Cyanobacteria)[J]. Journal of Applied Phycology. 1994, 6(2): 159-176.
    [14] Feurstein D, Holst K, Fischer A, et al. Oatp-Associated Uptake and Toxicity of Microcystins in Primary Murine Whole Brain Cells[J]. Toxicology and Applied Pharmacology. 2009, 234(2): 247-255.
    [15] Song W, Cruz A A, Rein K, et al. Ultrasonically Induced Degradation of Microcystin-LR and -RR: Identification of Products, Effect of pH, Formation and Destruction of Peroxides[J]. Environmental Science and Technology. 2006, 40(12): 3941–3946.
    [16] Campos A, Vasconcelos V. Molecular Mechanisms of Microcystin Toxicity in Animal Cells[J]. International Journal of Molecular Sciences. 2010, 11(1): 268-287.
    [17] Watanabe M F, Watanabe Y, Harada K, et al. Release of Heptapeptide Toxin (Microcystin) during the Decomposition Process of Microcystis Aeruginosa[J]. Natural Toxins. 1992, 1(1): 48-53.
    [18] Tsuji K, Watanuki T, Kondo F, et al. Stability of Microcystins from Cyanobacteria--II. Effect of UV Light on Decomposition and Isomerization[J]. Toxicon. 1995, 33(12): 1619-1631.
    [19] Harada K, Tsuji K, Watanabe M F, et al. Stability of Microcystins from Cyanobacteria-III. Effect of pH and Temperature[J]. Phycologia. 1996(35): 83-88.
    [20] Tsuji K, Watanuki O, Kondo F, et al. Stability of Microcystins from Cyanobacteria—IV. Effect of Chlorination on Decomposition[J]. Toxicon. 1997, 35(7): 1033-1041.
    [21] Jones G J, Orr P. Release and Degradation of Microcystin Following Algicide Treatment of a Microystis Aeruginosa Bloom in a Tecreational Lake, as Determined by HPLC and Protein Phosphatase Inhibition Assay[J]. Water Research. 1994, 28(4): 871-876.
    [22] Tsuji K, Naito S, Kondo F, et al. Stability of Microcystins from Cyanobacteria: Effect of Light on Decomposition and Isomerization [J]. Environmental Science and Technology. 1994, 28(1): 173-177.
    [23]吴伟,瞿建宏,陈家长,等.藻毒素对鱼类肝脏的毒理学效应[J].中国环境科学. 2002, 22(1): 67-70.
    [24] Miura G A, Robinson N A, Lawrence W B, et al. Hepatotoxicity of Microcystin-LR in Fed and Fasted Rats[J]. Toxicon. 1991, 29(3): 337-346.
    [25] Harada K. Trace Analysis of Microcystins[J]. Phycologia. 1996, 35(suppl6): 36-41.
    [26] Humpage A R, Falconer I R. Microcystin-LR and Liver Tumor Promotion: Effects on Cytokinesis, Ploidy, and Apoptosis in Cultured Hepatocytes[J]. Environmental Toxicology. 1999, 14(1): 61-75.
    [27] Boudrez A, Evens K, Beullens M, et al. Identification of MYPT1 and NIPP1 as Subunits of Protein Phosphatase 1 in Rat Liver Cytosol[J]. FEBS Letters. 1999, 455(1-2): 175-178.
    [28] Guzman R E, Solter P F. Hepatic Oxidative Stress Following Prolonged Sublethal Microcystin LR Exposure[J]. Toxicologic Pathology. 1999(27): 582-588.
    [39] Vasconcelos V M, Pereira E. Cyanobacteria Diversity and Toxicity in a Wastewater Treatment Plant (Portugal)[J]. Water Research. 2001(35): 1354-1357.
    [30] Lawton L A, Codd G A. Cyanobacterial (Blue-Green Algal) Toxins and Their Significance in UK and European Waters[J]. Water and Environment Journal. 1991(5): 460-465.
    [31] Hirooka E Y, Pinotti M H P, Tsutsumi T, et al. Survey of Microcystins in Water Between 1995 and 1996 in Parana, Brazil Using ELISA[J]. Natural Toxins. 1999, 7(3): 103-109.
    [32] Jochimsen E M, Carmichael W W, An J, et al. Liver Failure and Death after Exposure to Microcystins at a Hemodialysis Center in Brazil[J]. New England Journal of Medicine. 1998, 338: 873-878.
    [33] Yu S. Primary Prevention of Hepatocellular Carcinoma[J]. Journal of Gastroenterology and Hepatology. 1995(10): 674-682.
    [34]俞顺章,陈文,李景,等.上海南汇县原发性肝癌危险因素的定群研究[J].中国流行病学杂志. 1995, 16(1): 22-24.
    [35]周伦,鱼达,余海,等.饮用水源中的微囊藻毒素与大肠癌发病的关系[J].中华预防医学杂志. 2000, 34(4): 224-226.
    [36]陈华,孙昌盛,胡志坚,等.饮水微囊藻毒素在大鼠肝癌发生期间对细胞增殖与凋亡的影响[J].癌变·畸变·突变. 2002, 14(4): 214-217.
    [37] Gilroy D J, Kenneth W, Ronald A, et al. Assessing Potential Health Risks from Microcystin Toxins in Blue Green Algae Dietary Supplements[J].Environmental Health Perspectives. 2000, 108(5): 435–439.
    [38]俞顺章,赵宁,资晓林,等.饮水中微囊藻毒素与我国原发性肝癌关系的研究[J].中华肿瘤杂志. 2001, 23(2): 96 - 99.
    [39] WHO. Guidelines for Drinking-Water Quality. 3rd Edition. Volume1 Recommendations: Chemical Fact Sheets[S]. Geneva: World Health Organization, 2004: 407-408.
    [40] Xiao L, Sulaiman I M, Ryan U M, et al. Host Adaptation and Host-Parasite Co-Evolution in Cryptosporidium: Implications for Taxonomy and Public Health[J]. International Journal for Parasitology. 2002, 32(14): 1773-1785.
    [41]黄永康,王寿昆.隐孢子虫病[J].畜牧与兽医. 1994, 26(3): 134-136.
    [42] Xiao L, Fayer R, Ryan U, et al. Cryptosporidium Taxonomy: Recent Advances and Implications for Public Health[J]. Clinical Microbiology Reviews. 2004, 17(1): 72-97.
    [43] Ryan U M, Power M, Xiao L. Cryptosporidium Fayerin. sp. (Apicomplexa: Cryptosporidiidae) from the Red Kangaroo (Macropus Rufus)[J]. Journal of Eukaryotic Microbiology. 2008, 55(1): 22-26.
    [44] Fayer R, Santin M, Trout J. Cryptosporidium Ryanae n. sp. (Apicomplexa: Cryptosporidiidae) in Cattle (Bos Taurus)[J]. Veterinary Parasitology. 2008, 156(3-4): 191-198.
    [45] Xiao L, Fayer R. Molecular Characterisation of Species and Genotypes of Cryptosporidium and Giardia and Assessment of Zoonotic Transmission[J]. International Journal for Parasitology. 2008, 38(11): 1239-1255.
    [46]武林,李培英.隐孢子虫致病机理的研究进展[J].中国兽医寄生虫病. 2005, 13(3): 28-33.
    [47] Xiao L, Bern C, Limor J, et al. Identification of 5 Types of Cryptosporidium Parasites in Children in Lima, Peru[J]. Journal of Infectious Diseases. 2001, 183(3): 492-497.
    [48] Guyo K, Follet-Dumoulin A, Lelièvre E, et al. Molecular Characterization of Cryptosporidium Isolates Obtained from Humans in France[J]. Journal of Clinical Microbiology. 2001, 39(10): 3472-3480.
    [49]詹希美.人体寄生虫学[M].第五版.北京:人民卫生出版社, 2001: 94-97.
    [50]李雍龙.人体寄生虫学[M].北京:人民卫生出版社, 2008.
    [51]薛燕萍.新出现的寄生虫病——隐孢子虫病[J].临床和实验医学杂志.2006, 5(9): 1427-1429.
    [52]田利光,周晓农.艾滋病患者几种易被忽视的肠道寄生虫感染[J].中国寄生虫学与寄生虫病杂志. 2008(05): 376-381.
    [53]杨兴友.人体隐孢子虫病流行状况[J].寄生虫病与感染性疾病. 2005, 3(3): 135-137.
    [54]赵长城,李培英.隐孢子虫病流行病学研究进展[J].畜牧与兽医. 2004(12): 41-44.
    [55] Lee M Y, Cho E J, Lee J H, et al. A Survey of Cryptosporidium Oocysts in Water Supplies during a 10-Year Period (2000-2009) in Seoul[J]. The Korean Journal of Parasitology. 2010, 48(3): 219.
    [56] Corso P S, Krame M H, Blair K A, et al. Cost of Illness in the 1993 Waterborne. Cryptosporidium Outbreak, Milwaukee, Wisconsin[J]. Emerging Infectious Diseases. 2003, 9(4): 423-431.
    [57]张龙现,蒋金书.隐孢子虫和隐孢子虫病研究进展[J].寄生虫与医学昆虫学报. 2001, 8(3): 184-191.
    [58] Saviol L, Smith H, Thompson A. Giardia and Cryptosporidium Join the 'Neglected Disease Initiative'[J]. Trends in Parasitology. 2006, 22(5): 203-208.
    [59]许隆琪.中国人体寄生虫分布与危害[M].北京:人民卫生出版社, 2000.
    [60]田利光.我国艾滋病高流行地区HIV与肠道寄生虫合并感染研究[D].北京:中国疾病预防控制中心学位论文. 2010.
    [61]蔡炯,叶劲,杜慧兰,等.成都市区生活饮用水中贾第鞭毛虫和隐孢子虫污染状况的预调查[J].中国卫生检验杂志. 2007(12): 2165-2167.
    [62] Pendleton P, Schumann R, Wong S H. Microcystin-LR Adsorption by Activated Carbon[J]. Journal of Colloid and Interface Science. 2001, 240(1): 1-8.
    [63] Fawell J K, Hart J, James H A, et al. Blue-green Algae and Their Toxins-Analysis, Toxicity, Treatment and Environmental Control[J]. Water Supply. 1993, 11(3/4): 109-121.
    [64]余国忠,王占生.饮用水处理中藻毒素污染及其工艺控制特性研究[J].给水排水. 2002, 128(13): 25-28.
    [65]丁震,陈晓东,林萍.饮用水藻类和藻毒素污染控制与处理研究进展.[J].实用预防医学. 2001, 8(6): 478-480.
    [66]朱光灿,吕锡武.去除藻毒素的水处理技术研究进展[J].中国给水排水. 2003, 19(8): 36-39.
    [67]赵亮, Newcombe G, Britcher L.氧化硅去除微囊藻毒素[J].中国给水排水. 2004, 20(2): 44-46.
    [68] Lamber T W, Holmes C F B, Hrudey S E. Adsorption of Microcystin-LR by Activated Carbon and Removal in Full Scale Water Treatment[J]. Water Research. 1996, 30(6): 1411-1422.
    [69] Robert M. The Adsorption of Microcystin-LR by Matural Clay[J]. Australia Toxicon. 2000, 38(2): 303-308.
    [70] Morris R J, Williams D E, Luuc H A, et al. The Adsorption of Microcystin-LR by Natural Clay Particles[J]. Toxicon. 2000, 38(2): 303-308.
    [71]闫海,李贤良,孙建新.粘土矿物和碳纳米管对微囊藻毒素的吸附[J].环境科学. 2004(25): 92-94.
    [72] Neumann U, Weckesser J. Elimination of Microcystin Peptide Toxins from Water by Reverse Osmosis[J]. Environmental Toxicology and Water Quality. 1998, 13(2): 143-157.
    [73]赵勇,李伟英,张明,等.超滤膜对水中微囊藻毒素去除机理及影响因素研究[J].工业水处理. 2010(04): 26-29.
    [74]谢良杰,李伟英,陈杰,等.粉末活性炭——超滤膜联用工艺去除水体藻毒素的特性研究[J].水处理技术. 2010(07): 92-95, 99.
    [75]左金龙,崔福义.饮用水中污染物质及处理工艺的研究进展[J].癌变.畸变.突变. 2007, 19(3): 174-179.
    [76]范志云,黄君礼,许晶,等.隐孢子虫病及其水媒传播控制[J].环境污染治理技术与设备. 2002, 3(5): 75-78.
    [77]张彤,胡洪营,宗祖胜.再生水中隐孢子虫和贾第鞭毛虫的检测方法研究[J].中国给水排水. 2003, 22(5): 19-23.
    [78] LeChevallier M W, Norton W D, Lee R G. Giardia and Cryptosporidium spp. in Filtered Drinking Water Supplies[J]. Applied and Environmental Microbiology. 1991, 57(9): 2617-2621.
    [79] Swertfeger J, Metz D H, DeMarco J, et al. Effect of Filter Media on Cyst and Oocyst Removal[J]. Journal American Water Works Association. 1999, 91(9): 90-100.
    [80] Dugan N R, Fox K R, Owens J H, et al. Controlling Cryptosporidium Oocysts Using Conventional Treatment[J]. Journal American Water Works Association. 2001, 93(12): 64-76.
    [81] Ongerth J E, Pecoraro J P. Removing Cryptosporidium Using Multimedia Filters[J]. Journal American Water Works Association. 1995, 87(12): 83-89.
    [82] Jacangelo J G, Adham S S, Laine J M. Mechanism of Cryptosporidium, Giardia, and MS2 virus Removal by MF and UF[J]. Journal American Water Works Association. 1995, 87(9): 107-121.
    [83]余国忠,赵淑玲,栗印环.水中藻毒素降解的影响因素及其净水工艺控制[J].信阳师范学院学报(自然科学版). 1998, 16(1): 85-89.
    [84] Stefan J H, Daniel R D, Bettina C H. Effect of Ozonation in Drinking Water Treatment on The Removal of Cyanobacterial Toxins and Toxicity of By-Products after Ozonation of Microcystin-LR[J]. Environmental Toxicology. 2000(56): 896-904.
    [85]朱光灿,吕锡武.紫外——微臭氧工艺降解微囊藻毒素的动力学特性[J].东南大学学报(自然科学版). 2005, 35(3): 438-441.
    [86]缪恒锋,陶文沂,张信华,等.铜绿微囊藻臭氧化以及藻毒素去除研究[J].安徽农业科学. 2008(05): 1730-1731, 1746.
    [87] Brenton C N, Joanna R, Michael D B. Destruction of Cyanobacterial Peptide Hepatotoxins by Chlorine and Chloramines[J]. Water Research. 1994, 28(6): 1297-1303.
    [88]乔俊莲,董磊,董敏殷,等.次氯酸钠对微囊藻毒素释放及降解特性的研究[J].供水技术. 2009(04): 11-13.
    [89]黄君礼,鲍治宇,霍范菊.饮用水氯化中氯仿形成的动力学模式[J].中国给水排水. 1996, 12(5): 11-13.
    [90] Rodríguez E, Onstad G D, Kull T P J, et al. Oxidative Elimination of Cyanotoxins: Comparison of Ozone, Chlorine, Chlorine Dioxide and Permanganate[J]. Water Research. 2007, 41(15): 3381-3393.
    [91] Lam A K Y, Prepas E E, Spink D, et al. Chemical Control of Hepatotoxic Phytoplankton Blooms: Implications for Human Health[J]. Water Research. 1995, 29(8): 1845-1854.
    [92] Chen X, Xiao B, Liu J, et al. Kinetics of the Oxidation of MC-RR by Potassium Permanganate[J]. Toxicon. 2005, 45(7): 911-917.
    [93] Rodríguez E, Majado M E, Meriluoto J, et al. Oxidation of Microcystins by Permanganate: Reaction Kinetics and Implications for Water Treatment[J]. Water Research. 2007, 41(1): 102-110.
    [94] Qiao R, Li N, Qi X, et al. Degradation of Microcystin-RR by UV Radiation in the Presence of Hydrogen Peroxide[J]. Toxicon. 2005, 45(6): 745-752.
    [95]黎雷,高乃云,殷娣娣,等.一种改进的高级氧化工艺降解微囊藻毒素动力学模型[J].环境科学. 2009, (04): 1050-1054.
    [96]陈晓国,肖邦定,徐小清,等.不同波段紫外光对微囊藻毒素光降解的影响[J].中国环境科学, 2004, 24(1): 1-5.
    [97]常晶.紫外/臭氧去除水中微囊藻毒素的效能及氧化产物研究[D].哈尔滨:哈尔滨工业大学学位论文. 2010.
    [99]陈伟,甘南琴,宋立荣.微囊藻毒素在单波长紫外光照射下的光降解动态研究[J].化学学报, 62(2): 142-147.
    [100]Kull T P J, Backlund P H, Meriluoto J A O. Oxidation of the Cyanobacterial Hepatotoxin Microcystin-LR by Chlorine Dioxide: Reaction Kinetics, Characterization, and Toxicity of Reaction Products[J]. Environmental Science and Technology. 2004, 38(22): 6025-6031.
    [101]Kull T P J, Sj?vall O T, Tammenkoski M K, et al. Oxidation of the Cyanobacterial Hepatotoxin Microcystin-LR by Chlorine Dioxide: Influence of Natural Organic Matter[J]. Environmental Science and Technology. 2006, 40(5): 1504-1510.
    [102]Sü? J, Volza S, Obsta U, et al. Application of a Aolecular Biology Concept for the Detection of DNA Damage and Repair during UV Disinfection[J]. Water Research. 2009, 43(15): 3705-3716.
    [103]King B J, Hoefel D, Daminato D P, et al. Solar UV Reduces Cryptosporidium Parvum Oocyst Infectivity in Environmental Waters[J]. Journal of Applied Microbiology. 2008, 104(5): 1311-1323.
    [104]Clancy J L, Bukhari Z, Hargy T M, et al. Using UV to Inactivate Cryptosporidium[J]. Journal American Water Works Association. 2000, 92(9): 97-104.
    [105]Le Goff L, Khaldi S, Favennec L, et al. Evaluation of Water Treatment Plant UV Reactor Efficiency Against Cryptosporidium parvum Oocyst Infectivity in Immunocompetent Suckling Mice[J]. Journal of Applied Microbiology. 2010, 108(3): 1060-1065.
    [106]Rochelle P A, Upton S J, Montelone B A, et al. The Response of Cryptosporidium parvum to UV Light[J]. Trends in Parasitology. 2004, 21(2):81-87.
    [107]Elmnasser N, Guillou S, Leroi F, et al. Pulsed-Light System as a Novel Food Decontamination Technology: a Review[J]. Canadian Journal of Microbiology. 2007, 53(7): 813-821.
    [108]Lee S, Joung M, Yang D, et al. Pulsed-UV Light Inactivation of Cryptosporidium parvum[J]. Parasitology Research. 2008, 102(6): 1293-1299.
    [109]Facile N, Barbeau B, Prévost M, et al. Evaluating Bacterial Aerobic Spores as a Surrogate for Giardia and Cryptosporidium Inactivation by Ozone[J]. Water Research. 2000, 34(12): 3238-3246
    [110]Ran Z, Li S, Huang J, et al. Inactivation of Cryptosporidium by Ozone and Cell Ultrastructures[J]. Journal of Environmental Sciences. 2010, 22(12): 1954-1959.
    [111]Pereira J T, Costa A O, Silva M B O, et al. Comparing the Efficacy of Chlorine, Chlorine Dioxide, and Ozone in the Inactivation of Cryptosporidium parvum in Water from Parana State, Southern Brazil[J]. Applied Biochemistry and Biotechnology. 2010, 151(2-3): 464-473.
    [112]Ruffell K M, Rennecker J L, Mari?as B J. Inactivation of Cryptosporidium parvum Oocysts with Chlorine Dioxide[J]. Water Research. 2000, 34(3): 868-876.
    [113]黄君礼.新型水处理剂——二氧化氯技术及其应用[M].北京:化学工业出版社, 2002: 15.
    [114]黄君礼,李绍峰,崔崇威.饮用水消毒剂ClO2的研究进展[J].哈尔滨建筑大学学报. 2001, 24(5): 39-43.
    [115]Huang J L, Wang L, Ren N Q. Disinfection Effect of Chlorine Dioxide on Bacteria in Water[J]. Water Research. 1997, 31(3): 607-613.
    [116]范志云,黄君礼,王鹏,等.二氧化氯氧化水中苯胺的反应动力学及机理研究[J].环境科学. 2004, 25(1): 95-98.
    [117]黄君礼,李春兰,王学风,等.二氧化氯对酚类化合物的去除效果研究[J].环境化学. 1998, 17(2): 174-179.
    [118]黄君礼,王学风,赵国华,等.二氧化氯对水中无机污染物的去除效果研究[J].环境化学. 1996, 10(82-90): 82-90.
    [119]Navalon S, Alvaro M, Garcia H. Chlorine Dioxide Reaction with Selected Amino Acids in Water [J]. Journal of Hazardous Materials. 2008, 164(2-3):1089-1097.
    [120]武利,唐玉兰,傅金祥,等.二氧化氯对水中锰离子去除的试验研究[J].辽宁化工. 2010(01): 4-7.
    [121]唐玉兰,武利,傅金祥,等. ClO2混凝剂联合工艺处理含Fe2+、Mn2+饮用水的试验[J].沈阳建筑大学学报(自然科学版). 2010, 26(03): 542-546.
    [122]He J, Yang K, Dougherty M, et al. Removal of Manganese from Surface Water with Oxidants in Supplement to Natural Manganese sand in Sinopec Shanghai Ltd[J]. Desalination and Water Treatment. 2009, 11(1-3): 245-257.
    [123]王春慧,晋日亚,池致超.稳定性二氧化氯脱硫技术研究[J].现代化工. 2010, 30(11): 55-57.
    [124]Jin D, Deshwal B, Park Y, et al. Simultaneous Removal of SO2 and NO by Wet Scrubbing using Aqueous Chlorine Dioxide Solution[J]. Journal of Hazardous Materials. 2006, 135(1-3): 412-417.
    [125]Deshwal B R, Jin D S, Lee S H, et al. Removal of NO from Flue Gas by Aqueous Chlorine-Dioxide Scrubbing Solution in a Lab-Scale Bubbling Reactor[J]. Journal of Hazardous materials. 2008, 150(3): 649-655.
    [126]魏艳,康宇炜,章民驹,等.突发性氰化物污染原水的应急处理工艺研究[J].中国给水排水. 2009(23): 48-50.
    [127]Parga J R, Shukla S S, Carrillo-Pedroza F R. Destruction of Cyanide Waste Solutions using Chlorine Dioxide, Ozone and Titania Sol[J]. Waste Management. 2003, 23(2): 183-191.
    [128]陈华进,沈发治.硫酸亚铁-二氧化氯法处理高质量浓度含氰废水[J].黄金. 2009(02): 46-49.
    [129]张智瑞.小城市自来水厂消毒技术的研究与选择[D].重庆:重庆大学学位论文. 2006.
    [130]Rook J J. Formation of Haloforms during Chlorination of Natural Waters[J]. Journal of Water Treatment Examination. 1974(23): 234-243.
    [131]Porter C K, Putnam S D, Hunting K L, et al. The Effect of Trihalomethane and Haloacetic Acid Exposure on Fetal Growth in a Maryland County[J]. American Journal of Epidemiology. 2005, 162(4): 334-344.
    [132]Taylor J. Toxicological Profile for Chlorine Dioxide[M]. Darby: Diane Publishing Company, 2010
    [133]王丽. ClO2消毒涉及毒性问题的探讨[J].青岛建筑工程学院学报. 2002,23(1): 1-3.
    [134]Bercz J P, Jones L, Garner L, et al. Subchronic Toxicity of Chlorine Dioxide and Related Compounds in Drinking Water in the Nonhuman Primate[J]. Environmental Health Perspectives. 1982, 46: 47-55.
    [135]Couri D, Abdel-Rahman M S, Bull R J. Toxicological Effects of Chlorine Dioxide, Chlorite and Chlorate[J]. Environmental Health Perspectives. 1982, 46: 13-17.
    [136]Suh D H, Abdel M S, Bull R J. Effect of Chlorine Dioxide and its Metabolites in Drinking Water on Fetal Development in Rats[J]. Journal of Applied Toxicology. 1983, 3(2): 75-79.
    [137]Schwarzenegger A, Adams L, Denton J, Public Health Goals for Chlorite in Drinking Water[R]. Sacramento: California Environmental Protection Agency Pesticide and Environmental Toxicology Branch, 2009.
    [138]Carlton B D, Habash D L, Basaran A H, et al. Sodium Chlorite Administration in Long-Evans Rats: Reproductive and Endocrine Effects [J]. Environmental Research. 1987, 42(1): 238-245.
    [139]Harrington R M, Romano R R, Gates D, et al. Subchronic Toxicity of Sodium Chlorite in the Rat[J]. International Journal of Toxicology. 1995, 14(1): 21-33.
    [140]Karrow N A, Guo T L, McCay J A, et al. Evaluation of the Immunomodulatory Effects of the Disinfection By-Product, Sodium Chlorite, in Female b6c3f1 Mice: a Drinking Water Study [J]. Drug and Chemical Toxicology. 2001, 24(3): 239-258.
    [141]Muller D P. Vitamin E and Neurological Function[J]. Molecular Nutrition and Food Research. 2010, 54(5): 710-718.
    [142]Orme J, Taylor D H. Effects of Chlorine Dioxide on Thyroid Function in Neonatal Rats[J]. Journal of Toxicology and Environmental Health. 1985, 15(22): 315-322.
    [143]Toth G P, Long R, Mills T S, et al. Effects of Chlorine Dioxide on the Developing Rat Brain[J]. Journal of Toxicology and Environmental Health. 1990, 31(1): 29-44.
    [144]Mobley S A, Taylor D H, Laurie R D, et al. Chlorine Dioxide Depresses T3 Uptake and Delays Development of Locomotor Activity in Young Rats[M]// Chlorination: Chemistry, Environmental Impact and Health Effects. New York:Lewis Publications, 1990, 6: 347-358.
    [145]Gill M W, Swanson M S, Murphy S R, et al. Two-Generation Reproduction and Developmental Neurotoxicity Study with Sodium Chlorite in the Rat[J]. Journal of Applied Toxicology. 2000, 20: 291-303.
    [146]Chemical Manufacturers Association. Sodium Chlorite: Drinking Water rat Two-generation Reproductive Toxicity Study[R]. Washington, DC, Chemical Manufacturers Association,1996.
    [147]USEPA. National Primary Drinking Water Regulations: Disinfectants and Disinfection Byproducts[S], Washington D C: USEPA. 1998.
    [148]王丽,黄君礼,李百祥.水中二氧化氯及副产物亚氯酸盐和氯酸盐一般毒性研究[J].化工标准.计量.质量. 2001(3): 33-37.
    [149]Wang L, Chang A, Huang J. Ordinary Toxicity of Chlorine Dioxide and By-Products Chlorite and Chlorate in Water[J]. Journal of Donghua University. 2003, 20(3): 108-112.
    [150]王丽,黄君礼,李百祥.二氧化氯、亚氯酸盐和氯酸盐水溶液的致突变性[J].环境化学. 2002, 21(4): 414-414.
    [151]王丽,黄君礼,李百祥.二氧化氯、亚氯酸盐和氯酸盐水溶液小鼠微核试验研究[J].哈尔滨建筑大学学报. 2002, 35(1): 58-60.
    [152]黄晓波,岳木生,彭明军,等.二氧化氯消毒剂的亚急性毒性试验[J].中国消毒学杂志. 2007, 24(3): 236-238.
    [153]张俊书.二氧化氯消毒剂的亚急性毒性试验研究[J].中国消毒学杂志. 2006, 23(6): 553-554.
    [154]Lin J L, Lim P S. Acute Sodium Chlorite Poisoning Associated with Renal Failure[J]. Ren Fail. 1993, 15(5): 645-648.
    [155]Michael G E, Miday R K, Bercz J P, et al. Chlorine Dioxide Water Disinfection: a Prospective Epidemiology Study[J]. Archives of Environmental Health. 1981, 36(1): 20-27.
    [156]Lubbers J R, Chauhan S, Bianchine J R. Controlled Clinical Evaluations of Chlorine Dioxide, Chlorite and Chlorate in Man[J]. Toxicological Sciences. 1981, 1(4): 57-62.
    [157]Lubbers J R, Chauhan S, Miller J K, et al. The Effects of Chronic Administration of Chlorine Dioxide, Chlorite and Chlorate to Normal Healthy Adult Male Volunteers[J]. Journal of Environmental Pathology, Toxicology andOncology. 1984, 5(4-5): 229-238.
    [158]Lubbers J R, Chauhan S, Miller J K, et al. The Effects of Chronic Administration of Chlorite to Glucose-6-Phosphate Dehydrogenase Deficient Healthy Adult Male Volunteers[J]. Journal of Environmental Pathology, Toxicology and Oncology. 1984, 5(4-5): 239-242.
    [159]黄君礼.连续碘量法测定水中ClO2, Cl2, ClO2-和ClO3-[J].环境科学进展. 1999, 2(增): 17-23.
    [160]中华人民共和国科技部.实验动物环境及设施[S].北京:中国标准出版社, 2001.
    [161]Hedrich H, Bullock G. The Laboratory Mouse[M]. Maryland Heights: Elsevier Academic Press, 2004.
    [162]Campbell A T, Robertson L J, Smith H V. Viability of Cryptosporidium parvum Oocysts: Correlation of in Vitro Excystation with Inclusion or Exclusion of Fluorogenic Vital Dyes[J]. Applied And Environmental Microbiology. 1992, 58(11): 3488-3493.
    [163]Jones D. Pharmaceutical Statistics[M]. London: Pharmaceutical Press, 2002.
    [164]季颖,赵吉娜,黄君礼,等. ClO2对微囊藻毒素(LR)的去除效果和反应特征[J].哈尔滨工业大学学报. 2006, 38(10): 1806-1808.
    [165]季颖.二氧化氯去除水中微囊藻毒素及氧化动力学的研究[D].哈尔滨:哈尔滨工业大学学位论文. 2007.
    [166]Ji Y, Huang J, Fu J, et al. Degradation of Microcystin-RR in Water by Chlorine Dioxide[J]. Journal of China University of Mining and Technology. 2008, 18(4): 623-628.
    [167]Wu M S, Ji Y, Huang J L, et al. Effects and Kinetics of Chlorine Dioxide Removal Microcystin-RR[C]. 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, 2009.
    [168]盛旭玲,吴吉梅,周丹丹,等二取代苯环上亲电取代定位的计算化学模拟[J]大学化学2011(03): 44-46.
    [169]杨旭光.河北某水库微囊藻毒素时空分布及其与营养因子之间的关系[D].武汉:华中农业大学学位论文. 2006.
    [170]吴静,王玉鹏,蒋颂辉,等城市供水藻毒素污染水平的动态研究[J]中国环境科学2001 21(4): 322-325.
    [171]刘成微囊藻毒素在上海市水源地的分布状况及去除研究[D]上海:同济大学学位论文2007.
    [172]裴海燕二氧化氯杀藻特性研究[J]山东大学学报(工学版). 2004, 34(5): 104-108.
    [173]范晓军,陈佩堂,陈成章,等澳门地区原水及海水中的病原虫调查[J]中国给水排水2001 17(11): 32-34.
    [174]钱纯,刘爱东,罗岳平隐孢子虫对自来水水质的污染及其防治措施[J]中国卫生检验杂志2000 10(1): 88-90.
    [175]Wang Z, Liao F, Lin J, et al Inactivation and Mechanisms of Chlorine Dioxide on Nosema Bombycis[J] Journal of Invertebrate Pathology 2010 104(2): 134-139.
    [176]Cho M, Kim J, Kim J Y, et al Mechanisms of Escherichia coli Inactivation by Several Disinfectants[J] Water Research 2010 44(11): 3410-3418.
    [177]O'Donoghue J L Clinical Neurologic Indices of Toxicity in Animals [J]Environmental Health Perspectives 1996 104 Supplement 2: 323-330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700