用户名: 密码: 验证码:
盐芥激活标签突变体库的建立及过量表达YAP1对拟南芥耐盐性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化是目前影响农作物产量和质量的最主要原因之一。植物对盐胁迫的适应非常复杂,提高作物的耐盐性仍然面临着极大的挑战。因此,分析植物对于盐胁迫的反应,寻找耐盐相关基因,研究其反应机制,不仅对于揭示植物耐逆的机理具有重要的理论意义,而且对于耐盐作物的培育具有重要的实践意义。到目前为止,拟南芥一直是研究植物分子生物学途径的最好模式材料,但拟南芥是真正的甜土植物,因此,使用拟南芥将只能揭示关于植物耐盐性较少的信息。作为拟南芥近缘的盐芥,是很有前景的植物耐盐模式系统。盐芥具有拟南芥很多同样的优点以作为模式系统:如类似的形态、小的基因组、短的生活史、丰富的种子和易于被转化等。而且,盐芥是真盐生植物,短时间内能耐受高达500mMNaCl的冲击,在盐适应前后既不产生盐腺也没有复杂的形态上的变化,表明其耐盐性很大程度上源于基本的生理和生化机制。此外,盐芥和拟南芥在cDNA和氨基酸水平上分别有90%和95%的同源性,可以方便的将拟南芥的很多信息(基因、蛋白质数据库以及突变体系等)移至盐芥耐盐性的分子生物学研究。目前,对盐芥生理生化的研究、基因表达的研究,以及各种cDNA文库、突变体库的建立,已经使盐芥成为一种非常有价值的耐盐研究模式系统。
     随着盐芥基因组测序的即将完成,盐芥功能基因组学研究将会成为研究工作的重点,而功能基因组学的研究是建立在获得大量突变体的基础上的,饱和诱变和饱和插入是植物基因组学研究中的两种策略,而通过基因标签法建立大规模的突变体库是目前植物功能基因组学研究的最直接有效的方法。其中,激活标记法不仅能产生一般意义的功能丧失突变体,更重要的是能得到功能获得突变体,对于功能冗余基因以及生命周期多阶段必需基因的研究具有独特的优势。
     酿酒酵母转录因子yap1(Saccharomy cescerevisiae)在酵母中调节多达70个与氧化胁迫相关的基因的表达,在抗氧化胁迫反应中起着重要的作用。但是YAP1基因在高等植物中异源表达及对其影响还未见报道,因此YAP1基因在拟南芥中过量表达,对研究细胞抗氧化胁迫能力及运用基因工程手段有效地提高植物的抗逆性具有重要意义。本论文的主要目的是建立耐盐模式植物盐芥的激活标签突变体库,为发掘利用盐芥的耐盐基因,揭示盐芥耐盐的分子机理奠定基础,同时研究了酵母转录因子YAP1基因在拟南芥中过量表达的功能。主要结果如下:
     1.盐芥激活标记突变体库的建立
     以耐盐模式植物盐芥为实验材料,通过农杆菌介导的花浸染法将激活标记载体pSKI015导入盐芥基因组,试图建立一定规模的盐芥激活标记突变体库。主要结果如下:
     (1)通过农杆菌介导的花侵染法,利用激活标记载体pSKI015对盐芥进行了遗传转化,共获得转化T0代种子1000g左右,通过除草剂筛选,共获得抗性苗约2000株。
     (2)通过对所获得的盐芥除草剂抗性苗随机取约800株进行bar基因的PCR检测,阳性率在85%以上,证明采用除草剂对转化突变体进行筛选是可行的。
     (3)通过对获得的2000株激活标记抗性苗,采用TAIL-PCR的方法进行农杆菌T-DNA插入盐芥基因组侧翼序列的扩增,并进行测序,得到侧翼序列150余条,并进行了相关的序列分析。
     本实验的目的是建立饱和的盐芥激活标记突变体库,但由于各种因素的限制,所获得的体变体的数量还远远不够,大规模的突变体库还在构建之中。利用TAIL-PCR进行侧翼序列的扩增已获得初步成功,只是对于PCR产物的测序方法还有待于进一步完善。
     2、YAP1基因在拟南芥中的过量表达
     通过RT-PCR的方法克隆到YAP1基因,并将其构建到植物表达载体pROKII中,导入农杆菌后,进行植物遗传转化,实现其在拟南芥中过量表达,在含30mg/L的卡那霉素的培养基上筛选获得纯合转基因株系,自交一代获得足够的纯合转基因种子后,对其进行了分子生物学的验证及生理指标的检验,结果如下:
     (1)通过对转基因植株进行PCR扩增,得到了1.95Kb的特异条带,表明YAP1已整合至拟南芥基因组中;
     (2)Northern杂交分析表明转基因植株均有杂交信号,野生型植株无明显信号,进一步说明YAP1基因整合到拟南芥的基因组后已正常转录表达。
     (3)在含不同浓度的NaCl(0-150mmol/L)MS培养基上,YAP1基因的过量表达提高了转基因拟南芥的种子萌发率及幼苗的耐盐性。
     (4)在盐胁迫条件下,转YAP1基因拟南芥表现出比野生型更高的耐盐性,主要表现在:在盐胁迫下,转基因植株保持了更高的光反应效率, MDA、H2O2含量及细胞膜透性明显低于对照,表明YAP1基因减轻了植株的氧化损伤。
     (5)在盐胁迫条件下,转YAP1基因植株抗氧化保护酶SOD、CAT、POD、APX、GST及GR的酶活性都显著高于对照,表明酵母YAP1基因在高等植物异源表达能够起到类似转录因子的作用,在胁迫条件下,调控了一系列抗氧化保护酶的表达,增强了拟南芥的抗盐性。
     本论文的主要创新点:
     1.以耐盐研究模式植物盐芥为材料,通过农杆菌介导的花侵染法将激活标记载体pSKI015大规模的对盐芥进行转化,建立盐芥激活标签突变体库。目前已获得激活标记突变体2000株,并对所获得的突变体T-DNA插入盐芥基因组侧翼序列进行了扩增,Blast序列比对分析。在本实验室首次较系统的对盐芥激活标记突变体库的建立中的各个环节进行详细研究,为后续研究盐芥的抗盐机理,耐盐基因的发掘利用奠定了基础。
     2.从酿酒酵母克隆得到了转录因子YAP1基因,并首次在高等植物拟南芥中进行异源表达,对转化植株进行了相关的分子检测,并对转基因植株的耐盐水平进行了较全面的分析,为进一步培育耐盐作物奠定了基础。
Soil salinization is one of the major stress factors that limiting the productivity and quality of crops. The mechanism of plants adapt to salt stress is very complex, so improving the salt tolerance of crops still faced great challenges. Thus, analyzing the mechanism of plants responses to salt stress, exploring genes related to salt tolerance not only have important theoretical significance but also have important practical significance for cultivation of salt-tolerant crops. Up to now, Arabidopsis is the popular model material for plant molecular biology research, but it is a glycophyte, and Arabidopsis can only reveal a little information of the plant salt tolerance. As a close relative to Arabidopsis, Thellungiella halophila (salt cress) is becoming a promising model of plant salt-tolerant research system. Similar to Arabidopsis Thellungiella halophila is also belong to Cruciferae and has good genetic features such as similar morphology, small genome size, short life cycle, high-yield seeds and an efficient transformation method. However, Thellungiella halophila is able to withstand dramatic salinity shock up to 500 mM NaCl. This plant does not have salt glands or other complex morphological alterations either before or after salt adaptation, indicating its salt tolerance, to a large extent, stems from the basic physiological and biochemical mechanisms. Besides, salt cress and Arabidopsis share 90% and 95% identities on cDNA and amino acid sequences respectively, so it is convenient to transfer informations fron Arabidopsis (gene database, protein database and mutant lines) to molecular analysis on salt tolerance of salt cress. Up to now, analysis on salt cress physiology, biochemistry and gene expression, and the construction of different cDNA libraries and mutant libraries have made salt cress a valuable model for the study of salt tolerance.
     With the genome sequencing of salt cress is nearing completion, functional Genomics study of salt cress will be the focus of research. The research of functional genomics is based on abundant mutants achieved, saturation mutagenesis and saturation gene insertion are the two main strategies of plant functional genomics, and constructing large scale mutant library using the method of activation tagging is the most direct and effective method of plant functional genomics research. The method of activation tagging can not only create mutants of lost of function but also can create gain of function mutants. Those gaining of function mutants have much predominance in study of functional redundant genes and those that are indispensable in multiple stages of the plant life cycle.
     The transcription factor YAP1 gene of Saccharomy cescerevisiae can regulate the expression of much for 70 genes related to oxidative responses and plays an important role in anti-oxidative stress. So far, the ectopic expression of YAP1 in high plants has not been reported, so study the effect of over-expression YAP1 gene in Arabidopsis can give us much information of improving the anti-oxidative ability of plant cells and the plant’s resistance to abiotic stress by genetic engineering means.
     The main objectives of the dissertation were to construct a activation tagging mutants library of salt cress, lay the foundation for exploitation and application of salt tolerance genes and revealing the mechanism of salt tolerance of salt cress; at the same time studied on the effect of over-expression YAP1 gene in Arabidopsis. The main results as following;
     1. The construction of activation tagging mutants library of salt cress
     (1) In this experiment, activation tagging vector pSKI015 was introduced into the salt tolerance model plants Thellungiella halophila by Agrobacterium tumefaciens-mediated flora dipping transformation with an intention to construct an activation-tagged mutant library, we have obtained transgenic T0 seeds about 1000g, selected by Basta, about 2000 Basta resistant salt cress seedlings were obtained.
     (2) The result of PCR on Bar gene of randomly selected about 800 seedlings of the Basta resistant seedlings showed the positive rate was above 85%, suggesting that use Basta to select transgenic seed is effective.
     (3) TAIL-PCR method were used to obtain the flanking genome sequences of T-DNA insertion site for the 2000 Bar-resistant salt cress seedlings, about 150 flanking sequence have been obtained, blast analysis of those sequences have been done.
     The aim of this study is to establish the saturation activation tagging library of salt cress, but due to variety factors, the number of mutants still far not enough, large-scale construction work are in progress. Though flanking sequences can be successfully amplified by TAIL-PCR, it is necessary to develop a more appropriate method of directly sequencing PCR products.
     2. The over-expression of YAP1 gene in Arabidopsis
     The YAP1 gene was isolated from Saccharomy cescerevisia by RT-PCR method and confirmed by sequencing. The YAP1 PCR product was inserted into binary plant vector pROKII. The resulting plasmid, named pROK-YAP1, was mobilized to Agrobacterium tumefaciens strain GV3101 used for plant transformation. The yeast YAP1 gene was introduced into Arabidopsis thaliana by Agrobaterium tumefaciens-mediated transformation with floral-dipping method under the control of CaMV 35S promoter. Transformants were selected for their ability to grow on medium containing kanamycin (30mg/L), several homozygous lines that were all tolerant to kanamycin were selected and used for further molecular and physiological determination. The main result as following:
     (1) The transgenic lines were detected by PCR, a 1.95Kb band was obtained while wild type has no band indicating that the yeast YAP1 gene has been introduced into Arabidopsis genome.
     (2) Northern blot analysis revealed the expression of YAP1 mRNA in T3 plants several non-segregation transgenic lines while no signal was shown in wild type Arabidopsis.
     (3) On MS medium containing different levels of NaCl (0-150mM/L) over-expression of YAP1 in Arabidopsis improved seeds germination and seedling salt tolerance.
     (4) The MDA as well as the H2O2 content was obviously lower whereas the photosynthetic rate was higher in transgenic plants in comparison with that of controls under salt stress conditions. The results implied that the less oxidative stress might result from the transformants.
     (5) Under salt stress, in the transgenic plants the activity of ROS scavenging systems including SOD,CAT, APX,GST, and GR were obviously higher than that in wt plants, implying that YAP1 gene expressed in Arabidopsis act as an upstream regulating element and up-regulated much downstream genes expression.
     The innovations of this thesis can be summarized as follows:
     1. Activation tagging vector pSKI015 was introduced into the salt tolerance model plants Thellungiella halophila by Agrobacterium tumefaciens-mediated flora dipping transformation in large scale, with an intention to construct an activation-tagged mutant library, we have obtained about 2000 activation tagged lines, the T-DNA insertion flanking sequence was amplified by TAIL-PCR, and analysised by BlastN with Arabidopsis gene bank. This is the first time in our lab to study thoroughly the construction of salt cress activation tagging library, making the foundation for following study of exploitation and application of salt cress genes.
     2.The transcription factor YAP1 gene was cloned from Saccharomy cescerevisia, and for the first time heterogeneously expressed in Arabidopsis, the transgenic plants was identified by molecular analysis and the salt tolerance of the transgenic Arabidopsis was analyzed which lay a foundation for breeding new varieties in salt tolerance of crops.
引文
[1] Boyer, JS. Plant Productivity And Environment. Science,1982,218, 443-448.
    [2] Tester M and Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot, 2003, 91(5): 503-507
    [3] Yokoi S, Bressan RA , Hasegawa PM. Salt stress tolerance of plant. JIRCAS Working Report, 2002:25-33
    [4]张荃,赵彦修,张慧.海水农业,梦想与现实。山东科学。1999,12:1-5
    [5] Flowers T.J., Troke P.F. and Yeo A.R. The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 1997,28: 89-121
    [6] Greenway H, Munns R.. Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol. 1980,31: 149-190
    [7]Munns, R. and Termaat, A. Whole plant responses to salinity. Australian Journal of Plant Physiology 1986,13: 143-160
    [8] Munns, R., Schachtman, D.P. and Condon, A.G. The significance of a twophase growth response to salinity in wheat and barley. Australian Journal of Plant Physiology 1995:22: 561–569
    [9] Xiong, L. and Zhu, J.-K. Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell and Environment 2002,25: 131-139
    [10] Mark T. and Romola D. Na+ Tolerance and Na+ Transport in Higher Plants. Annals of Botany. 2003,503-527.
    [11] Lichtentaler, H.K. Vegetation stress: an introduction to the stress concept in plants. Journal of Plant Physiology 1995,148: 4-14
    [12]Parida A K,and DasA B,Salt tolerance and salinity effeets on Plants: a review. Ecotoxicology and Environmental Safety 2005,60:324--349.
    [13] Zhong, H. and L?uchli, A. Spatial and temporal aspects of growth in the primary root of cotton seedlings: effects of NaCl and CaCl2. Journal of Experimental Botany 1993,44: 763-771
    [15] Binzel, M.L., Hess, F.D., Bressan, R.A. and Hasegawa, P.M. Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiology 1988,86: 607-614
    [16] Carden, D.E.. The cell physiology of barley salt tolerance. Ph.D. thesis, University of Sussex, U.K. 1999
    [17] Blumwald, E.. Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology 2000,12: 431-434
    [18] Mansour, M.M.F., Lee-Stadlemann, O.Y. and Stadlemann, E.J. Solute potential and cytoplasmic viscosity in Triticum aestivum and Hordeum vulgare under salt stress. A comparison of salt-resistant and salt-sensitive lines and cultivars. Journal of Plant Physiology 1993,142: 623-628
    [19] Munns, R. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell and Environment 1993,16: 15-24
    [20] Yeo, A. Molecular biology of salt tolerance in the context of whole-plant physiology. Journal of Experimental Botany 1998,49: 915-929
    [21] Allen, G. J., Wyn Jones, R. G. and Leigh, R. A. Sodium transport in plasma membrane vesicles isolated from wheat genotypes differing in K+/Na+ discrimination traits. Plant, Cell Environment 1995,18: 105-115
    [22] Burdon, R.H., O’Kane, D., Fadzillah, N., Gill, V., Boyd, P.A., and Finch, R.R. Oxidative stress and responses in Arabidopsis thaliana and Oryza sativa subjected to chilling and salinity stress. Biochemical Society Transactions 1996,24: 469-472
    [23] Shen, B., Jensen, R.G. and Bohnert, H. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiology 1997,113: 1177-1183
    [24] Tsugane, K., Kobayashi, K., Niwa, Y., Ohba, Y., Wada, K. and Kobayashi, H. A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 1999,11: 1195-1206
    [25] Hong, Z., Lakkineni, K., Zhang, Z. and Verma, D.P.S. Removal of feedback inhibition of D1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology 2000,122: 1129-1136
    [26] Munns , R.ComParative Physiology of salt and water stress. Plant , cell and Environment2002,25:239-250.
    [27] Zhu,J.-K. Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol.2003,6:441-445
    [28] Dvora K.J., Gorham J . Methodology of gene transfer by homologous recombination into Triticum tugidum : transfer of K+/Na++ discrimination from T. aestivum. Genome , 1992 , 35 : 639 - 646.
    [29] Rubio F., Gassmann W., Schroeder J. I. Sodium driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance . Science , 1995 , 270 : 1660- 1663.
    [30]Katz A, Pick U, Avron M. Modulation of Na+/H+ antiporter activity by extreme pH and saltin the halotolerant alga Dunaliella salina .Plant Physiol , 1992 ,100 :1224 - 1229.
    [31]Bsllesterous E, Blumwald E, Donaire J P, Belver A, Na+/H+ antiport activity in tonoplast vesicles isolated from sunflowers roots induced by NaCl stress. Physiologia Plantarum, 1997,99: 328~334
    [32] Hasegawa P M, Bressan R A, Zhu J K, Bohnert H J. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 2000,51: 463-499
    [33] Zhu J K, Hasegawa P M, Bressan R A. Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci 1996,16: 253-277
    [34] Solomon A, Beer S, Waisel Y. Effects of NaCl on the Carboxylating activity of Rubisco from Tamarix jordanis in the presence and absence of proline-related compatible solutes. Plant Physiol 1994,90: 198-204
    [35] Galinski E A. Compatible solutes of halophytic eubacterial: molecular principles, water solutes interaction, stress protection. Experientia 1993,49: 487-496
    [36] Haro R., Baneulos M.A., Quintero F.J., et al . Genetic basis of sodium exclusion and sodium tolerance in yeast. A model for plants. Physiol Plant , 1993,89 :868 - 874. [37 ] Petrusa L M, Winicol L. Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl [J ] . Plant Physiol Biochem , 1997, 35 :303 - 310.
    [38] Soussi M,Ocana A,Lluch C. Effects of salt stress on growth , photosynthesis and nitrogen fixation inchick-pea( Cicer arietinum L. ) J Exp Bot, 1998, 49 : 1 329 - 1 337.
    [39] Sanada Y.,Veda H.,Kuriba Yashi K.et al . Novel light-dark change of proline levels in halophyte ( Mesembryanthemum crystallinum L. ) and glycophytes ( Hordeum vulgareL. and Triticum aestivum L. ) leaves and roots under salt stress. Plant Cell Physiol , 1995 , 36 (6) : 965-970. [40 ] Sauta-Cruz Ana, Acosta Manuel, et al; Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol Biochem, 1999 , 37(1) : 65 - 71.
    [41] Zhu J K, Hasegawa P M, Bressan R A. Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci 1996,16: 253-277
    [42] Ingram, J. and Bartels, D. The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology 1996, 47: 377–403
    [43] Garay-Arroyo, A., Colmenero-Flores, J.M., Garciarrubio, A. and Covarrubias, A.A. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. Journal of Biological Chemistry 2000, 275: 5668–5674
    [44]Xiong, L., M. Ishitani, H. Lee, and J.-K. Zhu.. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive geneexpression. Plant Cell 2001a 13:2063–2083.
    [45]Xiong, L., H. Lee, M. Ishitani, and J.-K. Zhu. 2002. Regulation of osmotic stress responsive gene expression by LOS6/ABA1 locus in Arabidopsis. J. Biol. Chem. 277:8588–8596.
    [46]Leung, J., and J. Giraudat. Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998,49:199–222.
    [47]Schroeder, J.I., G.J. Allen, V. Hugouvieux, J.M. Kwak, and D. Waner. Guard cell signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001,52:627–658.
    [48] Wu, Y., J. Kuzma, E. Marechal, R. Graeff, H.C. Lee, R. Foster, and N.H. Chua. Abscisic acid signaling through cyclic ADP-ribose in plants. Science 1997,278:2126–2130.
    [49]Xu, D., Duan, X., Wang, B., Hong, B., Ho, T.-H.D. and Wu, R. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiology 1996,110: 249-257
    [50] Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcriptional factor. Nature Biotechnology 1999,17: 287–291
    [51] Abe, H., T. Urao, T. Ito, M. Seki, K. Shinozaki, and K. Yamaguchi Shinozaki. 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78.
    [52]孙存普,张建中,段绍瑛.自由基生物学导论,合肥中国科技大学出版社.,1999:48-59.
    [53]Asada, K. and Takahashi, M. Production and scavenging of active oxygen in photosynthesis. In Photoinhibition (Kyle, D.J. et al., eds), 1987, 227–287
    [54] Dat, J. et al. Dual action of the active oxygen species during plant stress responses.Cell. Mol. Life Sci. 2000,57, 779–795
    [55] Asada, K. The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999,50, 601–639
    [56]Mitsuhara, I. et al. Animal cell-death suppressors Bcl-xL and Ced-9 inhibit cell death in tobacco plants. Curr. Biol. 1999,9, 775–778
    [57]Gomez, J.M., J.A. Hernandez, A. Jimenez, L.A. del Rio, and F. Sevilla. Differential response of antioxidative enzymes of chloroplast and mitochondria to long term NaCl stress of pea plants. Free Radic. Res. 1999,31:S11–S18.
    [58] Hernandez, J.A., M.A. Ferrer, A. Jimenez, A.R. Barcelo, and F. Sevilla. Antioxidant systems and O·_2 /H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol. 2001,127:817–831.
    [59]陈华新,李卫军,安沙舟等.钙对NaCI胁迫下杂交酸模幼叶片光抑制的减轻作用.植物生理与分子生物学学报2003,29(5):49-54
    [60]Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in plant science 2002,7:405-410
    [61] Vranova E.,Inze D.,Van Breusegem F. Signal transduction during oxidative stress. J. Exp Bot,2002,53:1227-1236
    [62] Jiang M, Zhang J. Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defense in leaves of maize seedlings. Plant Cell Environ,2003,26:929-939.
    [63] Jiang Ming-Yi, Zhang Jian-Hua. Abscisic acid and antioxidant defense in plant cells. Acta botanica sinica.2004, 46 ( 1 ): 1-9.
    [64]Laloi C, Apel K, Danon A. Reactive oxygen signalling: the latest news. Curr Opin Plant Biol, 2004, 7(3): 323-328
    [65] Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants. Trends Plant Sci, 2004, 9(10):490-498
    [66]Foyer CH, Halliwell B. The presence of glutathioneand glutathione reductase in chloroplasts:a proposed role in ascorbic acid metabolism.Plants,1994a,133:21-25.
    [67] McCorcl JM, Fridovich I. Superoxide dismutase: An enzymic funnction for crythrocuprein (hemocuprein). J Biol Chem, 1969, 244:6049-6055
    [68]Bowler C, Slooten L, Vandenbranden S, et al Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. The EMBO Journal, 1991, 10: 1723– 1732
    [69]McKersie B.D, Bowley S. R, Jones K.SWinter survival of transgenic alfalfa over expressing superoxide dismutase. Plant Physiol, 1999, 119: 839 - 848
    [70] Breusegem F V SL, Stassart J M, Moens T, et al Effects of overproduction of tobacco MnSOD in maize chlorop lasts on foliar tolerance to cold and oxidative stress.Exp Bot,1999, 50: 71 - 78
    [71]Van Camp W, Cap iau K, Van Montagu M, et al. Enhancement of oxidative stress tolerance in transgenic tobacco plants over producing Fe-superoxide dismutase in chloroplasts. Plant Physiol , 1996, 112: 1703– 1714
    [72] Leonardis SD, Dipierro N, Dipierro S Purification and characterization of an ascorbate peroxidase from potato tuber mitochondria. Plant Physiology and Biochemistry 2000,38: 773-779
    [73] Yoshimura K, Ishikawa T, Nakamura Y, Tamoi M, Takeda T, Tada T, Nishimura K, Shigeoka S., Comparative study on recombinant chloroplastic and cytosolic ascorbateperoxidase isozymes of spinach. Archives of Biochemistry and Biophysics 1998,353:55-63
    [74] Ishikawa T, Yoshimura K, Sakai K, Tamoi M, Takeda T, Shigeoka S.Molecular characterization and physiological role of a glyoxysome-bound ascorbate peroxidase from spinach. Plant and Cell physiology1998, 39: 23-34
    [75]Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S, Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiology 2000,123:223-234
    [76] Mittler R and Zilinskas BA, Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. The PlantJournal 1994,5: 397-405
    [77] Pastori GM and Trippi VS, Oxidative stress induces high rate of glutathione reductase synthesis in a drought-resistant maize strain. Plant and Cell Physiology 1992, 33. 957-961
    [78] Kornyeyev D, Dmytro K, Barry A et al. Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton over expressiongenes encoding chloroplast-targeted antioxidant enzymes. Physiol Plant, 2001, 133:323-331
    [79]王庆斌,王方正,薛庆中等. APX基因转化水稻及其功能的研究.中国植物生理学会全国学术年会暨成立40周年庆祝大会学术论文摘要汇编,杭州, 2003.318
    [80] WANG W-Q, LI Bin, MENG Q-W et al. The sequence of Lycopersicon esculentum thylakoid-bound ascorbate peroxidase gene TtAPX.植物生理与分子生物学学报, 2002,28(6):491-492
    [81] Charles R, Frank J, Michael B. Identification of two cytosolic ascorbate peroxidase cDNAs from soybean leaves and characterization of their products by functional expression in E. coli. Planta, 1998, 204:120-126
    [82] Willekens H,Chamnongpol S ,DaveyM,et al. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plant.The EMBO Journal,1997,16:4806-4816.
    [83] Smirnoff N. Plant resistance to environment stress. Current Opinion in Biotehnology,1998,9:214-219.
    [84] Bailly C, Leymarie J, Lehner A, Rousseau S, Come D, Corbineau F. Catalase activity and expression in developing sunflower seeds as related to drying. J Exp Bot,2004,55 (396): 475-83
    [85] Jiang M, Zhang J. Role of abscissic acid in water stress-induced antioxidant defense in leaves of maize seedlings. Free Radic Res,2002a,36 (9): 1001-15
    [86] Jiang M, Zhang J. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot,2002b,53 (379): 2401-10
    [87] Bailly C, Audigier C, Ladonne F, Wagner MH, Coste F, Corbineau F, Come D. Changes in oligosaccharide content and antioxidant enzyme activities in developing bean seeds as related to acquisition of drying tolerance and seed quality. J Exp Bot,2001,52 (357): 701-8
    [88] Miyagawa Y, Tamoi M, Shigeoka S. Evaluation of the defense system in chloroplasts to photooxidative stress caused by paraquat using transgenic tobacco plants expressing catalase from Escherichia coli. Plant Cell Physiol,2000,41 (3): 311-20
    [89] Liang Y, Chen Q, Liu Q, Zhang W, Ding R. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol,2003,160 (10): 1157-64
    [90] Garratt LC, Janagoudar BS, Lowe KC, Anthony P, Power JB, Davey MR. Salinity tolerance and antioxidant status in cotton cultures. Free Radic Biol Med,2002,33 (4): 502-11
    [91] Manchandia AM, Banks SW, Gossett DR, Bellaire BA, Lucas MC, Millhollon EP. The influence of alpha-amanitin on the NaCl-induced up-regulation of antioxidant enzyme activity in cotton callus tissue. Free Radic Res,1999,30 (6): 429-38
    [92] Rotruck JT, Pope AL, Ganther HE, Swanson AB,Hafeman DG, Hoekstra WG Selenium: biochemical role as a component of glutathione peroxidases. Science, 1973,179: 588-590
    [93] Flohe L, Gunzler WA, Schock H H Glutathione peroxidase: a selenoenzyme. FEBS Letters, 1973,32: 132-134
    [94] Criqui MC, Jamet E, Parmentier Y, Marbach J, Durr A, Fleck J (1992) Isolation and characterization of a plant cDNA showing homology to animal glutathione peroxidases. Plant Molecular Biology, 18:623-627
    [95] Holland D, Ben-Hayyim G, Faltin Z, Camoin L,Strosberg AD, Eshdat Y Molecular characterization of saltstress-associated proteinin Citrus:protein and cDNA sequence homology to mammalian glutathione peroxidase. Plant Molecular Biology, 1993,21: 923-927
    [96] Sugimoto M, Furui S, Suzuki Y. Molecular cloning and characterization of a cDNA encoding putative phospholipid hydroperoxide glutathione peroxidase from Spinach. Bioscience Biotechnology and Biochemistry, 1997,61:1379-1381
    [97] Eshdat Y, Holland D, Faltin Z, Ben-Hayyim G Plant glutathione peroxidases. Physiologia Plantarum, 1997,100:234-240
    [98] Roeckel-Drevet P, GagneG, de Labrouhe TD, Dufaure JP, Nicolas P, Drevet JR, Molecular characterization organ distribution and stress-mediated induction of two glutathione peroxidase-encoding mRNAs in sunflower (Helianthus annuus). Physiologia Plantarum, 1998,103 : 385-394
    [99] Depege N, Drevet J, Boyer N. Molecular cloning and characterization of tomato cDNAsencoding glutathione peroxidase-proteins. European Journal of Biochemistry, 1998,253 : 445-451
    [100] Mullineaux PM, Karpinski S, Jimenez A, Cleary SP,Robinson C, Creissen GP. Identication of cDNA encoding plastid-targeted glutathione peroxidase. The Plant Journal, 1998,13 : 375-379
    [101] Li WJ, Feng H, Fan JH, Zhang RQ, Zhao NM, Liu JY. Molecular cloning and expression of a phospholipid hydroperoxide glutathione peroxidase homolog in Oryza sativa. Biochimica et Biophysica Acta, 2000,1493: 225-230
    [102] Jung BG, Lee KO, Lee SS, et al. A Chinese cabbage cDNA with high sequence identity to phospholipid hydroperoxide glutathione peroxidases encodes a novel isoform of thioredoxin-dependent peroxidase. Journal of Biological Chemistry, 2002,277:12572-12578
    [103] Milla MAR, Maurer A, Huete AR, Gustafson JP. Glutathione peroxidase genes in Arabidposis are ubiquityous and regulated by abiotic stresses though diverse signaling pathways. The Plant Journal, 2003,36:602-615
    [104] Mullineaux, P.M., Creissen, G P. Glutathione reductase: regulation and role in oxidative stress. In: Oxidative stress and the molecular biology id antioxidant defenses. Scandalios JG(ed) Cold Spring Harbor Laboratory Press, ew York, 1997, 667-713
    [105] Noctor, G and Foyer, C.H. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. PLant Mol. Biol., 1998 49: 249-79
    [106] Bruggemann, W., Beyel, V., Brodka, M., Poth, H., Weil, M. Antioxidants and antioxidative enzymes in wild-type and transgenic lycopersicon genotypes of different chilling tolerance. PLant Sci., 1999,140: 145-54
    [107] Tanaka, K., Masuda, R., Sugimoto, T., Omasa, K. and Sakaki, T. Water deficiency induced changes in the content of defensive substances against active oxygen in spinach leaves. Agric. Biol.Chem.,1990,54:2629-2634
    [108] Ye, B. and Gressel, J. Transient, oxidant-induced antioxigant transcript and enzyme levels correlate with greater oxidant-resistance in paraquant-resistant Conyza bonariensis. Planta, 2000,211:50-61
    [109] Mehlhorn, H., Cottam, D.A., Lucas, P.W. and Welluburn, A. R. Induction of ascorbate peroxidase and glutathione reductase activities by interactions of mixtures of air pollutants. Free Rad. Res. Comms., 1987,3:193一197
    [110] Zhu, Y.L., Pilon- Smits, E.A.H., Jouanin, L. and Terry. N. Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol., 1999,119:73-79
    [111] Kocsy,G Szalai,G.Vagujfalvi, A. Stehli, L. Orosz,G. Genetic study of glutathione accumulation during cold hardening in wheat. Planta, 2000,210:295-301
    [112] Mittova, V, Theodoulou, F.L., .Kiddle, G, Gomez, L., Volokita, M., Tal, M., Foyer, C.H., Guy, M. Coordinate induction of glutathione biosynthesis and glutathione metabolizing enzymes is correlated with salt tolerance in tomato. FEBS Letters, 2003 554: 417-421
    [113] Singh K, Foley R C, Onate-Sanchez L. Transcription factors in plant defense and stress response.Curr Opin Plant Biol,2002,5 (5):430~436
    [114]陈丽.植物转录因子的结构与功能.植物生理学通讯,1999,33:401-409
    [115] Jakoby M., Weisshaar B., Dr?ge-Laser W., bZIP transcription factors in Arabidopsis. Trends in Plant Science2002,7:106-111
    [116] Foster R, Lzawa T,Chua N H. Plant bZIP proteins gather at ACGT elements. FASEB Jour,l994,8:192-200
    [117] Choi H, Hong J H, Ha J, et al. ABFS a family of ABA-responsive element binding factors. Jour Biol Chem, 2000,275:1723-1730
    [118] Class S, Michoel B. The regulation of transcription factor activity in plants. Trends in Plant Sci,1998,3(10):378-383
    [119] Casaretto J, Ho T. The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells.Plant Cell,2003,15:271-284
    [120]Brocard I M, Lynch T J, Finkelstein R R. Regulation and role of the Arabidopsis ABA-insensitive 5 gene in ABA,sugar and stress response. Plant Physiol,2002,129:1533-1543
    [121] Kuhlmann M, Horvay K, Strathmann A, et al. The alphahelical D1 domain of the tobacco bZIP transcription factor BZI-l interacts with the ankyrin-repeat protein ANK1 and is important for BZI-l function both in auxin signaling and pathogen response. Jour Biol Chem, 2003, 278: 8786-8794
    [122] Stracke R,Werber M,Weisshaar B.The R2R3-MYB gene family in Arabidopsis thaliana.Curr Opin Plant Biol,2001,4:447-456
    [123]陈俊,王宗阳.植物MYB转录因子研究进展.植物生理学与分子生物学学报,2002,28 (2):81-88
    [124] Payne C T, Zhang F, Lioyd A M. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG..Genetics, 2000, 156 :1349-1362
    [125] Cathie M, Javier P.MYB transcription factors in plants .Reviews,1997,13 (2):225-229
    [126] Abe H, Yamaguchi-Shinozaki K, Urao T, et al. Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid-regulated gene expression. Plant Cell,1997,9:1859-1868
    [127] Kranz H D, Iknekamp M, Greco R, et al.Towards functional characterization of the members of the R2 R3-MYB gene family from Arabidopsis thaliana. Plant Journal,1998,16:263-276
    [128] Eulgen T, Rushton P J, Robatzek S, et al. The WRKY superfamily of plant transc- ription factors.Trends Plant Sci, 2000, 5(5):199-206
    [129] Zhang Z L, Xing P, Zou X, et al. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cell.Plant Physiol, 2004, 134:1500-1513
    [130] Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene super family during plant defense response. Plant Mol Biol,2003,51:21-37
    [131] Li J,Brader G,Palva E T.The WRKY70 transcription factors:a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant cell, 2004, 16: 319- 331
    [132]Kalde M, Barth M, Somssich I E,et al.Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Mol Plant Microbe Interact, 2003,16:295-305
    [133] Liu Q, Kqsuga M, Sakuma Y,et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduc- tion pathways in drought and low-temperature-responsive gene expression responsively in Arabidopsis. Plant cell, 1998, 10: 1391-1406
    [134]Jiang C, Lu B, Singh J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol,1996,30:679-684
    [135]刘强,赵南明,Yamaguch-Shinozaki K,等.DREB类转录因子在提高植物抗逆性中的作用.科学通报,2001,45(1):11-15
    [136]Moye-Rowley,W.S.,Harshman K.D.,and Parker C.S. Yeast YAP1 encodes a novel form of the jun family of transcriptional activator.Genes & development,1989,3:283-292
    [137] Hertle,K., Haase,E. and Brendel,M. The SNQ3 gene of Saccharomyces cerevisiae confers hyper-resistance to several functionally unrelated chemicals. Curr. Genet., 1991,19, 429–433.
    [138] Hussain,M. and Lenard,J. Characterization of PDR4, a Saccharomyces cerevisiae gene that confers pleiotropic drug resistance in high-copy number: identity with YAP1, encoding a transcriptional activator. Gene,1991, 101, 149–152.
    [139] Schnell,N. and Entian,K.D. Identification and characterization of a Saccharomyces cerevisiae gene (PAR1) conferring resistance to iron chelators. Eur. J. Biochem., 1991,200, 487–493.
    [140] Wu,A. and Moye-Rowley,W.S. GSH1, which encodes g-glutamylcysteine synthetase, is a target gene for yAP-1transcriptional regulation. Mol. Cell. Biol., 1994,14, 5832–5839.
    [141] Kuge,S. and Jones,N. YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J., 1994, 13, 655–664.
    [142] Hirata,D., Yano,K. and Miyakawa,T. Stress-induced transcriptional activation mediated by YAP1 and YAP2 genes that encode the Jun family of transcriptional activators in Saccharomyces cerevisiae. Mol. Gen. Genet., 1994,242, 250–256.
    [143] Wemmie,J.A., Szczypka,M.S., Thiele,D.J. and Moye-Rowley,W.S. Cadmium tolerance mediated by the yeast AP-1 protein requires the presence of an ATP-binding cassette transporter-encoding gene, YCF1. J. Biol. Chem., 1994a, 269, 32592–32597.
    [144] Wu,A. and Moye-Rowley,W.S. GSH1, which encodes g-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulation. Mol. Cell. Biol., 1994,14, 5832–5839.
    [145] Grant,C.M., Collinson,L.P., Roe,J.-H. and Dawes,I.W. Yeast glutathione reductase is required for protection against oxidative stress and is a target for yAP-1 transcriptional regulation. Mol. Microbiol., 1996,21, 171–179.
    [146] Miyahara,K., Hirata,D. and Miyakawa,T. yAP-1 and yAP-2-mediated, heat shock-induced transcriptional activation of the multidrug resistance ABC transporter genes in Saccharomyces cerevisiae. Curr. Genet., 1996,29, 103–105.
    [147]Delaunay A., Isnard A-D., Toledano M. B. H2O2 sensing through oxidation of the Yap1 transcription factor. The EMBO journal, 2000,19:5157-5166
    [148] Bressan R. A., Zhang C.Q., Zhang H. et al. Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiol, 2002, 127: 1354–1360
    [149] Zeng-lan Wang, Ping-Hua Li, Hui Zhang, Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Science, 2004, 166: 609-616
    [150] Jian-Kang Zhu. Plant salt tolerance. Trends in Plant Science, 2001, 6: 66-71
    [151] Volkov V, B. Wang, P.J.Dominy et al. Thellungiella halophila ,a salt-tolerant relative of Arabidopsis thaliana,possesses effective mechanisms to discriminate between potassium and sodium. Plant, Cell and Environment, 2003, 27: 1-13
    [152] Ghars MA., Parre E., Bordenave M., et al. Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K(+)/Na(+) selectivity and proline accumulation. J Plant Physiol.2008,165(6):588-599
    [153] Taji T, Seki M, Satou T et al. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol,2004, 135 : 1697-1709
    [154] Inan G , Zhang Q, Li PH et al. Salt Cress.A Halophyte and Cryophyte Arabidopsis Relative Model System and Its Applicability to Molecular Genetic Analyses of Growth and Development of Extremophiles. Plant Physiol, 2004, 135: 1-20
    [155] Teusink RS, Rahman M, Bressan RA, Jenks MA. Cuticular waxes on Arabidopsis thaliana close relatives Thellungiella halophila and Thellungiella parvula. Int J Plant Sci, 2002, 163: 309–315
    [156]Qingqiu G., Pinghua L., Shisong M.,et al., Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. The Plant Journal. 2005,44: 826-839
    [157] An G,Lee S.,Kim S., et al. Molecular Genetics Using T-DNA in Rice. Plant and Cell Physiology 2005, 46(1):14-22
    [158] Kim Y.S.,Schumaker K.S.and Zhu J.K. EMS Mutagenesis of Arabidopsis From:Methods in Molecular Biology, 2006,vol.323,Arabidopsis Protocols,Second Edition.
    [159]Azpiroz-Leehan R.and Feldmann, K.A.T-DNA insertion mutagenesis in Arabidopsis:going back and forth.Trends Genet, 1997,13,152-156.
    [160] Lindsey K.,Topping J.F.,Muskett P.R.,et al. Dissecting embryonic and seedling morphogenesis in Arabidopsis by promoter trap insertional mutagenesis.Symp Soc Exp Biol, 1998,51:1-10.
    [161] Nacry P.,Camilleri C.,Courtial B.,et al. Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis.Genetics, 1998,149,641-650.
    [162]Laufs P.,Autran D.,Traas J. A chromosomal paracentric inversion associated with T-DNA integration in Arabidopsis.Plant J. 1999,18,131-139.
    [163] Koornneef M.,Dellaert L.W.,vander Veen J.H. EMS and radiationinduced mutation frequencies at individual loci in Arabidopsis thaliana(L.)Heynh.Mutant Res. 1982,93,109-123.
    [164]Leung H.,Wu C.,Baraoidan M.et al. Deletion mutants functional genomics:progress in phenotyping, sequence assignment and database development,4th International Rice GeneticsSymposium IRRI Philippines,Abstract Book, 2000,p18.
    [165]Delseny M.,Salsesa J.,Cookea R.et al. Rice genomics:Present and future.Plant Physiol Biochem. 2001,39,323-334.
    [166] Gu Z, Steinmetz L.M, Gu X, Scharfe, et al. Role of duplicate genes in genetic robustness against null mutations. Nature, 2003, 421: 63-66.
    [167] Arabidopsis genome initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408: 796-815.
    [168] Yu J, Hu S, Wang J, et al, A draft sequence of the rice genome. Science,2002a, 296: 79-92.
    [169]Feldmann K.A. T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant Journal, 1991, 1: 71-82.
    [170] Jeon J.S, An G. , Gene tagging in rice : a high through put system for functional genomics. Plant Science, 2001, 161: 211-219.
    [171] Normandy J, Bartel B. Redundancy as a way of life—IAA metabolism. Current opinion in plant biology, 1999, 2: 207-213.
    [172] Hayashi H, Czaja 1, Lubenow H et al. Activation of a plant gene by T-DNA tagging-Auxin independent growth in vifro,.Science, 1992, 258: 1350-1353
    [173]吴乃虎.基因工程原理(下册) .第2版.北京:科学出版社,2001:241-251
    [174] Weigel.D, Ahn JH, Blázquez MA, et al. Activation tagging in Arabidopsis. Plant Physiol, 2000, 122: 1003–1013
    [175] Brunner E, Brunner D, Fu W, Hafen E, Basler K. The dominant mutation Glazed is a gain-of-function allele of wingless the, similar to loss of APC, interferes with normal eye development. Dev Biol, 1999,206: 178-188
    [176] Nakazawa M,Yabe N,Ichikawa T,et a1.DFLl,anauxin-responsive GH3 gene homologue,negatively regulates shoot cell elongation an d lateral root formation,and positively regulatesthe light response of hypocotyl length.Plant J,200l,25:213-221
    [177] Migeon J C,Garflnkel M S,Edgar B A.Cloning and characterization of peter pan,a novel Drosophila gene required for larval growth.Mol Biol Cell,1999,10:l733-1744
    [178] Ochman H , Gerber AS , Hartl DL. Genetic applications of an inverse polymerase chain reaction. Genetics , 1988 , 120 :621~623. [179 ] Trilia T , Peterson MG, Kemp DJ . A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Research , 1988 , 16 (16):81-86
    [180] Liu Yao-Guang ,Robert F Whitter. Thermal asymmetric interlaced PCR :automatable amplification and sequencing of insert end fragment from P1 and YAC clones for chromosome walking. Genomics ,1995 ,25 :674 - 681.
    [181] Liu Yao-Guang ,Huang Ning. Efficient amplification of insert end sequences from bacterial artificial chromosome clones by thermal asymmetric interlaced PCR. Plant Molecular Biology Reporter ,1998 ,16 (2) :175 - 181.
    [182] Liu Yao-Guang ,Norihiro Mitsukawa ,Teruko Oosumi ,Robert F Wittier. Efficient isolation and mapping of A rabi dopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. The Plant Journal ,1995 ,8 (3) :457 - 463.
    [183] Forman M A ,DUSH M K,Martin G R. Rapid production of full-length cDNA rare transcripts :amplification using a single gene-specific oligonucletide prime. Proc Natl Acad Sci USA ,1988 ,85 :8998-9002.
    [184] Sessions A, Burke E, Presting G et al. A High-Throughput Arabidopsis Reverse Genetics System. The Plant Cell, 2002, 14: 2985-2994
    [185] Sha Y.,LI S.,Pei Z.,et al. Generation and flanking sequence analysis of a rie T-DNA tagged population. Theor.APPI.Gene 2004,08:306-31
    [186] Chen M,Presting G,BarbazukW B, et al. An integrated Physical and genetic map of the rice genome. Plant Cell,2002,14:537-545
    [187]Kakimoto T. CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science, 1996, 274: 982-985
    [188] Kardailsky I, Shukla V K, Ahn J H et al. Activation tagging of the floral inducer FT. Science, 1999, 286: 1962-1965
    [189] Borevitz J O, Xia Y, Blount J et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell, 2000, 12:2383-2394
    [190] Ito T and Meyerowitz E M. Overexpression of a gene encoding a cytochrome P450, CYP78A9, induces large and seedless fruit in Arabidopsis. Plant Cell, 2000, 12: 1541-1550
    [191] Van der Graaff E,Dulk-Ras A D,Hooykaas P J et al.Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabldopsis thaliana. Development 2000, 127:4971-4980
    [192] Li J, Lease KA, Tax FE, Walker JC. BRS1, a serine carboxypepetidase, regulates BRI1 signalling in Arabidopsis thaliana. Proc Natl Acad Sci USA,2001,98:5916-5921
    [193] Li J, Wen J, Lease KA, Doke JT, Tax E, Walker JC BAK 1,an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signalling. Cell,2002,110:213-222
    [194] Huang S, Cerny R E, Bhat D S et al. Cloning of an Arabidopsis patatin-like gene,STURDY, by activation T-DNA tagging. Plant Physiol, 2001, 125: 573-584
    [195] Hong Y., Xi Ch., Yuan-Yuan H., and Cheng-Bin X. Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant cell.2008,20:1134-1151
    [196]Xia Y, Suzuki H, Borevitz J, Blount J et al. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J, 2004, 23: 980-988
    [197] Grant JJ, Chini A, Basu D, Koake GJ. Targeted activation tagging of ADR1,a NBS-LRR gene, conveys resistance to virulent pathogens. Mol Plant Microbe Interact, 2003, 16:669-680
    [198] Fits L van der, Memelink J. ORCA3, a jasmonate-responsive transcriptional regulator of primary and secondary metabolism. Science, 2000, 289: 295-297
    [199] Jeong D-H, An S, Kang H-G et al. T-DNA insertion mutagenesis for activation tagging in rice. Phant Physiol, 2002, 130: 1636-1644
    [200] Furini A, Konez C, Salamini F and Bartels D. High level transcription of a member of a repeated gene family confers dehydration tolerance to callus of Craterostigma plantagineum. EMBO J, 1997, 16: 3599-3608
    [201] Kumar S, Fladung M. Somatic mobility of the maize element Ac and its utility for gene tagging in aspen. Plant Mol Biol, 2003, 51: 643–650
    [202] Mathews et al Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell, 2003, 15: 1689–1703
    [203] Ohtsuki S, Levine M, Cai HN. Different core promoters possess distinct regulatory activities in the Drosophila embryo. Genes Dev, 1998, 12: 547–556
    [204] Benfey PN, Chua N-H. The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J, 1989, 8: 2195–2202
    [205] Matsuhara S, Jingu F, Takahashi T, Komeda Y. Heat-shock tagging: a simple method for expression and isolation of plant genome DNA flanked by T-DNA insertions. Plant J, 2000, 22: 79–86
    [206] Zuo J, Niu Q-W, Frugis G, Chua N-H. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J, 2002, 30: 349–359
    [207] Helen T, Xinwei C, Pedro N, et al. Activation tagging in plants: a tool for gene discovery. Funct Integr Genomics,2004,4:1-9
    [208] Zwaal R R, Broeks A, van Meurs J et al. Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank. Proc Natl Acad Sci USA, 1993, 15: 7431-7435
    [209] Maes T, Keukeleire P D and Gerats T. Plant tagnology. Trends in Plant Science, 1999, 4:90-96
    [210] Liu Y G, Mitsukawa, N. and Whitter R F. Rapid sequencing of PCR products by thermal asymmetric PCR cycle sequencing using unlabeled sequencing primers. Nucleic Acids Research, 1993, 21: 3333-3334
    [211] Jeon J S, Lee S, Jung K H et al. T-DNA insertional mutagenesis for functional gemomics in rice. Plant J, 2000, 22: 561-570
    [212] Krysan P J, Young J C and Sussman M R. T-DNA as an insertional mutagen in Arabidopsis. Plant Cell, 1999, 11: 2283-2290
    [213] Szabados L, Kovacs I, Oberschall A et al. Distribution of 1000 sequenced T-DNA tags in the Arabidopsis genome. Plant J, 2002, 32: 233-242
    [214]林植芳,李双顺,林桂珠,孙谷畴,郭俊彦.水稻叶片的衰老与超氧化物歧化酶活性及膜脂过氧化作用的关系.植物学报, 1984, 26 (6): 605-615
    [215] Rao MV, Paliyath G, Ormrod DP. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2–metabolizing enzymes. Plant Physiol, 1997, 115:137-149
    [216]李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000: 260-261;164-165;167-168;195-197
    [217]林植芳,李双顺,林桂珠,郭俊彦.衰老叶片和叶绿体中的积累与膜脂过氧化的关系.植物生理学报, 1988, 14 (1):16-22
    [218]Knight,H. and Knight M.R. Abiotic stress signaling pathways: specificity and crosss-talk. Trends Plant Sci.2001,6:262-267
    [219]Ron Mittler Oxidative stress,antioxidants and stress tolerance. Trends Plant Sci.2002,7:405-410
    [220] Foeri CH and Allen JF. Lessons from Redox Signaling in Plants. Antioxidants and Redox Signaling, 2003,5(1):3-5
    [221]Asada,K. and Takahashi,M. Production and scavenging of active oxygen in photosynthesis. In photoinhibition (Kyle,D.J. et al) Elsevier.1987,pp227-287
    [222]杨淑慎,高俊凤.活性氧、自由基与植物的衰老.西北植物学报,2001,21(2):215- 220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700